blob: 33365e9ce6a74f28f5a9902cae7647e44e2e567c [file] [log] [blame]
Andi Kleen6a460792009-09-16 11:50:15 +02001/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
Andi Kleen1c80b992010-09-27 23:09:51 +020010 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
Andi Kleen6a460792009-09-16 11:50:15 +020011 * failure.
Andi Kleen1c80b992010-09-27 23:09:51 +020012 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
Andi Kleen6a460792009-09-16 11:50:15 +020015 *
16 * Handles page cache pages in various states. The tricky part
Andi Kleen1c80b992010-09-27 23:09:51 +020017 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
Andi Kleen6a460792009-09-16 11:50:15 +020030 */
31
32/*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
Andi Kleen6a460792009-09-16 11:50:15 +020038#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/page-flags.h>
Wu Fengguang478c5ff2009-12-16 12:19:59 +010041#include <linux/kernel-page-flags.h>
Andi Kleen6a460792009-09-16 11:50:15 +020042#include <linux/sched.h>
Hugh Dickins01e00f82009-10-13 15:02:11 +010043#include <linux/ksm.h>
Andi Kleen6a460792009-09-16 11:50:15 +020044#include <linux/rmap.h>
Paul Gortmakerb9e15ba2011-05-26 16:00:52 -040045#include <linux/export.h>
Andi Kleen6a460792009-09-16 11:50:15 +020046#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/backing-dev.h>
Andi Kleenfacb6012009-12-16 12:20:00 +010049#include <linux/migrate.h>
50#include <linux/page-isolation.h>
51#include <linux/suspend.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090052#include <linux/slab.h>
Huang Yingbf998152010-05-31 14:28:19 +080053#include <linux/swapops.h>
Naoya Horiguchi7af446a2010-05-28 09:29:17 +090054#include <linux/hugetlb.h>
KOSAKI Motohiro20d6c962010-12-02 14:31:19 -080055#include <linux/memory_hotplug.h>
Minchan Kim5db8a732011-06-15 15:08:48 -070056#include <linux/mm_inline.h>
Huang Yingea8f5fb2011-07-13 13:14:27 +080057#include <linux/kfifo.h>
Andi Kleen6a460792009-09-16 11:50:15 +020058#include "internal.h"
59
60int sysctl_memory_failure_early_kill __read_mostly = 0;
61
62int sysctl_memory_failure_recovery __read_mostly = 1;
63
Xishi Qiu293c07e2013-02-22 16:34:02 -080064atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
Andi Kleen6a460792009-09-16 11:50:15 +020065
Andi Kleen27df5062009-12-21 19:56:42 +010066#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67
Haicheng Li1bfe5fe2009-12-16 12:19:59 +010068u32 hwpoison_filter_enable = 0;
Wu Fengguang7c116f22009-12-16 12:19:59 +010069u32 hwpoison_filter_dev_major = ~0U;
70u32 hwpoison_filter_dev_minor = ~0U;
Wu Fengguang478c5ff2009-12-16 12:19:59 +010071u64 hwpoison_filter_flags_mask;
72u64 hwpoison_filter_flags_value;
Haicheng Li1bfe5fe2009-12-16 12:19:59 +010073EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
Wu Fengguang7c116f22009-12-16 12:19:59 +010074EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
Wu Fengguang478c5ff2009-12-16 12:19:59 +010076EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
Wu Fengguang7c116f22009-12-16 12:19:59 +010078
79static int hwpoison_filter_dev(struct page *p)
80{
81 struct address_space *mapping;
82 dev_t dev;
83
84 if (hwpoison_filter_dev_major == ~0U &&
85 hwpoison_filter_dev_minor == ~0U)
86 return 0;
87
88 /*
Andi Kleen1c80b992010-09-27 23:09:51 +020089 * page_mapping() does not accept slab pages.
Wu Fengguang7c116f22009-12-16 12:19:59 +010090 */
91 if (PageSlab(p))
92 return -EINVAL;
93
94 mapping = page_mapping(p);
95 if (mapping == NULL || mapping->host == NULL)
96 return -EINVAL;
97
98 dev = mapping->host->i_sb->s_dev;
99 if (hwpoison_filter_dev_major != ~0U &&
100 hwpoison_filter_dev_major != MAJOR(dev))
101 return -EINVAL;
102 if (hwpoison_filter_dev_minor != ~0U &&
103 hwpoison_filter_dev_minor != MINOR(dev))
104 return -EINVAL;
105
106 return 0;
107}
108
Wu Fengguang478c5ff2009-12-16 12:19:59 +0100109static int hwpoison_filter_flags(struct page *p)
110{
111 if (!hwpoison_filter_flags_mask)
112 return 0;
113
114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 hwpoison_filter_flags_value)
116 return 0;
117 else
118 return -EINVAL;
119}
120
Andi Kleen4fd466e2009-12-16 12:19:59 +0100121/*
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
130 */
Andrew Mortonc255a452012-07-31 16:43:02 -0700131#ifdef CONFIG_MEMCG_SWAP
Andi Kleen4fd466e2009-12-16 12:19:59 +0100132u64 hwpoison_filter_memcg;
133EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134static int hwpoison_filter_task(struct page *p)
135{
136 struct mem_cgroup *mem;
137 struct cgroup_subsys_state *css;
138 unsigned long ino;
139
140 if (!hwpoison_filter_memcg)
141 return 0;
142
143 mem = try_get_mem_cgroup_from_page(p);
144 if (!mem)
145 return -EINVAL;
146
147 css = mem_cgroup_css(mem);
148 /* root_mem_cgroup has NULL dentries */
149 if (!css->cgroup->dentry)
150 return -EINVAL;
151
152 ino = css->cgroup->dentry->d_inode->i_ino;
153 css_put(css);
154
155 if (ino != hwpoison_filter_memcg)
156 return -EINVAL;
157
158 return 0;
159}
160#else
161static int hwpoison_filter_task(struct page *p) { return 0; }
162#endif
163
Wu Fengguang7c116f22009-12-16 12:19:59 +0100164int hwpoison_filter(struct page *p)
165{
Haicheng Li1bfe5fe2009-12-16 12:19:59 +0100166 if (!hwpoison_filter_enable)
167 return 0;
168
Wu Fengguang7c116f22009-12-16 12:19:59 +0100169 if (hwpoison_filter_dev(p))
170 return -EINVAL;
171
Wu Fengguang478c5ff2009-12-16 12:19:59 +0100172 if (hwpoison_filter_flags(p))
173 return -EINVAL;
174
Andi Kleen4fd466e2009-12-16 12:19:59 +0100175 if (hwpoison_filter_task(p))
176 return -EINVAL;
177
Wu Fengguang7c116f22009-12-16 12:19:59 +0100178 return 0;
179}
Andi Kleen27df5062009-12-21 19:56:42 +0100180#else
181int hwpoison_filter(struct page *p)
182{
183 return 0;
184}
185#endif
186
Wu Fengguang7c116f22009-12-16 12:19:59 +0100187EXPORT_SYMBOL_GPL(hwpoison_filter);
188
Andi Kleen6a460792009-09-16 11:50:15 +0200189/*
Tony Luck7329bbe2011-12-13 09:27:58 -0800190 * Send all the processes who have the page mapped a signal.
191 * ``action optional'' if they are not immediately affected by the error
192 * ``action required'' if error happened in current execution context
Andi Kleen6a460792009-09-16 11:50:15 +0200193 */
Tony Luck7329bbe2011-12-13 09:27:58 -0800194static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
195 unsigned long pfn, struct page *page, int flags)
Andi Kleen6a460792009-09-16 11:50:15 +0200196{
197 struct siginfo si;
198 int ret;
199
200 printk(KERN_ERR
Tony Luck7329bbe2011-12-13 09:27:58 -0800201 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
Andi Kleen6a460792009-09-16 11:50:15 +0200202 pfn, t->comm, t->pid);
203 si.si_signo = SIGBUS;
204 si.si_errno = 0;
Andi Kleen6a460792009-09-16 11:50:15 +0200205 si.si_addr = (void *)addr;
206#ifdef __ARCH_SI_TRAPNO
207 si.si_trapno = trapno;
208#endif
Wanpeng Lif9121152013-09-11 14:22:52 -0700209 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
Tony Luck7329bbe2011-12-13 09:27:58 -0800210
Tony Luck6e988c22014-06-04 16:10:59 -0700211 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
Tony Luck7329bbe2011-12-13 09:27:58 -0800212 si.si_code = BUS_MCEERR_AR;
Tony Luck6e988c22014-06-04 16:10:59 -0700213 ret = force_sig_info(SIGBUS, &si, current);
Tony Luck7329bbe2011-12-13 09:27:58 -0800214 } else {
215 /*
216 * Don't use force here, it's convenient if the signal
217 * can be temporarily blocked.
218 * This could cause a loop when the user sets SIGBUS
219 * to SIG_IGN, but hopefully no one will do that?
220 */
221 si.si_code = BUS_MCEERR_AO;
222 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
223 }
Andi Kleen6a460792009-09-16 11:50:15 +0200224 if (ret < 0)
225 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
226 t->comm, t->pid, ret);
227 return ret;
228}
229
230/*
Andi Kleen588f9ce2009-12-16 12:19:57 +0100231 * When a unknown page type is encountered drain as many buffers as possible
232 * in the hope to turn the page into a LRU or free page, which we can handle.
233 */
Andi Kleenfacb6012009-12-16 12:20:00 +0100234void shake_page(struct page *p, int access)
Andi Kleen588f9ce2009-12-16 12:19:57 +0100235{
236 if (!PageSlab(p)) {
237 lru_add_drain_all();
238 if (PageLRU(p))
239 return;
240 drain_all_pages();
241 if (PageLRU(p) || is_free_buddy_page(p))
242 return;
243 }
Andi Kleenfacb6012009-12-16 12:20:00 +0100244
Andi Kleen588f9ce2009-12-16 12:19:57 +0100245 /*
Jin Dongmingaf241a02011-02-01 15:52:41 -0800246 * Only call shrink_slab here (which would also shrink other caches) if
247 * access is not potentially fatal.
Andi Kleen588f9ce2009-12-16 12:19:57 +0100248 */
Andi Kleenfacb6012009-12-16 12:20:00 +0100249 if (access) {
250 int nr;
Dave Chinner0ce3d742013-08-28 10:18:03 +1000251 int nid = page_to_nid(p);
Andi Kleenfacb6012009-12-16 12:20:00 +0100252 do {
Ying Hana09ed5e2011-05-24 17:12:26 -0700253 struct shrink_control shrink = {
254 .gfp_mask = GFP_KERNEL,
Ying Hana09ed5e2011-05-24 17:12:26 -0700255 };
Dave Chinner0ce3d742013-08-28 10:18:03 +1000256 node_set(nid, shrink.nodes_to_scan);
Ying Hana09ed5e2011-05-24 17:12:26 -0700257
Ying Han1495f232011-05-24 17:12:27 -0700258 nr = shrink_slab(&shrink, 1000, 1000);
Andi Kleen47f43e72010-09-28 07:37:55 +0200259 if (page_count(p) == 1)
Andi Kleenfacb6012009-12-16 12:20:00 +0100260 break;
261 } while (nr > 10);
262 }
Andi Kleen588f9ce2009-12-16 12:19:57 +0100263}
264EXPORT_SYMBOL_GPL(shake_page);
265
266/*
Andi Kleen6a460792009-09-16 11:50:15 +0200267 * Kill all processes that have a poisoned page mapped and then isolate
268 * the page.
269 *
270 * General strategy:
271 * Find all processes having the page mapped and kill them.
272 * But we keep a page reference around so that the page is not
273 * actually freed yet.
274 * Then stash the page away
275 *
276 * There's no convenient way to get back to mapped processes
277 * from the VMAs. So do a brute-force search over all
278 * running processes.
279 *
280 * Remember that machine checks are not common (or rather
281 * if they are common you have other problems), so this shouldn't
282 * be a performance issue.
283 *
284 * Also there are some races possible while we get from the
285 * error detection to actually handle it.
286 */
287
288struct to_kill {
289 struct list_head nd;
290 struct task_struct *tsk;
291 unsigned long addr;
Andi Kleen9033ae12010-09-27 23:36:05 +0200292 char addr_valid;
Andi Kleen6a460792009-09-16 11:50:15 +0200293};
294
295/*
296 * Failure handling: if we can't find or can't kill a process there's
297 * not much we can do. We just print a message and ignore otherwise.
298 */
299
300/*
301 * Schedule a process for later kill.
302 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
303 * TBD would GFP_NOIO be enough?
304 */
305static void add_to_kill(struct task_struct *tsk, struct page *p,
306 struct vm_area_struct *vma,
307 struct list_head *to_kill,
308 struct to_kill **tkc)
309{
310 struct to_kill *tk;
311
312 if (*tkc) {
313 tk = *tkc;
314 *tkc = NULL;
315 } else {
316 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
317 if (!tk) {
318 printk(KERN_ERR
319 "MCE: Out of memory while machine check handling\n");
320 return;
321 }
322 }
323 tk->addr = page_address_in_vma(p, vma);
324 tk->addr_valid = 1;
325
326 /*
327 * In theory we don't have to kill when the page was
328 * munmaped. But it could be also a mremap. Since that's
329 * likely very rare kill anyways just out of paranoia, but use
330 * a SIGKILL because the error is not contained anymore.
331 */
332 if (tk->addr == -EFAULT) {
Andi Kleenfb46e732010-09-27 23:31:30 +0200333 pr_info("MCE: Unable to find user space address %lx in %s\n",
Andi Kleen6a460792009-09-16 11:50:15 +0200334 page_to_pfn(p), tsk->comm);
335 tk->addr_valid = 0;
336 }
337 get_task_struct(tsk);
338 tk->tsk = tsk;
339 list_add_tail(&tk->nd, to_kill);
340}
341
342/*
343 * Kill the processes that have been collected earlier.
344 *
345 * Only do anything when DOIT is set, otherwise just free the list
346 * (this is used for clean pages which do not need killing)
347 * Also when FAIL is set do a force kill because something went
348 * wrong earlier.
349 */
Tony Luck6751ed62012-07-11 10:20:47 -0700350static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
Tony Luck7329bbe2011-12-13 09:27:58 -0800351 int fail, struct page *page, unsigned long pfn,
352 int flags)
Andi Kleen6a460792009-09-16 11:50:15 +0200353{
354 struct to_kill *tk, *next;
355
356 list_for_each_entry_safe (tk, next, to_kill, nd) {
Tony Luck6751ed62012-07-11 10:20:47 -0700357 if (forcekill) {
Andi Kleen6a460792009-09-16 11:50:15 +0200358 /*
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200359 * In case something went wrong with munmapping
Andi Kleen6a460792009-09-16 11:50:15 +0200360 * make sure the process doesn't catch the
361 * signal and then access the memory. Just kill it.
Andi Kleen6a460792009-09-16 11:50:15 +0200362 */
363 if (fail || tk->addr_valid == 0) {
364 printk(KERN_ERR
365 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
366 pfn, tk->tsk->comm, tk->tsk->pid);
367 force_sig(SIGKILL, tk->tsk);
368 }
369
370 /*
371 * In theory the process could have mapped
372 * something else on the address in-between. We could
373 * check for that, but we need to tell the
374 * process anyways.
375 */
Tony Luck7329bbe2011-12-13 09:27:58 -0800376 else if (kill_proc(tk->tsk, tk->addr, trapno,
377 pfn, page, flags) < 0)
Andi Kleen6a460792009-09-16 11:50:15 +0200378 printk(KERN_ERR
379 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
380 pfn, tk->tsk->comm, tk->tsk->pid);
381 }
382 put_task_struct(tk->tsk);
383 kfree(tk);
384 }
385}
386
Naoya Horiguchi98143392014-06-04 16:11:02 -0700387/*
388 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
389 * on behalf of the thread group. Return task_struct of the (first found)
390 * dedicated thread if found, and return NULL otherwise.
391 *
392 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
393 * have to call rcu_read_lock/unlock() in this function.
394 */
395static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
Andi Kleen6a460792009-09-16 11:50:15 +0200396{
Naoya Horiguchi98143392014-06-04 16:11:02 -0700397 struct task_struct *t;
398
399 for_each_thread(tsk, t)
400 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
401 return t;
402 return NULL;
403}
404
405/*
406 * Determine whether a given process is "early kill" process which expects
407 * to be signaled when some page under the process is hwpoisoned.
408 * Return task_struct of the dedicated thread (main thread unless explicitly
409 * specified) if the process is "early kill," and otherwise returns NULL.
410 */
411static struct task_struct *task_early_kill(struct task_struct *tsk,
412 int force_early)
413{
414 struct task_struct *t;
Andi Kleen6a460792009-09-16 11:50:15 +0200415 if (!tsk->mm)
Naoya Horiguchi98143392014-06-04 16:11:02 -0700416 return NULL;
Tony Luck965b5a22014-06-04 16:11:01 -0700417 if (force_early)
Naoya Horiguchi98143392014-06-04 16:11:02 -0700418 return tsk;
419 t = find_early_kill_thread(tsk);
420 if (t)
421 return t;
422 if (sysctl_memory_failure_early_kill)
423 return tsk;
424 return NULL;
Andi Kleen6a460792009-09-16 11:50:15 +0200425}
426
427/*
428 * Collect processes when the error hit an anonymous page.
429 */
430static void collect_procs_anon(struct page *page, struct list_head *to_kill,
Tony Luck965b5a22014-06-04 16:11:01 -0700431 struct to_kill **tkc, int force_early)
Andi Kleen6a460792009-09-16 11:50:15 +0200432{
433 struct vm_area_struct *vma;
434 struct task_struct *tsk;
435 struct anon_vma *av;
Michel Lespinassebf181b92012-10-08 16:31:39 -0700436 pgoff_t pgoff;
Andi Kleen6a460792009-09-16 11:50:15 +0200437
Ingo Molnar4fc3f1d2012-12-02 19:56:50 +0000438 av = page_lock_anon_vma_read(page);
Andi Kleen6a460792009-09-16 11:50:15 +0200439 if (av == NULL) /* Not actually mapped anymore */
Peter Zijlstra9b679322011-06-27 16:18:09 -0700440 return;
441
Michel Lespinassebf181b92012-10-08 16:31:39 -0700442 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
Peter Zijlstra9b679322011-06-27 16:18:09 -0700443 read_lock(&tasklist_lock);
Andi Kleen6a460792009-09-16 11:50:15 +0200444 for_each_process (tsk) {
Rik van Riel5beb4932010-03-05 13:42:07 -0800445 struct anon_vma_chain *vmac;
Naoya Horiguchi98143392014-06-04 16:11:02 -0700446 struct task_struct *t = task_early_kill(tsk, force_early);
Rik van Riel5beb4932010-03-05 13:42:07 -0800447
Naoya Horiguchi98143392014-06-04 16:11:02 -0700448 if (!t)
Andi Kleen6a460792009-09-16 11:50:15 +0200449 continue;
Michel Lespinassebf181b92012-10-08 16:31:39 -0700450 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
451 pgoff, pgoff) {
Rik van Riel5beb4932010-03-05 13:42:07 -0800452 vma = vmac->vma;
Andi Kleen6a460792009-09-16 11:50:15 +0200453 if (!page_mapped_in_vma(page, vma))
454 continue;
Naoya Horiguchi98143392014-06-04 16:11:02 -0700455 if (vma->vm_mm == t->mm)
456 add_to_kill(t, page, vma, to_kill, tkc);
Andi Kleen6a460792009-09-16 11:50:15 +0200457 }
458 }
Andi Kleen6a460792009-09-16 11:50:15 +0200459 read_unlock(&tasklist_lock);
Ingo Molnar4fc3f1d2012-12-02 19:56:50 +0000460 page_unlock_anon_vma_read(av);
Andi Kleen6a460792009-09-16 11:50:15 +0200461}
462
463/*
464 * Collect processes when the error hit a file mapped page.
465 */
466static void collect_procs_file(struct page *page, struct list_head *to_kill,
Tony Luck965b5a22014-06-04 16:11:01 -0700467 struct to_kill **tkc, int force_early)
Andi Kleen6a460792009-09-16 11:50:15 +0200468{
469 struct vm_area_struct *vma;
470 struct task_struct *tsk;
Andi Kleen6a460792009-09-16 11:50:15 +0200471 struct address_space *mapping = page->mapping;
472
Peter Zijlstra3d48ae42011-05-24 17:12:06 -0700473 mutex_lock(&mapping->i_mmap_mutex);
Peter Zijlstra9b679322011-06-27 16:18:09 -0700474 read_lock(&tasklist_lock);
Andi Kleen6a460792009-09-16 11:50:15 +0200475 for_each_process(tsk) {
476 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
Naoya Horiguchi98143392014-06-04 16:11:02 -0700477 struct task_struct *t = task_early_kill(tsk, force_early);
Andi Kleen6a460792009-09-16 11:50:15 +0200478
Naoya Horiguchi98143392014-06-04 16:11:02 -0700479 if (!t)
Andi Kleen6a460792009-09-16 11:50:15 +0200480 continue;
Michel Lespinasse6b2dbba2012-10-08 16:31:25 -0700481 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
Andi Kleen6a460792009-09-16 11:50:15 +0200482 pgoff) {
483 /*
484 * Send early kill signal to tasks where a vma covers
485 * the page but the corrupted page is not necessarily
486 * mapped it in its pte.
487 * Assume applications who requested early kill want
488 * to be informed of all such data corruptions.
489 */
Naoya Horiguchi98143392014-06-04 16:11:02 -0700490 if (vma->vm_mm == t->mm)
491 add_to_kill(t, page, vma, to_kill, tkc);
Andi Kleen6a460792009-09-16 11:50:15 +0200492 }
493 }
Andi Kleen6a460792009-09-16 11:50:15 +0200494 read_unlock(&tasklist_lock);
Peter Zijlstra9b679322011-06-27 16:18:09 -0700495 mutex_unlock(&mapping->i_mmap_mutex);
Andi Kleen6a460792009-09-16 11:50:15 +0200496}
497
498/*
499 * Collect the processes who have the corrupted page mapped to kill.
500 * This is done in two steps for locking reasons.
501 * First preallocate one tokill structure outside the spin locks,
502 * so that we can kill at least one process reasonably reliable.
503 */
Tony Luck965b5a22014-06-04 16:11:01 -0700504static void collect_procs(struct page *page, struct list_head *tokill,
505 int force_early)
Andi Kleen6a460792009-09-16 11:50:15 +0200506{
507 struct to_kill *tk;
508
509 if (!page->mapping)
510 return;
511
512 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
513 if (!tk)
514 return;
515 if (PageAnon(page))
Tony Luck965b5a22014-06-04 16:11:01 -0700516 collect_procs_anon(page, tokill, &tk, force_early);
Andi Kleen6a460792009-09-16 11:50:15 +0200517 else
Tony Luck965b5a22014-06-04 16:11:01 -0700518 collect_procs_file(page, tokill, &tk, force_early);
Andi Kleen6a460792009-09-16 11:50:15 +0200519 kfree(tk);
520}
521
522/*
523 * Error handlers for various types of pages.
524 */
525
526enum outcome {
Wu Fengguangd95ea512009-12-16 12:19:58 +0100527 IGNORED, /* Error: cannot be handled */
528 FAILED, /* Error: handling failed */
Andi Kleen6a460792009-09-16 11:50:15 +0200529 DELAYED, /* Will be handled later */
Andi Kleen6a460792009-09-16 11:50:15 +0200530 RECOVERED, /* Successfully recovered */
531};
532
533static const char *action_name[] = {
Wu Fengguangd95ea512009-12-16 12:19:58 +0100534 [IGNORED] = "Ignored",
Andi Kleen6a460792009-09-16 11:50:15 +0200535 [FAILED] = "Failed",
536 [DELAYED] = "Delayed",
Andi Kleen6a460792009-09-16 11:50:15 +0200537 [RECOVERED] = "Recovered",
538};
539
540/*
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100541 * XXX: It is possible that a page is isolated from LRU cache,
542 * and then kept in swap cache or failed to remove from page cache.
543 * The page count will stop it from being freed by unpoison.
544 * Stress tests should be aware of this memory leak problem.
545 */
546static int delete_from_lru_cache(struct page *p)
547{
548 if (!isolate_lru_page(p)) {
549 /*
550 * Clear sensible page flags, so that the buddy system won't
551 * complain when the page is unpoison-and-freed.
552 */
553 ClearPageActive(p);
554 ClearPageUnevictable(p);
555 /*
556 * drop the page count elevated by isolate_lru_page()
557 */
558 page_cache_release(p);
559 return 0;
560 }
561 return -EIO;
562}
563
564/*
Andi Kleen6a460792009-09-16 11:50:15 +0200565 * Error hit kernel page.
566 * Do nothing, try to be lucky and not touch this instead. For a few cases we
567 * could be more sophisticated.
568 */
569static int me_kernel(struct page *p, unsigned long pfn)
570{
Andi Kleen6a460792009-09-16 11:50:15 +0200571 return IGNORED;
572}
573
574/*
575 * Page in unknown state. Do nothing.
576 */
577static int me_unknown(struct page *p, unsigned long pfn)
578{
579 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
580 return FAILED;
581}
582
583/*
Andi Kleen6a460792009-09-16 11:50:15 +0200584 * Clean (or cleaned) page cache page.
585 */
586static int me_pagecache_clean(struct page *p, unsigned long pfn)
587{
588 int err;
589 int ret = FAILED;
590 struct address_space *mapping;
591
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100592 delete_from_lru_cache(p);
593
Andi Kleen6a460792009-09-16 11:50:15 +0200594 /*
595 * For anonymous pages we're done the only reference left
596 * should be the one m_f() holds.
597 */
598 if (PageAnon(p))
599 return RECOVERED;
600
601 /*
602 * Now truncate the page in the page cache. This is really
603 * more like a "temporary hole punch"
604 * Don't do this for block devices when someone else
605 * has a reference, because it could be file system metadata
606 * and that's not safe to truncate.
607 */
608 mapping = page_mapping(p);
609 if (!mapping) {
610 /*
611 * Page has been teared down in the meanwhile
612 */
613 return FAILED;
614 }
615
616 /*
617 * Truncation is a bit tricky. Enable it per file system for now.
618 *
619 * Open: to take i_mutex or not for this? Right now we don't.
620 */
621 if (mapping->a_ops->error_remove_page) {
622 err = mapping->a_ops->error_remove_page(mapping, p);
623 if (err != 0) {
624 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
625 pfn, err);
626 } else if (page_has_private(p) &&
627 !try_to_release_page(p, GFP_NOIO)) {
Andi Kleenfb46e732010-09-27 23:31:30 +0200628 pr_info("MCE %#lx: failed to release buffers\n", pfn);
Andi Kleen6a460792009-09-16 11:50:15 +0200629 } else {
630 ret = RECOVERED;
631 }
632 } else {
633 /*
634 * If the file system doesn't support it just invalidate
635 * This fails on dirty or anything with private pages
636 */
637 if (invalidate_inode_page(p))
638 ret = RECOVERED;
639 else
640 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
641 pfn);
642 }
643 return ret;
644}
645
646/*
Zhi Yong Wu549543d2014-01-21 15:49:08 -0800647 * Dirty pagecache page
Andi Kleen6a460792009-09-16 11:50:15 +0200648 * Issues: when the error hit a hole page the error is not properly
649 * propagated.
650 */
651static int me_pagecache_dirty(struct page *p, unsigned long pfn)
652{
653 struct address_space *mapping = page_mapping(p);
654
655 SetPageError(p);
656 /* TBD: print more information about the file. */
657 if (mapping) {
658 /*
659 * IO error will be reported by write(), fsync(), etc.
660 * who check the mapping.
661 * This way the application knows that something went
662 * wrong with its dirty file data.
663 *
664 * There's one open issue:
665 *
666 * The EIO will be only reported on the next IO
667 * operation and then cleared through the IO map.
668 * Normally Linux has two mechanisms to pass IO error
669 * first through the AS_EIO flag in the address space
670 * and then through the PageError flag in the page.
671 * Since we drop pages on memory failure handling the
672 * only mechanism open to use is through AS_AIO.
673 *
674 * This has the disadvantage that it gets cleared on
675 * the first operation that returns an error, while
676 * the PageError bit is more sticky and only cleared
677 * when the page is reread or dropped. If an
678 * application assumes it will always get error on
679 * fsync, but does other operations on the fd before
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300680 * and the page is dropped between then the error
Andi Kleen6a460792009-09-16 11:50:15 +0200681 * will not be properly reported.
682 *
683 * This can already happen even without hwpoisoned
684 * pages: first on metadata IO errors (which only
685 * report through AS_EIO) or when the page is dropped
686 * at the wrong time.
687 *
688 * So right now we assume that the application DTRT on
689 * the first EIO, but we're not worse than other parts
690 * of the kernel.
691 */
692 mapping_set_error(mapping, EIO);
693 }
694
695 return me_pagecache_clean(p, pfn);
696}
697
698/*
699 * Clean and dirty swap cache.
700 *
701 * Dirty swap cache page is tricky to handle. The page could live both in page
702 * cache and swap cache(ie. page is freshly swapped in). So it could be
703 * referenced concurrently by 2 types of PTEs:
704 * normal PTEs and swap PTEs. We try to handle them consistently by calling
705 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
706 * and then
707 * - clear dirty bit to prevent IO
708 * - remove from LRU
709 * - but keep in the swap cache, so that when we return to it on
710 * a later page fault, we know the application is accessing
711 * corrupted data and shall be killed (we installed simple
712 * interception code in do_swap_page to catch it).
713 *
714 * Clean swap cache pages can be directly isolated. A later page fault will
715 * bring in the known good data from disk.
716 */
717static int me_swapcache_dirty(struct page *p, unsigned long pfn)
718{
Andi Kleen6a460792009-09-16 11:50:15 +0200719 ClearPageDirty(p);
720 /* Trigger EIO in shmem: */
721 ClearPageUptodate(p);
722
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100723 if (!delete_from_lru_cache(p))
724 return DELAYED;
725 else
726 return FAILED;
Andi Kleen6a460792009-09-16 11:50:15 +0200727}
728
729static int me_swapcache_clean(struct page *p, unsigned long pfn)
730{
Andi Kleen6a460792009-09-16 11:50:15 +0200731 delete_from_swap_cache(p);
Wu Fengguange43c3af2009-09-29 13:16:20 +0800732
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100733 if (!delete_from_lru_cache(p))
734 return RECOVERED;
735 else
736 return FAILED;
Andi Kleen6a460792009-09-16 11:50:15 +0200737}
738
739/*
740 * Huge pages. Needs work.
741 * Issues:
Naoya Horiguchi93f70f92010-05-28 09:29:20 +0900742 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
743 * To narrow down kill region to one page, we need to break up pmd.
Andi Kleen6a460792009-09-16 11:50:15 +0200744 */
745static int me_huge_page(struct page *p, unsigned long pfn)
746{
Naoya Horiguchi6de2b1a2010-09-08 10:19:36 +0900747 int res = 0;
Naoya Horiguchi93f70f92010-05-28 09:29:20 +0900748 struct page *hpage = compound_head(p);
749 /*
750 * We can safely recover from error on free or reserved (i.e.
751 * not in-use) hugepage by dequeuing it from freelist.
752 * To check whether a hugepage is in-use or not, we can't use
753 * page->lru because it can be used in other hugepage operations,
754 * such as __unmap_hugepage_range() and gather_surplus_pages().
755 * So instead we use page_mapping() and PageAnon().
756 * We assume that this function is called with page lock held,
757 * so there is no race between isolation and mapping/unmapping.
758 */
759 if (!(page_mapping(hpage) || PageAnon(hpage))) {
Naoya Horiguchi6de2b1a2010-09-08 10:19:36 +0900760 res = dequeue_hwpoisoned_huge_page(hpage);
761 if (!res)
762 return RECOVERED;
Naoya Horiguchi93f70f92010-05-28 09:29:20 +0900763 }
764 return DELAYED;
Andi Kleen6a460792009-09-16 11:50:15 +0200765}
766
767/*
768 * Various page states we can handle.
769 *
770 * A page state is defined by its current page->flags bits.
771 * The table matches them in order and calls the right handler.
772 *
773 * This is quite tricky because we can access page at any time
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300774 * in its live cycle, so all accesses have to be extremely careful.
Andi Kleen6a460792009-09-16 11:50:15 +0200775 *
776 * This is not complete. More states could be added.
777 * For any missing state don't attempt recovery.
778 */
779
780#define dirty (1UL << PG_dirty)
781#define sc (1UL << PG_swapcache)
782#define unevict (1UL << PG_unevictable)
783#define mlock (1UL << PG_mlocked)
784#define writeback (1UL << PG_writeback)
785#define lru (1UL << PG_lru)
786#define swapbacked (1UL << PG_swapbacked)
787#define head (1UL << PG_head)
788#define tail (1UL << PG_tail)
789#define compound (1UL << PG_compound)
790#define slab (1UL << PG_slab)
Andi Kleen6a460792009-09-16 11:50:15 +0200791#define reserved (1UL << PG_reserved)
792
793static struct page_state {
794 unsigned long mask;
795 unsigned long res;
796 char *msg;
797 int (*action)(struct page *p, unsigned long pfn);
798} error_states[] = {
Wu Fengguangd95ea512009-12-16 12:19:58 +0100799 { reserved, reserved, "reserved kernel", me_kernel },
Wu Fengguang95d01fc2009-12-16 12:19:58 +0100800 /*
801 * free pages are specially detected outside this table:
802 * PG_buddy pages only make a small fraction of all free pages.
803 */
Andi Kleen6a460792009-09-16 11:50:15 +0200804
805 /*
806 * Could in theory check if slab page is free or if we can drop
807 * currently unused objects without touching them. But just
808 * treat it as standard kernel for now.
809 */
810 { slab, slab, "kernel slab", me_kernel },
811
812#ifdef CONFIG_PAGEFLAGS_EXTENDED
813 { head, head, "huge", me_huge_page },
814 { tail, tail, "huge", me_huge_page },
815#else
816 { compound, compound, "huge", me_huge_page },
817#endif
818
Naoya Horiguchiff604cf2012-12-11 16:01:32 -0800819 { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty },
820 { sc|dirty, sc, "clean swapcache", me_swapcache_clean },
Andi Kleen6a460792009-09-16 11:50:15 +0200821
Naoya Horiguchiff604cf2012-12-11 16:01:32 -0800822 { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty },
Naoya Horiguchie3986292013-04-29 15:06:08 -0700823 { mlock|dirty, mlock, "clean mlocked LRU", me_pagecache_clean },
Andi Kleen6a460792009-09-16 11:50:15 +0200824
Naoya Horiguchi5f4b9fc2013-02-22 16:35:53 -0800825 { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
Naoya Horiguchie3986292013-04-29 15:06:08 -0700826 { unevict|dirty, unevict, "clean unevictable LRU", me_pagecache_clean },
Naoya Horiguchi5f4b9fc2013-02-22 16:35:53 -0800827
Naoya Horiguchiff604cf2012-12-11 16:01:32 -0800828 { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty },
Andi Kleen6a460792009-09-16 11:50:15 +0200829 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
Andi Kleen6a460792009-09-16 11:50:15 +0200830
831 /*
832 * Catchall entry: must be at end.
833 */
834 { 0, 0, "unknown page state", me_unknown },
835};
836
Andi Kleen2326c462009-12-16 12:20:00 +0100837#undef dirty
838#undef sc
839#undef unevict
840#undef mlock
841#undef writeback
842#undef lru
843#undef swapbacked
844#undef head
845#undef tail
846#undef compound
847#undef slab
848#undef reserved
849
Naoya Horiguchiff604cf2012-12-11 16:01:32 -0800850/*
851 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
852 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
853 */
Andi Kleen6a460792009-09-16 11:50:15 +0200854static void action_result(unsigned long pfn, char *msg, int result)
855{
Naoya Horiguchiff604cf2012-12-11 16:01:32 -0800856 pr_err("MCE %#lx: %s page recovery: %s\n",
857 pfn, msg, action_name[result]);
Andi Kleen6a460792009-09-16 11:50:15 +0200858}
859
860static int page_action(struct page_state *ps, struct page *p,
Wu Fengguangbd1ce5f2009-12-16 12:19:57 +0100861 unsigned long pfn)
Andi Kleen6a460792009-09-16 11:50:15 +0200862{
863 int result;
Wu Fengguang7456b042009-10-19 08:15:01 +0200864 int count;
Andi Kleen6a460792009-09-16 11:50:15 +0200865
866 result = ps->action(p, pfn);
867 action_result(pfn, ps->msg, result);
Wu Fengguang7456b042009-10-19 08:15:01 +0200868
Wu Fengguangbd1ce5f2009-12-16 12:19:57 +0100869 count = page_count(p) - 1;
Wu Fengguang138ce282009-12-16 12:19:58 +0100870 if (ps->action == me_swapcache_dirty && result == DELAYED)
871 count--;
872 if (count != 0) {
Andi Kleen6a460792009-09-16 11:50:15 +0200873 printk(KERN_ERR
874 "MCE %#lx: %s page still referenced by %d users\n",
Wu Fengguang7456b042009-10-19 08:15:01 +0200875 pfn, ps->msg, count);
Wu Fengguang138ce282009-12-16 12:19:58 +0100876 result = FAILED;
877 }
Andi Kleen6a460792009-09-16 11:50:15 +0200878
879 /* Could do more checks here if page looks ok */
880 /*
881 * Could adjust zone counters here to correct for the missing page.
882 */
883
Wu Fengguang138ce282009-12-16 12:19:58 +0100884 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
Andi Kleen6a460792009-09-16 11:50:15 +0200885}
886
Andi Kleen6a460792009-09-16 11:50:15 +0200887/*
888 * Do all that is necessary to remove user space mappings. Unmap
889 * the pages and send SIGBUS to the processes if the data was dirty.
890 */
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100891static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
Naoya Horiguchi54b9dd12014-01-23 15:53:14 -0800892 int trapno, int flags, struct page **hpagep)
Andi Kleen6a460792009-09-16 11:50:15 +0200893{
894 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
895 struct address_space *mapping;
896 LIST_HEAD(tokill);
897 int ret;
Tony Luck6751ed62012-07-11 10:20:47 -0700898 int kill = 1, forcekill;
Naoya Horiguchi54b9dd12014-01-23 15:53:14 -0800899 struct page *hpage = *hpagep;
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800900 struct page *ppage;
Andi Kleen6a460792009-09-16 11:50:15 +0200901
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100902 if (PageReserved(p) || PageSlab(p))
903 return SWAP_SUCCESS;
Andi Kleen6a460792009-09-16 11:50:15 +0200904
Andi Kleen6a460792009-09-16 11:50:15 +0200905 /*
906 * This check implies we don't kill processes if their pages
907 * are in the swap cache early. Those are always late kills.
908 */
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900909 if (!page_mapped(hpage))
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100910 return SWAP_SUCCESS;
911
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900912 if (PageKsm(p))
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100913 return SWAP_FAIL;
Andi Kleen6a460792009-09-16 11:50:15 +0200914
915 if (PageSwapCache(p)) {
916 printk(KERN_ERR
917 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
918 ttu |= TTU_IGNORE_HWPOISON;
919 }
920
921 /*
922 * Propagate the dirty bit from PTEs to struct page first, because we
923 * need this to decide if we should kill or just drop the page.
Wu Fengguangdb0480b2009-12-16 12:19:58 +0100924 * XXX: the dirty test could be racy: set_page_dirty() may not always
925 * be called inside page lock (it's recommended but not enforced).
Andi Kleen6a460792009-09-16 11:50:15 +0200926 */
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900927 mapping = page_mapping(hpage);
Tony Luck6751ed62012-07-11 10:20:47 -0700928 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900929 mapping_cap_writeback_dirty(mapping)) {
930 if (page_mkclean(hpage)) {
931 SetPageDirty(hpage);
Andi Kleen6a460792009-09-16 11:50:15 +0200932 } else {
933 kill = 0;
934 ttu |= TTU_IGNORE_HWPOISON;
935 printk(KERN_INFO
936 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
937 pfn);
938 }
939 }
940
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800941 /*
942 * ppage: poisoned page
943 * if p is regular page(4k page)
944 * ppage == real poisoned page;
945 * else p is hugetlb or THP, ppage == head page.
946 */
947 ppage = hpage;
948
Jin Dongmingefeda7a2011-02-01 15:52:39 -0800949 if (PageTransHuge(hpage)) {
950 /*
951 * Verify that this isn't a hugetlbfs head page, the check for
952 * PageAnon is just for avoid tripping a split_huge_page
953 * internal debug check, as split_huge_page refuses to deal with
954 * anything that isn't an anon page. PageAnon can't go away fro
955 * under us because we hold a refcount on the hpage, without a
956 * refcount on the hpage. split_huge_page can't be safely called
957 * in the first place, having a refcount on the tail isn't
958 * enough * to be safe.
959 */
960 if (!PageHuge(hpage) && PageAnon(hpage)) {
961 if (unlikely(split_huge_page(hpage))) {
962 /*
963 * FIXME: if splitting THP is failed, it is
964 * better to stop the following operation rather
965 * than causing panic by unmapping. System might
966 * survive if the page is freed later.
967 */
968 printk(KERN_INFO
969 "MCE %#lx: failed to split THP\n", pfn);
970
971 BUG_ON(!PageHWPoison(p));
972 return SWAP_FAIL;
973 }
Naoya Horiguchia3e0f9e2014-01-02 12:58:51 -0800974 /*
975 * We pinned the head page for hwpoison handling,
976 * now we split the thp and we are interested in
977 * the hwpoisoned raw page, so move the refcount
Naoya Horiguchi54b9dd12014-01-23 15:53:14 -0800978 * to it. Similarly, page lock is shifted.
Naoya Horiguchia3e0f9e2014-01-02 12:58:51 -0800979 */
980 if (hpage != p) {
Naoya Horiguchi8d547ff2014-02-10 14:25:50 -0800981 if (!(flags & MF_COUNT_INCREASED)) {
982 put_page(hpage);
983 get_page(p);
984 }
Naoya Horiguchi54b9dd12014-01-23 15:53:14 -0800985 lock_page(p);
986 unlock_page(hpage);
987 *hpagep = p;
Naoya Horiguchia3e0f9e2014-01-02 12:58:51 -0800988 }
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800989 /* THP is split, so ppage should be the real poisoned page. */
990 ppage = p;
Jin Dongmingefeda7a2011-02-01 15:52:39 -0800991 }
992 }
993
Andi Kleen6a460792009-09-16 11:50:15 +0200994 /*
995 * First collect all the processes that have the page
996 * mapped in dirty form. This has to be done before try_to_unmap,
997 * because ttu takes the rmap data structures down.
998 *
999 * Error handling: We ignore errors here because
1000 * there's nothing that can be done.
1001 */
1002 if (kill)
Tony Luck965b5a22014-06-04 16:11:01 -07001003 collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
Andi Kleen6a460792009-09-16 11:50:15 +02001004
Jin Dongminga6d30dd2011-02-01 15:52:40 -08001005 ret = try_to_unmap(ppage, ttu);
Andi Kleen6a460792009-09-16 11:50:15 +02001006 if (ret != SWAP_SUCCESS)
1007 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
Jin Dongminga6d30dd2011-02-01 15:52:40 -08001008 pfn, page_mapcount(ppage));
1009
Andi Kleen6a460792009-09-16 11:50:15 +02001010 /*
1011 * Now that the dirty bit has been propagated to the
1012 * struct page and all unmaps done we can decide if
1013 * killing is needed or not. Only kill when the page
Tony Luck6751ed62012-07-11 10:20:47 -07001014 * was dirty or the process is not restartable,
1015 * otherwise the tokill list is merely
Andi Kleen6a460792009-09-16 11:50:15 +02001016 * freed. When there was a problem unmapping earlier
1017 * use a more force-full uncatchable kill to prevent
1018 * any accesses to the poisoned memory.
1019 */
Tony Luck6751ed62012-07-11 10:20:47 -07001020 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
1021 kill_procs(&tokill, forcekill, trapno,
Tony Luck7329bbe2011-12-13 09:27:58 -08001022 ret != SWAP_SUCCESS, p, pfn, flags);
Wu Fengguang1668bfd2009-12-16 12:19:58 +01001023
1024 return ret;
Andi Kleen6a460792009-09-16 11:50:15 +02001025}
1026
Naoya Horiguchi7013feb2010-05-28 09:29:18 +09001027static void set_page_hwpoison_huge_page(struct page *hpage)
1028{
1029 int i;
Wanpeng Lif9121152013-09-11 14:22:52 -07001030 int nr_pages = 1 << compound_order(hpage);
Naoya Horiguchi7013feb2010-05-28 09:29:18 +09001031 for (i = 0; i < nr_pages; i++)
1032 SetPageHWPoison(hpage + i);
1033}
1034
1035static void clear_page_hwpoison_huge_page(struct page *hpage)
1036{
1037 int i;
Wanpeng Lif9121152013-09-11 14:22:52 -07001038 int nr_pages = 1 << compound_order(hpage);
Naoya Horiguchi7013feb2010-05-28 09:29:18 +09001039 for (i = 0; i < nr_pages; i++)
1040 ClearPageHWPoison(hpage + i);
1041}
1042
Tony Luckcd42f4a2011-12-15 10:48:12 -08001043/**
1044 * memory_failure - Handle memory failure of a page.
1045 * @pfn: Page Number of the corrupted page
1046 * @trapno: Trap number reported in the signal to user space.
1047 * @flags: fine tune action taken
1048 *
1049 * This function is called by the low level machine check code
1050 * of an architecture when it detects hardware memory corruption
1051 * of a page. It tries its best to recover, which includes
1052 * dropping pages, killing processes etc.
1053 *
1054 * The function is primarily of use for corruptions that
1055 * happen outside the current execution context (e.g. when
1056 * detected by a background scrubber)
1057 *
1058 * Must run in process context (e.g. a work queue) with interrupts
1059 * enabled and no spinlocks hold.
1060 */
1061int memory_failure(unsigned long pfn, int trapno, int flags)
Andi Kleen6a460792009-09-16 11:50:15 +02001062{
1063 struct page_state *ps;
1064 struct page *p;
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001065 struct page *hpage;
Andi Kleen6a460792009-09-16 11:50:15 +02001066 int res;
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001067 unsigned int nr_pages;
Naoya Horiguchi524fca12013-02-22 16:35:51 -08001068 unsigned long page_flags;
Andi Kleen6a460792009-09-16 11:50:15 +02001069
1070 if (!sysctl_memory_failure_recovery)
1071 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1072
1073 if (!pfn_valid(pfn)) {
Wu Fengguanga7560fc2009-12-16 12:19:57 +01001074 printk(KERN_ERR
1075 "MCE %#lx: memory outside kernel control\n",
1076 pfn);
1077 return -ENXIO;
Andi Kleen6a460792009-09-16 11:50:15 +02001078 }
1079
1080 p = pfn_to_page(pfn);
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001081 hpage = compound_head(p);
Andi Kleen6a460792009-09-16 11:50:15 +02001082 if (TestSetPageHWPoison(p)) {
Wu Fengguangd95ea512009-12-16 12:19:58 +01001083 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
Andi Kleen6a460792009-09-16 11:50:15 +02001084 return 0;
1085 }
1086
Naoya Horiguchi4db0e952013-02-22 16:34:05 -08001087 /*
1088 * Currently errors on hugetlbfs pages are measured in hugepage units,
1089 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1090 * transparent hugepages, they are supposed to be split and error
1091 * measurement is done in normal page units. So nr_pages should be one
1092 * in this case.
1093 */
1094 if (PageHuge(p))
1095 nr_pages = 1 << compound_order(hpage);
1096 else /* normal page or thp */
1097 nr_pages = 1;
Xishi Qiu293c07e2013-02-22 16:34:02 -08001098 atomic_long_add(nr_pages, &num_poisoned_pages);
Andi Kleen6a460792009-09-16 11:50:15 +02001099
1100 /*
1101 * We need/can do nothing about count=0 pages.
1102 * 1) it's a free page, and therefore in safe hand:
1103 * prep_new_page() will be the gate keeper.
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001104 * 2) it's a free hugepage, which is also safe:
1105 * an affected hugepage will be dequeued from hugepage freelist,
1106 * so there's no concern about reusing it ever after.
1107 * 3) it's part of a non-compound high order page.
Andi Kleen6a460792009-09-16 11:50:15 +02001108 * Implies some kernel user: cannot stop them from
1109 * R/W the page; let's pray that the page has been
1110 * used and will be freed some time later.
1111 * In fact it's dangerous to directly bump up page count from 0,
1112 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1113 */
Andi Kleen82ba0112009-12-16 12:19:57 +01001114 if (!(flags & MF_COUNT_INCREASED) &&
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001115 !get_page_unless_zero(hpage)) {
Wu Fengguang8d22ba12009-12-16 12:19:58 +01001116 if (is_free_buddy_page(p)) {
1117 action_result(pfn, "free buddy", DELAYED);
1118 return 0;
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001119 } else if (PageHuge(hpage)) {
1120 /*
Chen Yucong54a2ab12014-05-22 11:54:15 -07001121 * Check "filter hit" and "race with other subpage."
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001122 */
Jens Axboe7eaceac2011-03-10 08:52:07 +01001123 lock_page(hpage);
Chen Yucong54a2ab12014-05-22 11:54:15 -07001124 if (PageHWPoison(hpage)) {
1125 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1126 || (p != hpage && TestSetPageHWPoison(hpage))) {
1127 atomic_long_sub(nr_pages, &num_poisoned_pages);
1128 unlock_page(hpage);
1129 return 0;
1130 }
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001131 }
1132 set_page_hwpoison_huge_page(hpage);
1133 res = dequeue_hwpoisoned_huge_page(hpage);
1134 action_result(pfn, "free huge",
1135 res ? IGNORED : DELAYED);
1136 unlock_page(hpage);
1137 return res;
Wu Fengguang8d22ba12009-12-16 12:19:58 +01001138 } else {
1139 action_result(pfn, "high order kernel", IGNORED);
1140 return -EBUSY;
1141 }
Andi Kleen6a460792009-09-16 11:50:15 +02001142 }
1143
1144 /*
Wu Fengguange43c3af2009-09-29 13:16:20 +08001145 * We ignore non-LRU pages for good reasons.
1146 * - PG_locked is only well defined for LRU pages and a few others
1147 * - to avoid races with __set_page_locked()
1148 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1149 * The check (unnecessarily) ignores LRU pages being isolated and
1150 * walked by the page reclaim code, however that's not a big loss.
1151 */
Dean Nelson385de352012-03-21 16:34:05 -07001152 if (!PageHuge(p) && !PageTransTail(p)) {
Jin Dongmingaf241a02011-02-01 15:52:41 -08001153 if (!PageLRU(p))
1154 shake_page(p, 0);
1155 if (!PageLRU(p)) {
1156 /*
1157 * shake_page could have turned it free.
1158 */
1159 if (is_free_buddy_page(p)) {
Wanpeng Li2d421ac2013-09-30 13:45:23 -07001160 if (flags & MF_COUNT_INCREASED)
1161 action_result(pfn, "free buddy", DELAYED);
1162 else
1163 action_result(pfn, "free buddy, 2nd try", DELAYED);
Jin Dongmingaf241a02011-02-01 15:52:41 -08001164 return 0;
1165 }
1166 action_result(pfn, "non LRU", IGNORED);
1167 put_page(p);
1168 return -EBUSY;
Andi Kleen0474a602009-12-16 12:20:00 +01001169 }
Wu Fengguange43c3af2009-09-29 13:16:20 +08001170 }
Wu Fengguange43c3af2009-09-29 13:16:20 +08001171
1172 /*
Andi Kleen6a460792009-09-16 11:50:15 +02001173 * Lock the page and wait for writeback to finish.
1174 * It's very difficult to mess with pages currently under IO
1175 * and in many cases impossible, so we just avoid it here.
1176 */
Jens Axboe7eaceac2011-03-10 08:52:07 +01001177 lock_page(hpage);
Wu Fengguang847ce402009-12-16 12:19:58 +01001178
1179 /*
Naoya Horiguchi524fca12013-02-22 16:35:51 -08001180 * We use page flags to determine what action should be taken, but
1181 * the flags can be modified by the error containment action. One
1182 * example is an mlocked page, where PG_mlocked is cleared by
1183 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1184 * correctly, we save a copy of the page flags at this time.
1185 */
1186 page_flags = p->flags;
1187
1188 /*
Wu Fengguang847ce402009-12-16 12:19:58 +01001189 * unpoison always clear PG_hwpoison inside page lock
1190 */
1191 if (!PageHWPoison(p)) {
Wu Fengguangd95ea512009-12-16 12:19:58 +01001192 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
Naoya Horiguchi36222532014-05-22 11:54:21 -07001193 atomic_long_sub(nr_pages, &num_poisoned_pages);
1194 put_page(hpage);
Wu Fengguang847ce402009-12-16 12:19:58 +01001195 res = 0;
1196 goto out;
1197 }
Wu Fengguang7c116f22009-12-16 12:19:59 +01001198 if (hwpoison_filter(p)) {
1199 if (TestClearPageHWPoison(p))
Xishi Qiu293c07e2013-02-22 16:34:02 -08001200 atomic_long_sub(nr_pages, &num_poisoned_pages);
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001201 unlock_page(hpage);
1202 put_page(hpage);
Wu Fengguang7c116f22009-12-16 12:19:59 +01001203 return 0;
1204 }
Wu Fengguang847ce402009-12-16 12:19:58 +01001205
Naoya Horiguchi7013feb2010-05-28 09:29:18 +09001206 /*
1207 * For error on the tail page, we should set PG_hwpoison
1208 * on the head page to show that the hugepage is hwpoisoned
1209 */
Jin Dongminga6d30dd2011-02-01 15:52:40 -08001210 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
Naoya Horiguchi7013feb2010-05-28 09:29:18 +09001211 action_result(pfn, "hugepage already hardware poisoned",
1212 IGNORED);
1213 unlock_page(hpage);
1214 put_page(hpage);
1215 return 0;
1216 }
1217 /*
1218 * Set PG_hwpoison on all pages in an error hugepage,
1219 * because containment is done in hugepage unit for now.
1220 * Since we have done TestSetPageHWPoison() for the head page with
1221 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1222 */
1223 if (PageHuge(p))
1224 set_page_hwpoison_huge_page(hpage);
1225
Andi Kleen6a460792009-09-16 11:50:15 +02001226 wait_on_page_writeback(p);
1227
1228 /*
1229 * Now take care of user space mappings.
Minchan Kime64a7822011-03-22 16:32:44 -07001230 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
Naoya Horiguchi54b9dd12014-01-23 15:53:14 -08001231 *
1232 * When the raw error page is thp tail page, hpage points to the raw
1233 * page after thp split.
Andi Kleen6a460792009-09-16 11:50:15 +02001234 */
Naoya Horiguchi54b9dd12014-01-23 15:53:14 -08001235 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1236 != SWAP_SUCCESS) {
Wu Fengguang1668bfd2009-12-16 12:19:58 +01001237 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1238 res = -EBUSY;
1239 goto out;
1240 }
Andi Kleen6a460792009-09-16 11:50:15 +02001241
1242 /*
1243 * Torn down by someone else?
1244 */
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +01001245 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
Andi Kleen6a460792009-09-16 11:50:15 +02001246 action_result(pfn, "already truncated LRU", IGNORED);
Wu Fengguangd95ea512009-12-16 12:19:58 +01001247 res = -EBUSY;
Andi Kleen6a460792009-09-16 11:50:15 +02001248 goto out;
1249 }
1250
1251 res = -EBUSY;
Naoya Horiguchi524fca12013-02-22 16:35:51 -08001252 /*
1253 * The first check uses the current page flags which may not have any
1254 * relevant information. The second check with the saved page flagss is
1255 * carried out only if the first check can't determine the page status.
1256 */
1257 for (ps = error_states;; ps++)
1258 if ((p->flags & ps->mask) == ps->res)
Andi Kleen6a460792009-09-16 11:50:15 +02001259 break;
Wanpeng Li841fcc52013-09-11 14:22:50 -07001260
1261 page_flags |= (p->flags & (1UL << PG_dirty));
1262
Naoya Horiguchi524fca12013-02-22 16:35:51 -08001263 if (!ps->mask)
1264 for (ps = error_states;; ps++)
1265 if ((page_flags & ps->mask) == ps->res)
1266 break;
1267 res = page_action(ps, p, pfn);
Andi Kleen6a460792009-09-16 11:50:15 +02001268out:
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001269 unlock_page(hpage);
Andi Kleen6a460792009-09-16 11:50:15 +02001270 return res;
1271}
Tony Luckcd42f4a2011-12-15 10:48:12 -08001272EXPORT_SYMBOL_GPL(memory_failure);
Wu Fengguang847ce402009-12-16 12:19:58 +01001273
Huang Yingea8f5fb2011-07-13 13:14:27 +08001274#define MEMORY_FAILURE_FIFO_ORDER 4
1275#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1276
1277struct memory_failure_entry {
1278 unsigned long pfn;
1279 int trapno;
1280 int flags;
1281};
1282
1283struct memory_failure_cpu {
1284 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1285 MEMORY_FAILURE_FIFO_SIZE);
1286 spinlock_t lock;
1287 struct work_struct work;
1288};
1289
1290static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1291
1292/**
1293 * memory_failure_queue - Schedule handling memory failure of a page.
1294 * @pfn: Page Number of the corrupted page
1295 * @trapno: Trap number reported in the signal to user space.
1296 * @flags: Flags for memory failure handling
1297 *
1298 * This function is called by the low level hardware error handler
1299 * when it detects hardware memory corruption of a page. It schedules
1300 * the recovering of error page, including dropping pages, killing
1301 * processes etc.
1302 *
1303 * The function is primarily of use for corruptions that
1304 * happen outside the current execution context (e.g. when
1305 * detected by a background scrubber)
1306 *
1307 * Can run in IRQ context.
1308 */
1309void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1310{
1311 struct memory_failure_cpu *mf_cpu;
1312 unsigned long proc_flags;
1313 struct memory_failure_entry entry = {
1314 .pfn = pfn,
1315 .trapno = trapno,
1316 .flags = flags,
1317 };
1318
1319 mf_cpu = &get_cpu_var(memory_failure_cpu);
1320 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
Stefani Seibold498d3192013-11-14 14:32:17 -08001321 if (kfifo_put(&mf_cpu->fifo, entry))
Huang Yingea8f5fb2011-07-13 13:14:27 +08001322 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1323 else
Joe Perches8e33a522013-07-25 11:53:25 -07001324 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
Huang Yingea8f5fb2011-07-13 13:14:27 +08001325 pfn);
1326 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1327 put_cpu_var(memory_failure_cpu);
1328}
1329EXPORT_SYMBOL_GPL(memory_failure_queue);
1330
1331static void memory_failure_work_func(struct work_struct *work)
1332{
1333 struct memory_failure_cpu *mf_cpu;
1334 struct memory_failure_entry entry = { 0, };
1335 unsigned long proc_flags;
1336 int gotten;
1337
1338 mf_cpu = &__get_cpu_var(memory_failure_cpu);
1339 for (;;) {
1340 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1341 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1342 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1343 if (!gotten)
1344 break;
Naveen N. Raocf870c72013-07-10 14:57:01 +05301345 if (entry.flags & MF_SOFT_OFFLINE)
1346 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1347 else
1348 memory_failure(entry.pfn, entry.trapno, entry.flags);
Huang Yingea8f5fb2011-07-13 13:14:27 +08001349 }
1350}
1351
1352static int __init memory_failure_init(void)
1353{
1354 struct memory_failure_cpu *mf_cpu;
1355 int cpu;
1356
1357 for_each_possible_cpu(cpu) {
1358 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1359 spin_lock_init(&mf_cpu->lock);
1360 INIT_KFIFO(mf_cpu->fifo);
1361 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1362 }
1363
1364 return 0;
1365}
1366core_initcall(memory_failure_init);
1367
Wu Fengguang847ce402009-12-16 12:19:58 +01001368/**
1369 * unpoison_memory - Unpoison a previously poisoned page
1370 * @pfn: Page number of the to be unpoisoned page
1371 *
1372 * Software-unpoison a page that has been poisoned by
1373 * memory_failure() earlier.
1374 *
1375 * This is only done on the software-level, so it only works
1376 * for linux injected failures, not real hardware failures
1377 *
1378 * Returns 0 for success, otherwise -errno.
1379 */
1380int unpoison_memory(unsigned long pfn)
1381{
1382 struct page *page;
1383 struct page *p;
1384 int freeit = 0;
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001385 unsigned int nr_pages;
Wu Fengguang847ce402009-12-16 12:19:58 +01001386
1387 if (!pfn_valid(pfn))
1388 return -ENXIO;
1389
1390 p = pfn_to_page(pfn);
1391 page = compound_head(p);
1392
1393 if (!PageHWPoison(p)) {
Andi Kleenfb46e732010-09-27 23:31:30 +02001394 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
Wu Fengguang847ce402009-12-16 12:19:58 +01001395 return 0;
1396 }
1397
Wanpeng Li0cea3fd2013-09-11 14:22:53 -07001398 /*
1399 * unpoison_memory() can encounter thp only when the thp is being
1400 * worked by memory_failure() and the page lock is not held yet.
1401 * In such case, we yield to memory_failure() and make unpoison fail.
1402 */
Wanpeng Lie76d30e2013-09-30 13:45:22 -07001403 if (!PageHuge(page) && PageTransHuge(page)) {
Wanpeng Li0cea3fd2013-09-11 14:22:53 -07001404 pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1405 return 0;
1406 }
1407
Wanpeng Lif9121152013-09-11 14:22:52 -07001408 nr_pages = 1 << compound_order(page);
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001409
Wu Fengguang847ce402009-12-16 12:19:58 +01001410 if (!get_page_unless_zero(page)) {
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001411 /*
1412 * Since HWPoisoned hugepage should have non-zero refcount,
1413 * race between memory failure and unpoison seems to happen.
1414 * In such case unpoison fails and memory failure runs
1415 * to the end.
1416 */
1417 if (PageHuge(page)) {
Dean Nelsondd73e852011-10-31 17:09:04 -07001418 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001419 return 0;
1420 }
Wu Fengguang847ce402009-12-16 12:19:58 +01001421 if (TestClearPageHWPoison(p))
Wanpeng Lidd9538a2013-09-11 14:22:54 -07001422 atomic_long_dec(&num_poisoned_pages);
Andi Kleenfb46e732010-09-27 23:31:30 +02001423 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
Wu Fengguang847ce402009-12-16 12:19:58 +01001424 return 0;
1425 }
1426
Jens Axboe7eaceac2011-03-10 08:52:07 +01001427 lock_page(page);
Wu Fengguang847ce402009-12-16 12:19:58 +01001428 /*
1429 * This test is racy because PG_hwpoison is set outside of page lock.
1430 * That's acceptable because that won't trigger kernel panic. Instead,
1431 * the PG_hwpoison page will be caught and isolated on the entrance to
1432 * the free buddy page pool.
1433 */
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001434 if (TestClearPageHWPoison(page)) {
Andi Kleenfb46e732010-09-27 23:31:30 +02001435 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
Xishi Qiu293c07e2013-02-22 16:34:02 -08001436 atomic_long_sub(nr_pages, &num_poisoned_pages);
Wu Fengguang847ce402009-12-16 12:19:58 +01001437 freeit = 1;
Naoya Horiguchi6a901812010-09-08 10:19:40 +09001438 if (PageHuge(page))
1439 clear_page_hwpoison_huge_page(page);
Wu Fengguang847ce402009-12-16 12:19:58 +01001440 }
1441 unlock_page(page);
1442
1443 put_page(page);
Wanpeng Li3ba5eeb2013-09-11 14:23:01 -07001444 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
Wu Fengguang847ce402009-12-16 12:19:58 +01001445 put_page(page);
1446
1447 return 0;
1448}
1449EXPORT_SYMBOL(unpoison_memory);
Andi Kleenfacb6012009-12-16 12:20:00 +01001450
1451static struct page *new_page(struct page *p, unsigned long private, int **x)
1452{
Andi Kleen12686d12009-12-16 12:20:01 +01001453 int nid = page_to_nid(p);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001454 if (PageHuge(p))
1455 return alloc_huge_page_node(page_hstate(compound_head(p)),
1456 nid);
1457 else
1458 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
Andi Kleenfacb6012009-12-16 12:20:00 +01001459}
1460
1461/*
1462 * Safely get reference count of an arbitrary page.
1463 * Returns 0 for a free page, -EIO for a zero refcount page
1464 * that is not free, and 1 for any other page type.
1465 * For 1 the page is returned with increased page count, otherwise not.
1466 */
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001467static int __get_any_page(struct page *p, unsigned long pfn, int flags)
Andi Kleenfacb6012009-12-16 12:20:00 +01001468{
1469 int ret;
1470
1471 if (flags & MF_COUNT_INCREASED)
1472 return 1;
1473
1474 /*
Naoya Horiguchid950b952010-09-08 10:19:39 +09001475 * When the target page is a free hugepage, just remove it
1476 * from free hugepage list.
1477 */
Andi Kleenfacb6012009-12-16 12:20:00 +01001478 if (!get_page_unless_zero(compound_head(p))) {
Naoya Horiguchid950b952010-09-08 10:19:39 +09001479 if (PageHuge(p)) {
Borislav Petkov71dd0b82012-05-29 15:06:16 -07001480 pr_info("%s: %#lx free huge page\n", __func__, pfn);
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001481 ret = 0;
Naoya Horiguchid950b952010-09-08 10:19:39 +09001482 } else if (is_free_buddy_page(p)) {
Borislav Petkov71dd0b82012-05-29 15:06:16 -07001483 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
Andi Kleenfacb6012009-12-16 12:20:00 +01001484 ret = 0;
1485 } else {
Borislav Petkov71dd0b82012-05-29 15:06:16 -07001486 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1487 __func__, pfn, p->flags);
Andi Kleenfacb6012009-12-16 12:20:00 +01001488 ret = -EIO;
1489 }
1490 } else {
1491 /* Not a free page */
1492 ret = 1;
1493 }
Andi Kleenfacb6012009-12-16 12:20:00 +01001494 return ret;
1495}
1496
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001497static int get_any_page(struct page *page, unsigned long pfn, int flags)
1498{
1499 int ret = __get_any_page(page, pfn, flags);
1500
1501 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1502 /*
1503 * Try to free it.
1504 */
1505 put_page(page);
1506 shake_page(page, 1);
1507
1508 /*
1509 * Did it turn free?
1510 */
1511 ret = __get_any_page(page, pfn, 0);
1512 if (!PageLRU(page)) {
1513 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1514 pfn, page->flags);
1515 return -EIO;
1516 }
1517 }
1518 return ret;
1519}
1520
Naoya Horiguchid950b952010-09-08 10:19:39 +09001521static int soft_offline_huge_page(struct page *page, int flags)
1522{
1523 int ret;
1524 unsigned long pfn = page_to_pfn(page);
1525 struct page *hpage = compound_head(page);
Naoya Horiguchib8ec1ce2013-09-11 14:22:01 -07001526 LIST_HEAD(pagelist);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001527
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001528 /*
1529 * This double-check of PageHWPoison is to avoid the race with
1530 * memory_failure(). See also comment in __soft_offline_page().
1531 */
1532 lock_page(hpage);
Xishi Qiu0ebff322013-02-22 16:33:59 -08001533 if (PageHWPoison(hpage)) {
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001534 unlock_page(hpage);
1535 put_page(hpage);
Xishi Qiu0ebff322013-02-22 16:33:59 -08001536 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001537 return -EBUSY;
Xishi Qiu0ebff322013-02-22 16:33:59 -08001538 }
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001539 unlock_page(hpage);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001540
Naoya Horiguchid950b952010-09-08 10:19:39 +09001541 /* Keep page count to indicate a given hugepage is isolated. */
Naoya Horiguchib8ec1ce2013-09-11 14:22:01 -07001542 list_move(&hpage->lru, &pagelist);
1543 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1544 MIGRATE_SYNC, MR_MEMORY_FAILURE);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001545 if (ret) {
Dean Nelsondd73e852011-10-31 17:09:04 -07001546 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1547 pfn, ret, page->flags);
Naoya Horiguchib8ec1ce2013-09-11 14:22:01 -07001548 /*
1549 * We know that soft_offline_huge_page() tries to migrate
1550 * only one hugepage pointed to by hpage, so we need not
1551 * run through the pagelist here.
1552 */
1553 putback_active_hugepage(hpage);
1554 if (ret > 0)
1555 ret = -EIO;
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001556 } else {
Jianguo Wua49ecbc2013-12-18 17:08:54 -08001557 /* overcommit hugetlb page will be freed to buddy */
1558 if (PageHuge(page)) {
1559 set_page_hwpoison_huge_page(hpage);
1560 dequeue_hwpoisoned_huge_page(hpage);
1561 atomic_long_add(1 << compound_order(hpage),
1562 &num_poisoned_pages);
1563 } else {
1564 SetPageHWPoison(page);
1565 atomic_long_inc(&num_poisoned_pages);
1566 }
Naoya Horiguchid950b952010-09-08 10:19:39 +09001567 }
Naoya Horiguchid950b952010-09-08 10:19:39 +09001568 return ret;
1569}
1570
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001571static int __soft_offline_page(struct page *page, int flags)
1572{
1573 int ret;
1574 unsigned long pfn = page_to_pfn(page);
Andi Kleenfacb6012009-12-16 12:20:00 +01001575
1576 /*
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001577 * Check PageHWPoison again inside page lock because PageHWPoison
1578 * is set by memory_failure() outside page lock. Note that
1579 * memory_failure() also double-checks PageHWPoison inside page lock,
1580 * so there's no race between soft_offline_page() and memory_failure().
Andi Kleenfacb6012009-12-16 12:20:00 +01001581 */
Xishi Qiu0ebff322013-02-22 16:33:59 -08001582 lock_page(page);
1583 wait_on_page_writeback(page);
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001584 if (PageHWPoison(page)) {
1585 unlock_page(page);
1586 put_page(page);
1587 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1588 return -EBUSY;
1589 }
Andi Kleenfacb6012009-12-16 12:20:00 +01001590 /*
1591 * Try to invalidate first. This should work for
1592 * non dirty unmapped page cache pages.
1593 */
1594 ret = invalidate_inode_page(page);
1595 unlock_page(page);
Andi Kleenfacb6012009-12-16 12:20:00 +01001596 /*
Andi Kleenfacb6012009-12-16 12:20:00 +01001597 * RED-PEN would be better to keep it isolated here, but we
1598 * would need to fix isolation locking first.
1599 */
Andi Kleenfacb6012009-12-16 12:20:00 +01001600 if (ret == 1) {
Konstantin Khlebnikovbd486282011-05-24 17:12:20 -07001601 put_page(page);
Andi Kleenfb46e732010-09-27 23:31:30 +02001602 pr_info("soft_offline: %#lx: invalidated\n", pfn);
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001603 SetPageHWPoison(page);
1604 atomic_long_inc(&num_poisoned_pages);
1605 return 0;
Andi Kleenfacb6012009-12-16 12:20:00 +01001606 }
1607
1608 /*
1609 * Simple invalidation didn't work.
1610 * Try to migrate to a new page instead. migrate.c
1611 * handles a large number of cases for us.
1612 */
1613 ret = isolate_lru_page(page);
Konstantin Khlebnikovbd486282011-05-24 17:12:20 -07001614 /*
1615 * Drop page reference which is came from get_any_page()
1616 * successful isolate_lru_page() already took another one.
1617 */
1618 put_page(page);
Andi Kleenfacb6012009-12-16 12:20:00 +01001619 if (!ret) {
1620 LIST_HEAD(pagelist);
Minchan Kim5db8a732011-06-15 15:08:48 -07001621 inc_zone_page_state(page, NR_ISOLATED_ANON +
Hugh Dickins9c620e22013-02-22 16:35:14 -08001622 page_is_file_cache(page));
Andi Kleenfacb6012009-12-16 12:20:00 +01001623 list_add(&page->lru, &pagelist);
Mel Gorman77f1fe62011-01-13 15:45:57 -08001624 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
Hugh Dickins9c620e22013-02-22 16:35:14 -08001625 MIGRATE_SYNC, MR_MEMORY_FAILURE);
Andi Kleenfacb6012009-12-16 12:20:00 +01001626 if (ret) {
Joonsoo Kim59c82b72014-01-21 15:51:17 -08001627 if (!list_empty(&pagelist)) {
1628 list_del(&page->lru);
1629 dec_zone_page_state(page, NR_ISOLATED_ANON +
1630 page_is_file_cache(page));
1631 putback_lru_page(page);
1632 }
1633
Andi Kleenfb46e732010-09-27 23:31:30 +02001634 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
Andi Kleenfacb6012009-12-16 12:20:00 +01001635 pfn, ret, page->flags);
1636 if (ret > 0)
1637 ret = -EIO;
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001638 } else {
Naoya Horiguchif15bdfa2013-07-03 15:02:37 -07001639 /*
1640 * After page migration succeeds, the source page can
1641 * be trapped in pagevec and actual freeing is delayed.
1642 * Freeing code works differently based on PG_hwpoison,
1643 * so there's a race. We need to make sure that the
1644 * source page should be freed back to buddy before
1645 * setting PG_hwpoison.
1646 */
1647 if (!is_free_buddy_page(page))
1648 lru_add_drain_all();
1649 if (!is_free_buddy_page(page))
1650 drain_all_pages();
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001651 SetPageHWPoison(page);
Naoya Horiguchif15bdfa2013-07-03 15:02:37 -07001652 if (!is_free_buddy_page(page))
1653 pr_info("soft offline: %#lx: page leaked\n",
1654 pfn);
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001655 atomic_long_inc(&num_poisoned_pages);
Andi Kleenfacb6012009-12-16 12:20:00 +01001656 }
1657 } else {
Andi Kleenfb46e732010-09-27 23:31:30 +02001658 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
Dean Nelsondd73e852011-10-31 17:09:04 -07001659 pfn, ret, page_count(page), page->flags);
Andi Kleenfacb6012009-12-16 12:20:00 +01001660 }
Andi Kleenfacb6012009-12-16 12:20:00 +01001661 return ret;
1662}
Wanpeng Li86e05772013-09-11 14:22:56 -07001663
1664/**
1665 * soft_offline_page - Soft offline a page.
1666 * @page: page to offline
1667 * @flags: flags. Same as memory_failure().
1668 *
1669 * Returns 0 on success, otherwise negated errno.
1670 *
1671 * Soft offline a page, by migration or invalidation,
1672 * without killing anything. This is for the case when
1673 * a page is not corrupted yet (so it's still valid to access),
1674 * but has had a number of corrected errors and is better taken
1675 * out.
1676 *
1677 * The actual policy on when to do that is maintained by
1678 * user space.
1679 *
1680 * This should never impact any application or cause data loss,
1681 * however it might take some time.
1682 *
1683 * This is not a 100% solution for all memory, but tries to be
1684 * ``good enough'' for the majority of memory.
1685 */
1686int soft_offline_page(struct page *page, int flags)
1687{
1688 int ret;
1689 unsigned long pfn = page_to_pfn(page);
David Rientjes668f9abb2014-03-03 15:38:18 -08001690 struct page *hpage = compound_head(page);
Wanpeng Li86e05772013-09-11 14:22:56 -07001691
1692 if (PageHWPoison(page)) {
1693 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1694 return -EBUSY;
1695 }
1696 if (!PageHuge(page) && PageTransHuge(hpage)) {
1697 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1698 pr_info("soft offline: %#lx: failed to split THP\n",
1699 pfn);
1700 return -EBUSY;
1701 }
1702 }
1703
Naoya Horiguchi03b61ff2013-11-12 15:07:26 -08001704 /*
1705 * The lock_memory_hotplug prevents a race with memory hotplug.
1706 * This is a big hammer, a better would be nicer.
1707 */
1708 lock_memory_hotplug();
1709
1710 /*
1711 * Isolate the page, so that it doesn't get reallocated if it
1712 * was free. This flag should be kept set until the source page
1713 * is freed and PG_hwpoison on it is set.
1714 */
1715 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
1716 set_migratetype_isolate(page, true);
1717
Wanpeng Li86e05772013-09-11 14:22:56 -07001718 ret = get_any_page(page, pfn, flags);
Naoya Horiguchi03b61ff2013-11-12 15:07:26 -08001719 unlock_memory_hotplug();
1720 if (ret > 0) { /* for in-use pages */
Wanpeng Li86e05772013-09-11 14:22:56 -07001721 if (PageHuge(page))
1722 ret = soft_offline_huge_page(page, flags);
1723 else
1724 ret = __soft_offline_page(page, flags);
Naoya Horiguchi03b61ff2013-11-12 15:07:26 -08001725 } else if (ret == 0) { /* for free pages */
Wanpeng Li86e05772013-09-11 14:22:56 -07001726 if (PageHuge(page)) {
1727 set_page_hwpoison_huge_page(hpage);
1728 dequeue_hwpoisoned_huge_page(hpage);
1729 atomic_long_add(1 << compound_order(hpage),
1730 &num_poisoned_pages);
1731 } else {
1732 SetPageHWPoison(page);
1733 atomic_long_inc(&num_poisoned_pages);
1734 }
1735 }
Wanpeng Li86e05772013-09-11 14:22:56 -07001736 unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1737 return ret;
1738}