blob: 4eeb0a864e45baff2137f92d6a1f47caaf11837a [file] [log] [blame]
Andi Kleen6a460792009-09-16 11:50:15 +02001/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
Andi Kleen1c80b992010-09-27 23:09:51 +020010 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
Andi Kleen6a460792009-09-16 11:50:15 +020011 * failure.
Andi Kleen1c80b992010-09-27 23:09:51 +020012 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
Andi Kleen6a460792009-09-16 11:50:15 +020015 *
16 * Handles page cache pages in various states. The tricky part
Andi Kleen1c80b992010-09-27 23:09:51 +020017 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
Andi Kleen6a460792009-09-16 11:50:15 +020030 */
31
32/*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
Andi Kleen6a460792009-09-16 11:50:15 +020038#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/page-flags.h>
Wu Fengguang478c5ff2009-12-16 12:19:59 +010041#include <linux/kernel-page-flags.h>
Andi Kleen6a460792009-09-16 11:50:15 +020042#include <linux/sched.h>
Hugh Dickins01e00f82009-10-13 15:02:11 +010043#include <linux/ksm.h>
Andi Kleen6a460792009-09-16 11:50:15 +020044#include <linux/rmap.h>
Paul Gortmakerb9e15ba2011-05-26 16:00:52 -040045#include <linux/export.h>
Andi Kleen6a460792009-09-16 11:50:15 +020046#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/backing-dev.h>
Andi Kleenfacb6012009-12-16 12:20:00 +010049#include <linux/migrate.h>
50#include <linux/page-isolation.h>
51#include <linux/suspend.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090052#include <linux/slab.h>
Huang Yingbf998152010-05-31 14:28:19 +080053#include <linux/swapops.h>
Naoya Horiguchi7af446a2010-05-28 09:29:17 +090054#include <linux/hugetlb.h>
KOSAKI Motohiro20d6c962010-12-02 14:31:19 -080055#include <linux/memory_hotplug.h>
Minchan Kim5db8a732011-06-15 15:08:48 -070056#include <linux/mm_inline.h>
Huang Yingea8f5fb2011-07-13 13:14:27 +080057#include <linux/kfifo.h>
Andi Kleen6a460792009-09-16 11:50:15 +020058#include "internal.h"
59
60int sysctl_memory_failure_early_kill __read_mostly = 0;
61
62int sysctl_memory_failure_recovery __read_mostly = 1;
63
Xishi Qiu293c07e2013-02-22 16:34:02 -080064atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
Andi Kleen6a460792009-09-16 11:50:15 +020065
Andi Kleen27df5062009-12-21 19:56:42 +010066#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67
Haicheng Li1bfe5fe2009-12-16 12:19:59 +010068u32 hwpoison_filter_enable = 0;
Wu Fengguang7c116f22009-12-16 12:19:59 +010069u32 hwpoison_filter_dev_major = ~0U;
70u32 hwpoison_filter_dev_minor = ~0U;
Wu Fengguang478c5ff2009-12-16 12:19:59 +010071u64 hwpoison_filter_flags_mask;
72u64 hwpoison_filter_flags_value;
Haicheng Li1bfe5fe2009-12-16 12:19:59 +010073EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
Wu Fengguang7c116f22009-12-16 12:19:59 +010074EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
Wu Fengguang478c5ff2009-12-16 12:19:59 +010076EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
Wu Fengguang7c116f22009-12-16 12:19:59 +010078
79static int hwpoison_filter_dev(struct page *p)
80{
81 struct address_space *mapping;
82 dev_t dev;
83
84 if (hwpoison_filter_dev_major == ~0U &&
85 hwpoison_filter_dev_minor == ~0U)
86 return 0;
87
88 /*
Andi Kleen1c80b992010-09-27 23:09:51 +020089 * page_mapping() does not accept slab pages.
Wu Fengguang7c116f22009-12-16 12:19:59 +010090 */
91 if (PageSlab(p))
92 return -EINVAL;
93
94 mapping = page_mapping(p);
95 if (mapping == NULL || mapping->host == NULL)
96 return -EINVAL;
97
98 dev = mapping->host->i_sb->s_dev;
99 if (hwpoison_filter_dev_major != ~0U &&
100 hwpoison_filter_dev_major != MAJOR(dev))
101 return -EINVAL;
102 if (hwpoison_filter_dev_minor != ~0U &&
103 hwpoison_filter_dev_minor != MINOR(dev))
104 return -EINVAL;
105
106 return 0;
107}
108
Wu Fengguang478c5ff2009-12-16 12:19:59 +0100109static int hwpoison_filter_flags(struct page *p)
110{
111 if (!hwpoison_filter_flags_mask)
112 return 0;
113
114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 hwpoison_filter_flags_value)
116 return 0;
117 else
118 return -EINVAL;
119}
120
Andi Kleen4fd466e2009-12-16 12:19:59 +0100121/*
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
130 */
Andrew Mortonc255a452012-07-31 16:43:02 -0700131#ifdef CONFIG_MEMCG_SWAP
Andi Kleen4fd466e2009-12-16 12:19:59 +0100132u64 hwpoison_filter_memcg;
133EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134static int hwpoison_filter_task(struct page *p)
135{
136 struct mem_cgroup *mem;
137 struct cgroup_subsys_state *css;
138 unsigned long ino;
139
140 if (!hwpoison_filter_memcg)
141 return 0;
142
143 mem = try_get_mem_cgroup_from_page(p);
144 if (!mem)
145 return -EINVAL;
146
147 css = mem_cgroup_css(mem);
148 /* root_mem_cgroup has NULL dentries */
149 if (!css->cgroup->dentry)
150 return -EINVAL;
151
152 ino = css->cgroup->dentry->d_inode->i_ino;
153 css_put(css);
154
155 if (ino != hwpoison_filter_memcg)
156 return -EINVAL;
157
158 return 0;
159}
160#else
161static int hwpoison_filter_task(struct page *p) { return 0; }
162#endif
163
Wu Fengguang7c116f22009-12-16 12:19:59 +0100164int hwpoison_filter(struct page *p)
165{
Haicheng Li1bfe5fe2009-12-16 12:19:59 +0100166 if (!hwpoison_filter_enable)
167 return 0;
168
Wu Fengguang7c116f22009-12-16 12:19:59 +0100169 if (hwpoison_filter_dev(p))
170 return -EINVAL;
171
Wu Fengguang478c5ff2009-12-16 12:19:59 +0100172 if (hwpoison_filter_flags(p))
173 return -EINVAL;
174
Andi Kleen4fd466e2009-12-16 12:19:59 +0100175 if (hwpoison_filter_task(p))
176 return -EINVAL;
177
Wu Fengguang7c116f22009-12-16 12:19:59 +0100178 return 0;
179}
Andi Kleen27df5062009-12-21 19:56:42 +0100180#else
181int hwpoison_filter(struct page *p)
182{
183 return 0;
184}
185#endif
186
Wu Fengguang7c116f22009-12-16 12:19:59 +0100187EXPORT_SYMBOL_GPL(hwpoison_filter);
188
Andi Kleen6a460792009-09-16 11:50:15 +0200189/*
Tony Luck7329bbe2011-12-13 09:27:58 -0800190 * Send all the processes who have the page mapped a signal.
191 * ``action optional'' if they are not immediately affected by the error
192 * ``action required'' if error happened in current execution context
Andi Kleen6a460792009-09-16 11:50:15 +0200193 */
Tony Luck7329bbe2011-12-13 09:27:58 -0800194static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
195 unsigned long pfn, struct page *page, int flags)
Andi Kleen6a460792009-09-16 11:50:15 +0200196{
197 struct siginfo si;
198 int ret;
199
200 printk(KERN_ERR
Tony Luck7329bbe2011-12-13 09:27:58 -0800201 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
Andi Kleen6a460792009-09-16 11:50:15 +0200202 pfn, t->comm, t->pid);
203 si.si_signo = SIGBUS;
204 si.si_errno = 0;
Andi Kleen6a460792009-09-16 11:50:15 +0200205 si.si_addr = (void *)addr;
206#ifdef __ARCH_SI_TRAPNO
207 si.si_trapno = trapno;
208#endif
Wanpeng Lif9121152013-09-11 14:22:52 -0700209 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
Tony Luck7329bbe2011-12-13 09:27:58 -0800210
Tony Luck6e988c22014-06-04 16:10:59 -0700211 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
Tony Luck7329bbe2011-12-13 09:27:58 -0800212 si.si_code = BUS_MCEERR_AR;
Tony Luck6e988c22014-06-04 16:10:59 -0700213 ret = force_sig_info(SIGBUS, &si, current);
Tony Luck7329bbe2011-12-13 09:27:58 -0800214 } else {
215 /*
216 * Don't use force here, it's convenient if the signal
217 * can be temporarily blocked.
218 * This could cause a loop when the user sets SIGBUS
219 * to SIG_IGN, but hopefully no one will do that?
220 */
221 si.si_code = BUS_MCEERR_AO;
222 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
223 }
Andi Kleen6a460792009-09-16 11:50:15 +0200224 if (ret < 0)
225 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
226 t->comm, t->pid, ret);
227 return ret;
228}
229
230/*
Andi Kleen588f9ce2009-12-16 12:19:57 +0100231 * When a unknown page type is encountered drain as many buffers as possible
232 * in the hope to turn the page into a LRU or free page, which we can handle.
233 */
Andi Kleenfacb6012009-12-16 12:20:00 +0100234void shake_page(struct page *p, int access)
Andi Kleen588f9ce2009-12-16 12:19:57 +0100235{
236 if (!PageSlab(p)) {
237 lru_add_drain_all();
238 if (PageLRU(p))
239 return;
240 drain_all_pages();
241 if (PageLRU(p) || is_free_buddy_page(p))
242 return;
243 }
Andi Kleenfacb6012009-12-16 12:20:00 +0100244
Andi Kleen588f9ce2009-12-16 12:19:57 +0100245 /*
Jin Dongmingaf241a02011-02-01 15:52:41 -0800246 * Only call shrink_slab here (which would also shrink other caches) if
247 * access is not potentially fatal.
Andi Kleen588f9ce2009-12-16 12:19:57 +0100248 */
Andi Kleenfacb6012009-12-16 12:20:00 +0100249 if (access) {
250 int nr;
Dave Chinner0ce3d742013-08-28 10:18:03 +1000251 int nid = page_to_nid(p);
Andi Kleenfacb6012009-12-16 12:20:00 +0100252 do {
Ying Hana09ed5e2011-05-24 17:12:26 -0700253 struct shrink_control shrink = {
254 .gfp_mask = GFP_KERNEL,
Ying Hana09ed5e2011-05-24 17:12:26 -0700255 };
Dave Chinner0ce3d742013-08-28 10:18:03 +1000256 node_set(nid, shrink.nodes_to_scan);
Ying Hana09ed5e2011-05-24 17:12:26 -0700257
Ying Han1495f232011-05-24 17:12:27 -0700258 nr = shrink_slab(&shrink, 1000, 1000);
Andi Kleen47f43e72010-09-28 07:37:55 +0200259 if (page_count(p) == 1)
Andi Kleenfacb6012009-12-16 12:20:00 +0100260 break;
261 } while (nr > 10);
262 }
Andi Kleen588f9ce2009-12-16 12:19:57 +0100263}
264EXPORT_SYMBOL_GPL(shake_page);
265
266/*
Andi Kleen6a460792009-09-16 11:50:15 +0200267 * Kill all processes that have a poisoned page mapped and then isolate
268 * the page.
269 *
270 * General strategy:
271 * Find all processes having the page mapped and kill them.
272 * But we keep a page reference around so that the page is not
273 * actually freed yet.
274 * Then stash the page away
275 *
276 * There's no convenient way to get back to mapped processes
277 * from the VMAs. So do a brute-force search over all
278 * running processes.
279 *
280 * Remember that machine checks are not common (or rather
281 * if they are common you have other problems), so this shouldn't
282 * be a performance issue.
283 *
284 * Also there are some races possible while we get from the
285 * error detection to actually handle it.
286 */
287
288struct to_kill {
289 struct list_head nd;
290 struct task_struct *tsk;
291 unsigned long addr;
Andi Kleen9033ae12010-09-27 23:36:05 +0200292 char addr_valid;
Andi Kleen6a460792009-09-16 11:50:15 +0200293};
294
295/*
296 * Failure handling: if we can't find or can't kill a process there's
297 * not much we can do. We just print a message and ignore otherwise.
298 */
299
300/*
301 * Schedule a process for later kill.
302 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
303 * TBD would GFP_NOIO be enough?
304 */
305static void add_to_kill(struct task_struct *tsk, struct page *p,
306 struct vm_area_struct *vma,
307 struct list_head *to_kill,
308 struct to_kill **tkc)
309{
310 struct to_kill *tk;
311
312 if (*tkc) {
313 tk = *tkc;
314 *tkc = NULL;
315 } else {
316 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
317 if (!tk) {
318 printk(KERN_ERR
319 "MCE: Out of memory while machine check handling\n");
320 return;
321 }
322 }
323 tk->addr = page_address_in_vma(p, vma);
324 tk->addr_valid = 1;
325
326 /*
327 * In theory we don't have to kill when the page was
328 * munmaped. But it could be also a mremap. Since that's
329 * likely very rare kill anyways just out of paranoia, but use
330 * a SIGKILL because the error is not contained anymore.
331 */
332 if (tk->addr == -EFAULT) {
Andi Kleenfb46e732010-09-27 23:31:30 +0200333 pr_info("MCE: Unable to find user space address %lx in %s\n",
Andi Kleen6a460792009-09-16 11:50:15 +0200334 page_to_pfn(p), tsk->comm);
335 tk->addr_valid = 0;
336 }
337 get_task_struct(tsk);
338 tk->tsk = tsk;
339 list_add_tail(&tk->nd, to_kill);
340}
341
342/*
343 * Kill the processes that have been collected earlier.
344 *
345 * Only do anything when DOIT is set, otherwise just free the list
346 * (this is used for clean pages which do not need killing)
347 * Also when FAIL is set do a force kill because something went
348 * wrong earlier.
349 */
Tony Luck6751ed62012-07-11 10:20:47 -0700350static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
Tony Luck7329bbe2011-12-13 09:27:58 -0800351 int fail, struct page *page, unsigned long pfn,
352 int flags)
Andi Kleen6a460792009-09-16 11:50:15 +0200353{
354 struct to_kill *tk, *next;
355
356 list_for_each_entry_safe (tk, next, to_kill, nd) {
Tony Luck6751ed62012-07-11 10:20:47 -0700357 if (forcekill) {
Andi Kleen6a460792009-09-16 11:50:15 +0200358 /*
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200359 * In case something went wrong with munmapping
Andi Kleen6a460792009-09-16 11:50:15 +0200360 * make sure the process doesn't catch the
361 * signal and then access the memory. Just kill it.
Andi Kleen6a460792009-09-16 11:50:15 +0200362 */
363 if (fail || tk->addr_valid == 0) {
364 printk(KERN_ERR
365 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
366 pfn, tk->tsk->comm, tk->tsk->pid);
367 force_sig(SIGKILL, tk->tsk);
368 }
369
370 /*
371 * In theory the process could have mapped
372 * something else on the address in-between. We could
373 * check for that, but we need to tell the
374 * process anyways.
375 */
Tony Luck7329bbe2011-12-13 09:27:58 -0800376 else if (kill_proc(tk->tsk, tk->addr, trapno,
377 pfn, page, flags) < 0)
Andi Kleen6a460792009-09-16 11:50:15 +0200378 printk(KERN_ERR
379 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
380 pfn, tk->tsk->comm, tk->tsk->pid);
381 }
382 put_task_struct(tk->tsk);
383 kfree(tk);
384 }
385}
386
Tony Luck965b5a22014-06-04 16:11:01 -0700387static int task_early_kill(struct task_struct *tsk, int force_early)
Andi Kleen6a460792009-09-16 11:50:15 +0200388{
389 if (!tsk->mm)
390 return 0;
Tony Luck965b5a22014-06-04 16:11:01 -0700391 if (force_early)
392 return 1;
Andi Kleen6a460792009-09-16 11:50:15 +0200393 if (tsk->flags & PF_MCE_PROCESS)
394 return !!(tsk->flags & PF_MCE_EARLY);
395 return sysctl_memory_failure_early_kill;
396}
397
398/*
399 * Collect processes when the error hit an anonymous page.
400 */
401static void collect_procs_anon(struct page *page, struct list_head *to_kill,
Tony Luck965b5a22014-06-04 16:11:01 -0700402 struct to_kill **tkc, int force_early)
Andi Kleen6a460792009-09-16 11:50:15 +0200403{
404 struct vm_area_struct *vma;
405 struct task_struct *tsk;
406 struct anon_vma *av;
Michel Lespinassebf181b92012-10-08 16:31:39 -0700407 pgoff_t pgoff;
Andi Kleen6a460792009-09-16 11:50:15 +0200408
Ingo Molnar4fc3f1d2012-12-02 19:56:50 +0000409 av = page_lock_anon_vma_read(page);
Andi Kleen6a460792009-09-16 11:50:15 +0200410 if (av == NULL) /* Not actually mapped anymore */
Peter Zijlstra9b679322011-06-27 16:18:09 -0700411 return;
412
Michel Lespinassebf181b92012-10-08 16:31:39 -0700413 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
Peter Zijlstra9b679322011-06-27 16:18:09 -0700414 read_lock(&tasklist_lock);
Andi Kleen6a460792009-09-16 11:50:15 +0200415 for_each_process (tsk) {
Rik van Riel5beb4932010-03-05 13:42:07 -0800416 struct anon_vma_chain *vmac;
417
Tony Luck965b5a22014-06-04 16:11:01 -0700418 if (!task_early_kill(tsk, force_early))
Andi Kleen6a460792009-09-16 11:50:15 +0200419 continue;
Michel Lespinassebf181b92012-10-08 16:31:39 -0700420 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
421 pgoff, pgoff) {
Rik van Riel5beb4932010-03-05 13:42:07 -0800422 vma = vmac->vma;
Andi Kleen6a460792009-09-16 11:50:15 +0200423 if (!page_mapped_in_vma(page, vma))
424 continue;
425 if (vma->vm_mm == tsk->mm)
426 add_to_kill(tsk, page, vma, to_kill, tkc);
427 }
428 }
Andi Kleen6a460792009-09-16 11:50:15 +0200429 read_unlock(&tasklist_lock);
Ingo Molnar4fc3f1d2012-12-02 19:56:50 +0000430 page_unlock_anon_vma_read(av);
Andi Kleen6a460792009-09-16 11:50:15 +0200431}
432
433/*
434 * Collect processes when the error hit a file mapped page.
435 */
436static void collect_procs_file(struct page *page, struct list_head *to_kill,
Tony Luck965b5a22014-06-04 16:11:01 -0700437 struct to_kill **tkc, int force_early)
Andi Kleen6a460792009-09-16 11:50:15 +0200438{
439 struct vm_area_struct *vma;
440 struct task_struct *tsk;
Andi Kleen6a460792009-09-16 11:50:15 +0200441 struct address_space *mapping = page->mapping;
442
Peter Zijlstra3d48ae42011-05-24 17:12:06 -0700443 mutex_lock(&mapping->i_mmap_mutex);
Peter Zijlstra9b679322011-06-27 16:18:09 -0700444 read_lock(&tasklist_lock);
Andi Kleen6a460792009-09-16 11:50:15 +0200445 for_each_process(tsk) {
446 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
447
Tony Luck965b5a22014-06-04 16:11:01 -0700448 if (!task_early_kill(tsk, force_early))
Andi Kleen6a460792009-09-16 11:50:15 +0200449 continue;
450
Michel Lespinasse6b2dbba2012-10-08 16:31:25 -0700451 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
Andi Kleen6a460792009-09-16 11:50:15 +0200452 pgoff) {
453 /*
454 * Send early kill signal to tasks where a vma covers
455 * the page but the corrupted page is not necessarily
456 * mapped it in its pte.
457 * Assume applications who requested early kill want
458 * to be informed of all such data corruptions.
459 */
460 if (vma->vm_mm == tsk->mm)
461 add_to_kill(tsk, page, vma, to_kill, tkc);
462 }
463 }
Andi Kleen6a460792009-09-16 11:50:15 +0200464 read_unlock(&tasklist_lock);
Peter Zijlstra9b679322011-06-27 16:18:09 -0700465 mutex_unlock(&mapping->i_mmap_mutex);
Andi Kleen6a460792009-09-16 11:50:15 +0200466}
467
468/*
469 * Collect the processes who have the corrupted page mapped to kill.
470 * This is done in two steps for locking reasons.
471 * First preallocate one tokill structure outside the spin locks,
472 * so that we can kill at least one process reasonably reliable.
473 */
Tony Luck965b5a22014-06-04 16:11:01 -0700474static void collect_procs(struct page *page, struct list_head *tokill,
475 int force_early)
Andi Kleen6a460792009-09-16 11:50:15 +0200476{
477 struct to_kill *tk;
478
479 if (!page->mapping)
480 return;
481
482 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
483 if (!tk)
484 return;
485 if (PageAnon(page))
Tony Luck965b5a22014-06-04 16:11:01 -0700486 collect_procs_anon(page, tokill, &tk, force_early);
Andi Kleen6a460792009-09-16 11:50:15 +0200487 else
Tony Luck965b5a22014-06-04 16:11:01 -0700488 collect_procs_file(page, tokill, &tk, force_early);
Andi Kleen6a460792009-09-16 11:50:15 +0200489 kfree(tk);
490}
491
492/*
493 * Error handlers for various types of pages.
494 */
495
496enum outcome {
Wu Fengguangd95ea512009-12-16 12:19:58 +0100497 IGNORED, /* Error: cannot be handled */
498 FAILED, /* Error: handling failed */
Andi Kleen6a460792009-09-16 11:50:15 +0200499 DELAYED, /* Will be handled later */
Andi Kleen6a460792009-09-16 11:50:15 +0200500 RECOVERED, /* Successfully recovered */
501};
502
503static const char *action_name[] = {
Wu Fengguangd95ea512009-12-16 12:19:58 +0100504 [IGNORED] = "Ignored",
Andi Kleen6a460792009-09-16 11:50:15 +0200505 [FAILED] = "Failed",
506 [DELAYED] = "Delayed",
Andi Kleen6a460792009-09-16 11:50:15 +0200507 [RECOVERED] = "Recovered",
508};
509
510/*
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100511 * XXX: It is possible that a page is isolated from LRU cache,
512 * and then kept in swap cache or failed to remove from page cache.
513 * The page count will stop it from being freed by unpoison.
514 * Stress tests should be aware of this memory leak problem.
515 */
516static int delete_from_lru_cache(struct page *p)
517{
518 if (!isolate_lru_page(p)) {
519 /*
520 * Clear sensible page flags, so that the buddy system won't
521 * complain when the page is unpoison-and-freed.
522 */
523 ClearPageActive(p);
524 ClearPageUnevictable(p);
525 /*
526 * drop the page count elevated by isolate_lru_page()
527 */
528 page_cache_release(p);
529 return 0;
530 }
531 return -EIO;
532}
533
534/*
Andi Kleen6a460792009-09-16 11:50:15 +0200535 * Error hit kernel page.
536 * Do nothing, try to be lucky and not touch this instead. For a few cases we
537 * could be more sophisticated.
538 */
539static int me_kernel(struct page *p, unsigned long pfn)
540{
Andi Kleen6a460792009-09-16 11:50:15 +0200541 return IGNORED;
542}
543
544/*
545 * Page in unknown state. Do nothing.
546 */
547static int me_unknown(struct page *p, unsigned long pfn)
548{
549 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
550 return FAILED;
551}
552
553/*
Andi Kleen6a460792009-09-16 11:50:15 +0200554 * Clean (or cleaned) page cache page.
555 */
556static int me_pagecache_clean(struct page *p, unsigned long pfn)
557{
558 int err;
559 int ret = FAILED;
560 struct address_space *mapping;
561
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100562 delete_from_lru_cache(p);
563
Andi Kleen6a460792009-09-16 11:50:15 +0200564 /*
565 * For anonymous pages we're done the only reference left
566 * should be the one m_f() holds.
567 */
568 if (PageAnon(p))
569 return RECOVERED;
570
571 /*
572 * Now truncate the page in the page cache. This is really
573 * more like a "temporary hole punch"
574 * Don't do this for block devices when someone else
575 * has a reference, because it could be file system metadata
576 * and that's not safe to truncate.
577 */
578 mapping = page_mapping(p);
579 if (!mapping) {
580 /*
581 * Page has been teared down in the meanwhile
582 */
583 return FAILED;
584 }
585
586 /*
587 * Truncation is a bit tricky. Enable it per file system for now.
588 *
589 * Open: to take i_mutex or not for this? Right now we don't.
590 */
591 if (mapping->a_ops->error_remove_page) {
592 err = mapping->a_ops->error_remove_page(mapping, p);
593 if (err != 0) {
594 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
595 pfn, err);
596 } else if (page_has_private(p) &&
597 !try_to_release_page(p, GFP_NOIO)) {
Andi Kleenfb46e732010-09-27 23:31:30 +0200598 pr_info("MCE %#lx: failed to release buffers\n", pfn);
Andi Kleen6a460792009-09-16 11:50:15 +0200599 } else {
600 ret = RECOVERED;
601 }
602 } else {
603 /*
604 * If the file system doesn't support it just invalidate
605 * This fails on dirty or anything with private pages
606 */
607 if (invalidate_inode_page(p))
608 ret = RECOVERED;
609 else
610 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
611 pfn);
612 }
613 return ret;
614}
615
616/*
Zhi Yong Wu549543d2014-01-21 15:49:08 -0800617 * Dirty pagecache page
Andi Kleen6a460792009-09-16 11:50:15 +0200618 * Issues: when the error hit a hole page the error is not properly
619 * propagated.
620 */
621static int me_pagecache_dirty(struct page *p, unsigned long pfn)
622{
623 struct address_space *mapping = page_mapping(p);
624
625 SetPageError(p);
626 /* TBD: print more information about the file. */
627 if (mapping) {
628 /*
629 * IO error will be reported by write(), fsync(), etc.
630 * who check the mapping.
631 * This way the application knows that something went
632 * wrong with its dirty file data.
633 *
634 * There's one open issue:
635 *
636 * The EIO will be only reported on the next IO
637 * operation and then cleared through the IO map.
638 * Normally Linux has two mechanisms to pass IO error
639 * first through the AS_EIO flag in the address space
640 * and then through the PageError flag in the page.
641 * Since we drop pages on memory failure handling the
642 * only mechanism open to use is through AS_AIO.
643 *
644 * This has the disadvantage that it gets cleared on
645 * the first operation that returns an error, while
646 * the PageError bit is more sticky and only cleared
647 * when the page is reread or dropped. If an
648 * application assumes it will always get error on
649 * fsync, but does other operations on the fd before
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300650 * and the page is dropped between then the error
Andi Kleen6a460792009-09-16 11:50:15 +0200651 * will not be properly reported.
652 *
653 * This can already happen even without hwpoisoned
654 * pages: first on metadata IO errors (which only
655 * report through AS_EIO) or when the page is dropped
656 * at the wrong time.
657 *
658 * So right now we assume that the application DTRT on
659 * the first EIO, but we're not worse than other parts
660 * of the kernel.
661 */
662 mapping_set_error(mapping, EIO);
663 }
664
665 return me_pagecache_clean(p, pfn);
666}
667
668/*
669 * Clean and dirty swap cache.
670 *
671 * Dirty swap cache page is tricky to handle. The page could live both in page
672 * cache and swap cache(ie. page is freshly swapped in). So it could be
673 * referenced concurrently by 2 types of PTEs:
674 * normal PTEs and swap PTEs. We try to handle them consistently by calling
675 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
676 * and then
677 * - clear dirty bit to prevent IO
678 * - remove from LRU
679 * - but keep in the swap cache, so that when we return to it on
680 * a later page fault, we know the application is accessing
681 * corrupted data and shall be killed (we installed simple
682 * interception code in do_swap_page to catch it).
683 *
684 * Clean swap cache pages can be directly isolated. A later page fault will
685 * bring in the known good data from disk.
686 */
687static int me_swapcache_dirty(struct page *p, unsigned long pfn)
688{
Andi Kleen6a460792009-09-16 11:50:15 +0200689 ClearPageDirty(p);
690 /* Trigger EIO in shmem: */
691 ClearPageUptodate(p);
692
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100693 if (!delete_from_lru_cache(p))
694 return DELAYED;
695 else
696 return FAILED;
Andi Kleen6a460792009-09-16 11:50:15 +0200697}
698
699static int me_swapcache_clean(struct page *p, unsigned long pfn)
700{
Andi Kleen6a460792009-09-16 11:50:15 +0200701 delete_from_swap_cache(p);
Wu Fengguange43c3af2009-09-29 13:16:20 +0800702
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100703 if (!delete_from_lru_cache(p))
704 return RECOVERED;
705 else
706 return FAILED;
Andi Kleen6a460792009-09-16 11:50:15 +0200707}
708
709/*
710 * Huge pages. Needs work.
711 * Issues:
Naoya Horiguchi93f70f92010-05-28 09:29:20 +0900712 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
713 * To narrow down kill region to one page, we need to break up pmd.
Andi Kleen6a460792009-09-16 11:50:15 +0200714 */
715static int me_huge_page(struct page *p, unsigned long pfn)
716{
Naoya Horiguchi6de2b1a2010-09-08 10:19:36 +0900717 int res = 0;
Naoya Horiguchi93f70f92010-05-28 09:29:20 +0900718 struct page *hpage = compound_head(p);
719 /*
720 * We can safely recover from error on free or reserved (i.e.
721 * not in-use) hugepage by dequeuing it from freelist.
722 * To check whether a hugepage is in-use or not, we can't use
723 * page->lru because it can be used in other hugepage operations,
724 * such as __unmap_hugepage_range() and gather_surplus_pages().
725 * So instead we use page_mapping() and PageAnon().
726 * We assume that this function is called with page lock held,
727 * so there is no race between isolation and mapping/unmapping.
728 */
729 if (!(page_mapping(hpage) || PageAnon(hpage))) {
Naoya Horiguchi6de2b1a2010-09-08 10:19:36 +0900730 res = dequeue_hwpoisoned_huge_page(hpage);
731 if (!res)
732 return RECOVERED;
Naoya Horiguchi93f70f92010-05-28 09:29:20 +0900733 }
734 return DELAYED;
Andi Kleen6a460792009-09-16 11:50:15 +0200735}
736
737/*
738 * Various page states we can handle.
739 *
740 * A page state is defined by its current page->flags bits.
741 * The table matches them in order and calls the right handler.
742 *
743 * This is quite tricky because we can access page at any time
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300744 * in its live cycle, so all accesses have to be extremely careful.
Andi Kleen6a460792009-09-16 11:50:15 +0200745 *
746 * This is not complete. More states could be added.
747 * For any missing state don't attempt recovery.
748 */
749
750#define dirty (1UL << PG_dirty)
751#define sc (1UL << PG_swapcache)
752#define unevict (1UL << PG_unevictable)
753#define mlock (1UL << PG_mlocked)
754#define writeback (1UL << PG_writeback)
755#define lru (1UL << PG_lru)
756#define swapbacked (1UL << PG_swapbacked)
757#define head (1UL << PG_head)
758#define tail (1UL << PG_tail)
759#define compound (1UL << PG_compound)
760#define slab (1UL << PG_slab)
Andi Kleen6a460792009-09-16 11:50:15 +0200761#define reserved (1UL << PG_reserved)
762
763static struct page_state {
764 unsigned long mask;
765 unsigned long res;
766 char *msg;
767 int (*action)(struct page *p, unsigned long pfn);
768} error_states[] = {
Wu Fengguangd95ea512009-12-16 12:19:58 +0100769 { reserved, reserved, "reserved kernel", me_kernel },
Wu Fengguang95d01fc2009-12-16 12:19:58 +0100770 /*
771 * free pages are specially detected outside this table:
772 * PG_buddy pages only make a small fraction of all free pages.
773 */
Andi Kleen6a460792009-09-16 11:50:15 +0200774
775 /*
776 * Could in theory check if slab page is free or if we can drop
777 * currently unused objects without touching them. But just
778 * treat it as standard kernel for now.
779 */
780 { slab, slab, "kernel slab", me_kernel },
781
782#ifdef CONFIG_PAGEFLAGS_EXTENDED
783 { head, head, "huge", me_huge_page },
784 { tail, tail, "huge", me_huge_page },
785#else
786 { compound, compound, "huge", me_huge_page },
787#endif
788
Naoya Horiguchiff604cf2012-12-11 16:01:32 -0800789 { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty },
790 { sc|dirty, sc, "clean swapcache", me_swapcache_clean },
Andi Kleen6a460792009-09-16 11:50:15 +0200791
Naoya Horiguchiff604cf2012-12-11 16:01:32 -0800792 { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty },
Naoya Horiguchie3986292013-04-29 15:06:08 -0700793 { mlock|dirty, mlock, "clean mlocked LRU", me_pagecache_clean },
Andi Kleen6a460792009-09-16 11:50:15 +0200794
Naoya Horiguchi5f4b9fc2013-02-22 16:35:53 -0800795 { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
Naoya Horiguchie3986292013-04-29 15:06:08 -0700796 { unevict|dirty, unevict, "clean unevictable LRU", me_pagecache_clean },
Naoya Horiguchi5f4b9fc2013-02-22 16:35:53 -0800797
Naoya Horiguchiff604cf2012-12-11 16:01:32 -0800798 { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty },
Andi Kleen6a460792009-09-16 11:50:15 +0200799 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
Andi Kleen6a460792009-09-16 11:50:15 +0200800
801 /*
802 * Catchall entry: must be at end.
803 */
804 { 0, 0, "unknown page state", me_unknown },
805};
806
Andi Kleen2326c462009-12-16 12:20:00 +0100807#undef dirty
808#undef sc
809#undef unevict
810#undef mlock
811#undef writeback
812#undef lru
813#undef swapbacked
814#undef head
815#undef tail
816#undef compound
817#undef slab
818#undef reserved
819
Naoya Horiguchiff604cf2012-12-11 16:01:32 -0800820/*
821 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
822 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
823 */
Andi Kleen6a460792009-09-16 11:50:15 +0200824static void action_result(unsigned long pfn, char *msg, int result)
825{
Naoya Horiguchiff604cf2012-12-11 16:01:32 -0800826 pr_err("MCE %#lx: %s page recovery: %s\n",
827 pfn, msg, action_name[result]);
Andi Kleen6a460792009-09-16 11:50:15 +0200828}
829
830static int page_action(struct page_state *ps, struct page *p,
Wu Fengguangbd1ce5f2009-12-16 12:19:57 +0100831 unsigned long pfn)
Andi Kleen6a460792009-09-16 11:50:15 +0200832{
833 int result;
Wu Fengguang7456b042009-10-19 08:15:01 +0200834 int count;
Andi Kleen6a460792009-09-16 11:50:15 +0200835
836 result = ps->action(p, pfn);
837 action_result(pfn, ps->msg, result);
Wu Fengguang7456b042009-10-19 08:15:01 +0200838
Wu Fengguangbd1ce5f2009-12-16 12:19:57 +0100839 count = page_count(p) - 1;
Wu Fengguang138ce282009-12-16 12:19:58 +0100840 if (ps->action == me_swapcache_dirty && result == DELAYED)
841 count--;
842 if (count != 0) {
Andi Kleen6a460792009-09-16 11:50:15 +0200843 printk(KERN_ERR
844 "MCE %#lx: %s page still referenced by %d users\n",
Wu Fengguang7456b042009-10-19 08:15:01 +0200845 pfn, ps->msg, count);
Wu Fengguang138ce282009-12-16 12:19:58 +0100846 result = FAILED;
847 }
Andi Kleen6a460792009-09-16 11:50:15 +0200848
849 /* Could do more checks here if page looks ok */
850 /*
851 * Could adjust zone counters here to correct for the missing page.
852 */
853
Wu Fengguang138ce282009-12-16 12:19:58 +0100854 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
Andi Kleen6a460792009-09-16 11:50:15 +0200855}
856
Andi Kleen6a460792009-09-16 11:50:15 +0200857/*
858 * Do all that is necessary to remove user space mappings. Unmap
859 * the pages and send SIGBUS to the processes if the data was dirty.
860 */
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100861static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
Naoya Horiguchi54b9dd12014-01-23 15:53:14 -0800862 int trapno, int flags, struct page **hpagep)
Andi Kleen6a460792009-09-16 11:50:15 +0200863{
864 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
865 struct address_space *mapping;
866 LIST_HEAD(tokill);
867 int ret;
Tony Luck6751ed62012-07-11 10:20:47 -0700868 int kill = 1, forcekill;
Naoya Horiguchi54b9dd12014-01-23 15:53:14 -0800869 struct page *hpage = *hpagep;
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800870 struct page *ppage;
Andi Kleen6a460792009-09-16 11:50:15 +0200871
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100872 if (PageReserved(p) || PageSlab(p))
873 return SWAP_SUCCESS;
Andi Kleen6a460792009-09-16 11:50:15 +0200874
Andi Kleen6a460792009-09-16 11:50:15 +0200875 /*
876 * This check implies we don't kill processes if their pages
877 * are in the swap cache early. Those are always late kills.
878 */
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900879 if (!page_mapped(hpage))
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100880 return SWAP_SUCCESS;
881
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900882 if (PageKsm(p))
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100883 return SWAP_FAIL;
Andi Kleen6a460792009-09-16 11:50:15 +0200884
885 if (PageSwapCache(p)) {
886 printk(KERN_ERR
887 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
888 ttu |= TTU_IGNORE_HWPOISON;
889 }
890
891 /*
892 * Propagate the dirty bit from PTEs to struct page first, because we
893 * need this to decide if we should kill or just drop the page.
Wu Fengguangdb0480b2009-12-16 12:19:58 +0100894 * XXX: the dirty test could be racy: set_page_dirty() may not always
895 * be called inside page lock (it's recommended but not enforced).
Andi Kleen6a460792009-09-16 11:50:15 +0200896 */
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900897 mapping = page_mapping(hpage);
Tony Luck6751ed62012-07-11 10:20:47 -0700898 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900899 mapping_cap_writeback_dirty(mapping)) {
900 if (page_mkclean(hpage)) {
901 SetPageDirty(hpage);
Andi Kleen6a460792009-09-16 11:50:15 +0200902 } else {
903 kill = 0;
904 ttu |= TTU_IGNORE_HWPOISON;
905 printk(KERN_INFO
906 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
907 pfn);
908 }
909 }
910
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800911 /*
912 * ppage: poisoned page
913 * if p is regular page(4k page)
914 * ppage == real poisoned page;
915 * else p is hugetlb or THP, ppage == head page.
916 */
917 ppage = hpage;
918
Jin Dongmingefeda7a2011-02-01 15:52:39 -0800919 if (PageTransHuge(hpage)) {
920 /*
921 * Verify that this isn't a hugetlbfs head page, the check for
922 * PageAnon is just for avoid tripping a split_huge_page
923 * internal debug check, as split_huge_page refuses to deal with
924 * anything that isn't an anon page. PageAnon can't go away fro
925 * under us because we hold a refcount on the hpage, without a
926 * refcount on the hpage. split_huge_page can't be safely called
927 * in the first place, having a refcount on the tail isn't
928 * enough * to be safe.
929 */
930 if (!PageHuge(hpage) && PageAnon(hpage)) {
931 if (unlikely(split_huge_page(hpage))) {
932 /*
933 * FIXME: if splitting THP is failed, it is
934 * better to stop the following operation rather
935 * than causing panic by unmapping. System might
936 * survive if the page is freed later.
937 */
938 printk(KERN_INFO
939 "MCE %#lx: failed to split THP\n", pfn);
940
941 BUG_ON(!PageHWPoison(p));
942 return SWAP_FAIL;
943 }
Naoya Horiguchia3e0f9e2014-01-02 12:58:51 -0800944 /*
945 * We pinned the head page for hwpoison handling,
946 * now we split the thp and we are interested in
947 * the hwpoisoned raw page, so move the refcount
Naoya Horiguchi54b9dd12014-01-23 15:53:14 -0800948 * to it. Similarly, page lock is shifted.
Naoya Horiguchia3e0f9e2014-01-02 12:58:51 -0800949 */
950 if (hpage != p) {
Naoya Horiguchi8d547ff2014-02-10 14:25:50 -0800951 if (!(flags & MF_COUNT_INCREASED)) {
952 put_page(hpage);
953 get_page(p);
954 }
Naoya Horiguchi54b9dd12014-01-23 15:53:14 -0800955 lock_page(p);
956 unlock_page(hpage);
957 *hpagep = p;
Naoya Horiguchia3e0f9e2014-01-02 12:58:51 -0800958 }
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800959 /* THP is split, so ppage should be the real poisoned page. */
960 ppage = p;
Jin Dongmingefeda7a2011-02-01 15:52:39 -0800961 }
962 }
963
Andi Kleen6a460792009-09-16 11:50:15 +0200964 /*
965 * First collect all the processes that have the page
966 * mapped in dirty form. This has to be done before try_to_unmap,
967 * because ttu takes the rmap data structures down.
968 *
969 * Error handling: We ignore errors here because
970 * there's nothing that can be done.
971 */
972 if (kill)
Tony Luck965b5a22014-06-04 16:11:01 -0700973 collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
Andi Kleen6a460792009-09-16 11:50:15 +0200974
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800975 ret = try_to_unmap(ppage, ttu);
Andi Kleen6a460792009-09-16 11:50:15 +0200976 if (ret != SWAP_SUCCESS)
977 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800978 pfn, page_mapcount(ppage));
979
Andi Kleen6a460792009-09-16 11:50:15 +0200980 /*
981 * Now that the dirty bit has been propagated to the
982 * struct page and all unmaps done we can decide if
983 * killing is needed or not. Only kill when the page
Tony Luck6751ed62012-07-11 10:20:47 -0700984 * was dirty or the process is not restartable,
985 * otherwise the tokill list is merely
Andi Kleen6a460792009-09-16 11:50:15 +0200986 * freed. When there was a problem unmapping earlier
987 * use a more force-full uncatchable kill to prevent
988 * any accesses to the poisoned memory.
989 */
Tony Luck6751ed62012-07-11 10:20:47 -0700990 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
991 kill_procs(&tokill, forcekill, trapno,
Tony Luck7329bbe2011-12-13 09:27:58 -0800992 ret != SWAP_SUCCESS, p, pfn, flags);
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100993
994 return ret;
Andi Kleen6a460792009-09-16 11:50:15 +0200995}
996
Naoya Horiguchi7013feb2010-05-28 09:29:18 +0900997static void set_page_hwpoison_huge_page(struct page *hpage)
998{
999 int i;
Wanpeng Lif9121152013-09-11 14:22:52 -07001000 int nr_pages = 1 << compound_order(hpage);
Naoya Horiguchi7013feb2010-05-28 09:29:18 +09001001 for (i = 0; i < nr_pages; i++)
1002 SetPageHWPoison(hpage + i);
1003}
1004
1005static void clear_page_hwpoison_huge_page(struct page *hpage)
1006{
1007 int i;
Wanpeng Lif9121152013-09-11 14:22:52 -07001008 int nr_pages = 1 << compound_order(hpage);
Naoya Horiguchi7013feb2010-05-28 09:29:18 +09001009 for (i = 0; i < nr_pages; i++)
1010 ClearPageHWPoison(hpage + i);
1011}
1012
Tony Luckcd42f4a2011-12-15 10:48:12 -08001013/**
1014 * memory_failure - Handle memory failure of a page.
1015 * @pfn: Page Number of the corrupted page
1016 * @trapno: Trap number reported in the signal to user space.
1017 * @flags: fine tune action taken
1018 *
1019 * This function is called by the low level machine check code
1020 * of an architecture when it detects hardware memory corruption
1021 * of a page. It tries its best to recover, which includes
1022 * dropping pages, killing processes etc.
1023 *
1024 * The function is primarily of use for corruptions that
1025 * happen outside the current execution context (e.g. when
1026 * detected by a background scrubber)
1027 *
1028 * Must run in process context (e.g. a work queue) with interrupts
1029 * enabled and no spinlocks hold.
1030 */
1031int memory_failure(unsigned long pfn, int trapno, int flags)
Andi Kleen6a460792009-09-16 11:50:15 +02001032{
1033 struct page_state *ps;
1034 struct page *p;
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001035 struct page *hpage;
Andi Kleen6a460792009-09-16 11:50:15 +02001036 int res;
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001037 unsigned int nr_pages;
Naoya Horiguchi524fca12013-02-22 16:35:51 -08001038 unsigned long page_flags;
Andi Kleen6a460792009-09-16 11:50:15 +02001039
1040 if (!sysctl_memory_failure_recovery)
1041 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1042
1043 if (!pfn_valid(pfn)) {
Wu Fengguanga7560fc2009-12-16 12:19:57 +01001044 printk(KERN_ERR
1045 "MCE %#lx: memory outside kernel control\n",
1046 pfn);
1047 return -ENXIO;
Andi Kleen6a460792009-09-16 11:50:15 +02001048 }
1049
1050 p = pfn_to_page(pfn);
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001051 hpage = compound_head(p);
Andi Kleen6a460792009-09-16 11:50:15 +02001052 if (TestSetPageHWPoison(p)) {
Wu Fengguangd95ea512009-12-16 12:19:58 +01001053 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
Andi Kleen6a460792009-09-16 11:50:15 +02001054 return 0;
1055 }
1056
Naoya Horiguchi4db0e952013-02-22 16:34:05 -08001057 /*
1058 * Currently errors on hugetlbfs pages are measured in hugepage units,
1059 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1060 * transparent hugepages, they are supposed to be split and error
1061 * measurement is done in normal page units. So nr_pages should be one
1062 * in this case.
1063 */
1064 if (PageHuge(p))
1065 nr_pages = 1 << compound_order(hpage);
1066 else /* normal page or thp */
1067 nr_pages = 1;
Xishi Qiu293c07e2013-02-22 16:34:02 -08001068 atomic_long_add(nr_pages, &num_poisoned_pages);
Andi Kleen6a460792009-09-16 11:50:15 +02001069
1070 /*
1071 * We need/can do nothing about count=0 pages.
1072 * 1) it's a free page, and therefore in safe hand:
1073 * prep_new_page() will be the gate keeper.
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001074 * 2) it's a free hugepage, which is also safe:
1075 * an affected hugepage will be dequeued from hugepage freelist,
1076 * so there's no concern about reusing it ever after.
1077 * 3) it's part of a non-compound high order page.
Andi Kleen6a460792009-09-16 11:50:15 +02001078 * Implies some kernel user: cannot stop them from
1079 * R/W the page; let's pray that the page has been
1080 * used and will be freed some time later.
1081 * In fact it's dangerous to directly bump up page count from 0,
1082 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1083 */
Andi Kleen82ba0112009-12-16 12:19:57 +01001084 if (!(flags & MF_COUNT_INCREASED) &&
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001085 !get_page_unless_zero(hpage)) {
Wu Fengguang8d22ba12009-12-16 12:19:58 +01001086 if (is_free_buddy_page(p)) {
1087 action_result(pfn, "free buddy", DELAYED);
1088 return 0;
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001089 } else if (PageHuge(hpage)) {
1090 /*
Chen Yucong54a2ab12014-05-22 11:54:15 -07001091 * Check "filter hit" and "race with other subpage."
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001092 */
Jens Axboe7eaceac2011-03-10 08:52:07 +01001093 lock_page(hpage);
Chen Yucong54a2ab12014-05-22 11:54:15 -07001094 if (PageHWPoison(hpage)) {
1095 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1096 || (p != hpage && TestSetPageHWPoison(hpage))) {
1097 atomic_long_sub(nr_pages, &num_poisoned_pages);
1098 unlock_page(hpage);
1099 return 0;
1100 }
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001101 }
1102 set_page_hwpoison_huge_page(hpage);
1103 res = dequeue_hwpoisoned_huge_page(hpage);
1104 action_result(pfn, "free huge",
1105 res ? IGNORED : DELAYED);
1106 unlock_page(hpage);
1107 return res;
Wu Fengguang8d22ba12009-12-16 12:19:58 +01001108 } else {
1109 action_result(pfn, "high order kernel", IGNORED);
1110 return -EBUSY;
1111 }
Andi Kleen6a460792009-09-16 11:50:15 +02001112 }
1113
1114 /*
Wu Fengguange43c3af2009-09-29 13:16:20 +08001115 * We ignore non-LRU pages for good reasons.
1116 * - PG_locked is only well defined for LRU pages and a few others
1117 * - to avoid races with __set_page_locked()
1118 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1119 * The check (unnecessarily) ignores LRU pages being isolated and
1120 * walked by the page reclaim code, however that's not a big loss.
1121 */
Dean Nelson385de352012-03-21 16:34:05 -07001122 if (!PageHuge(p) && !PageTransTail(p)) {
Jin Dongmingaf241a02011-02-01 15:52:41 -08001123 if (!PageLRU(p))
1124 shake_page(p, 0);
1125 if (!PageLRU(p)) {
1126 /*
1127 * shake_page could have turned it free.
1128 */
1129 if (is_free_buddy_page(p)) {
Wanpeng Li2d421ac2013-09-30 13:45:23 -07001130 if (flags & MF_COUNT_INCREASED)
1131 action_result(pfn, "free buddy", DELAYED);
1132 else
1133 action_result(pfn, "free buddy, 2nd try", DELAYED);
Jin Dongmingaf241a02011-02-01 15:52:41 -08001134 return 0;
1135 }
1136 action_result(pfn, "non LRU", IGNORED);
1137 put_page(p);
1138 return -EBUSY;
Andi Kleen0474a602009-12-16 12:20:00 +01001139 }
Wu Fengguange43c3af2009-09-29 13:16:20 +08001140 }
Wu Fengguange43c3af2009-09-29 13:16:20 +08001141
1142 /*
Andi Kleen6a460792009-09-16 11:50:15 +02001143 * Lock the page and wait for writeback to finish.
1144 * It's very difficult to mess with pages currently under IO
1145 * and in many cases impossible, so we just avoid it here.
1146 */
Jens Axboe7eaceac2011-03-10 08:52:07 +01001147 lock_page(hpage);
Wu Fengguang847ce402009-12-16 12:19:58 +01001148
1149 /*
Naoya Horiguchi524fca12013-02-22 16:35:51 -08001150 * We use page flags to determine what action should be taken, but
1151 * the flags can be modified by the error containment action. One
1152 * example is an mlocked page, where PG_mlocked is cleared by
1153 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1154 * correctly, we save a copy of the page flags at this time.
1155 */
1156 page_flags = p->flags;
1157
1158 /*
Wu Fengguang847ce402009-12-16 12:19:58 +01001159 * unpoison always clear PG_hwpoison inside page lock
1160 */
1161 if (!PageHWPoison(p)) {
Wu Fengguangd95ea512009-12-16 12:19:58 +01001162 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
Naoya Horiguchi36222532014-05-22 11:54:21 -07001163 atomic_long_sub(nr_pages, &num_poisoned_pages);
1164 put_page(hpage);
Wu Fengguang847ce402009-12-16 12:19:58 +01001165 res = 0;
1166 goto out;
1167 }
Wu Fengguang7c116f22009-12-16 12:19:59 +01001168 if (hwpoison_filter(p)) {
1169 if (TestClearPageHWPoison(p))
Xishi Qiu293c07e2013-02-22 16:34:02 -08001170 atomic_long_sub(nr_pages, &num_poisoned_pages);
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001171 unlock_page(hpage);
1172 put_page(hpage);
Wu Fengguang7c116f22009-12-16 12:19:59 +01001173 return 0;
1174 }
Wu Fengguang847ce402009-12-16 12:19:58 +01001175
Naoya Horiguchi7013feb2010-05-28 09:29:18 +09001176 /*
1177 * For error on the tail page, we should set PG_hwpoison
1178 * on the head page to show that the hugepage is hwpoisoned
1179 */
Jin Dongminga6d30dd2011-02-01 15:52:40 -08001180 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
Naoya Horiguchi7013feb2010-05-28 09:29:18 +09001181 action_result(pfn, "hugepage already hardware poisoned",
1182 IGNORED);
1183 unlock_page(hpage);
1184 put_page(hpage);
1185 return 0;
1186 }
1187 /*
1188 * Set PG_hwpoison on all pages in an error hugepage,
1189 * because containment is done in hugepage unit for now.
1190 * Since we have done TestSetPageHWPoison() for the head page with
1191 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1192 */
1193 if (PageHuge(p))
1194 set_page_hwpoison_huge_page(hpage);
1195
Andi Kleen6a460792009-09-16 11:50:15 +02001196 wait_on_page_writeback(p);
1197
1198 /*
1199 * Now take care of user space mappings.
Minchan Kime64a7822011-03-22 16:32:44 -07001200 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
Naoya Horiguchi54b9dd12014-01-23 15:53:14 -08001201 *
1202 * When the raw error page is thp tail page, hpage points to the raw
1203 * page after thp split.
Andi Kleen6a460792009-09-16 11:50:15 +02001204 */
Naoya Horiguchi54b9dd12014-01-23 15:53:14 -08001205 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1206 != SWAP_SUCCESS) {
Wu Fengguang1668bfd2009-12-16 12:19:58 +01001207 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1208 res = -EBUSY;
1209 goto out;
1210 }
Andi Kleen6a460792009-09-16 11:50:15 +02001211
1212 /*
1213 * Torn down by someone else?
1214 */
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +01001215 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
Andi Kleen6a460792009-09-16 11:50:15 +02001216 action_result(pfn, "already truncated LRU", IGNORED);
Wu Fengguangd95ea512009-12-16 12:19:58 +01001217 res = -EBUSY;
Andi Kleen6a460792009-09-16 11:50:15 +02001218 goto out;
1219 }
1220
1221 res = -EBUSY;
Naoya Horiguchi524fca12013-02-22 16:35:51 -08001222 /*
1223 * The first check uses the current page flags which may not have any
1224 * relevant information. The second check with the saved page flagss is
1225 * carried out only if the first check can't determine the page status.
1226 */
1227 for (ps = error_states;; ps++)
1228 if ((p->flags & ps->mask) == ps->res)
Andi Kleen6a460792009-09-16 11:50:15 +02001229 break;
Wanpeng Li841fcc52013-09-11 14:22:50 -07001230
1231 page_flags |= (p->flags & (1UL << PG_dirty));
1232
Naoya Horiguchi524fca12013-02-22 16:35:51 -08001233 if (!ps->mask)
1234 for (ps = error_states;; ps++)
1235 if ((page_flags & ps->mask) == ps->res)
1236 break;
1237 res = page_action(ps, p, pfn);
Andi Kleen6a460792009-09-16 11:50:15 +02001238out:
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001239 unlock_page(hpage);
Andi Kleen6a460792009-09-16 11:50:15 +02001240 return res;
1241}
Tony Luckcd42f4a2011-12-15 10:48:12 -08001242EXPORT_SYMBOL_GPL(memory_failure);
Wu Fengguang847ce402009-12-16 12:19:58 +01001243
Huang Yingea8f5fb2011-07-13 13:14:27 +08001244#define MEMORY_FAILURE_FIFO_ORDER 4
1245#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1246
1247struct memory_failure_entry {
1248 unsigned long pfn;
1249 int trapno;
1250 int flags;
1251};
1252
1253struct memory_failure_cpu {
1254 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1255 MEMORY_FAILURE_FIFO_SIZE);
1256 spinlock_t lock;
1257 struct work_struct work;
1258};
1259
1260static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1261
1262/**
1263 * memory_failure_queue - Schedule handling memory failure of a page.
1264 * @pfn: Page Number of the corrupted page
1265 * @trapno: Trap number reported in the signal to user space.
1266 * @flags: Flags for memory failure handling
1267 *
1268 * This function is called by the low level hardware error handler
1269 * when it detects hardware memory corruption of a page. It schedules
1270 * the recovering of error page, including dropping pages, killing
1271 * processes etc.
1272 *
1273 * The function is primarily of use for corruptions that
1274 * happen outside the current execution context (e.g. when
1275 * detected by a background scrubber)
1276 *
1277 * Can run in IRQ context.
1278 */
1279void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1280{
1281 struct memory_failure_cpu *mf_cpu;
1282 unsigned long proc_flags;
1283 struct memory_failure_entry entry = {
1284 .pfn = pfn,
1285 .trapno = trapno,
1286 .flags = flags,
1287 };
1288
1289 mf_cpu = &get_cpu_var(memory_failure_cpu);
1290 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
Stefani Seibold498d3192013-11-14 14:32:17 -08001291 if (kfifo_put(&mf_cpu->fifo, entry))
Huang Yingea8f5fb2011-07-13 13:14:27 +08001292 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1293 else
Joe Perches8e33a522013-07-25 11:53:25 -07001294 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
Huang Yingea8f5fb2011-07-13 13:14:27 +08001295 pfn);
1296 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1297 put_cpu_var(memory_failure_cpu);
1298}
1299EXPORT_SYMBOL_GPL(memory_failure_queue);
1300
1301static void memory_failure_work_func(struct work_struct *work)
1302{
1303 struct memory_failure_cpu *mf_cpu;
1304 struct memory_failure_entry entry = { 0, };
1305 unsigned long proc_flags;
1306 int gotten;
1307
1308 mf_cpu = &__get_cpu_var(memory_failure_cpu);
1309 for (;;) {
1310 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1311 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1312 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1313 if (!gotten)
1314 break;
Naveen N. Raocf870c72013-07-10 14:57:01 +05301315 if (entry.flags & MF_SOFT_OFFLINE)
1316 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1317 else
1318 memory_failure(entry.pfn, entry.trapno, entry.flags);
Huang Yingea8f5fb2011-07-13 13:14:27 +08001319 }
1320}
1321
1322static int __init memory_failure_init(void)
1323{
1324 struct memory_failure_cpu *mf_cpu;
1325 int cpu;
1326
1327 for_each_possible_cpu(cpu) {
1328 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1329 spin_lock_init(&mf_cpu->lock);
1330 INIT_KFIFO(mf_cpu->fifo);
1331 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1332 }
1333
1334 return 0;
1335}
1336core_initcall(memory_failure_init);
1337
Wu Fengguang847ce402009-12-16 12:19:58 +01001338/**
1339 * unpoison_memory - Unpoison a previously poisoned page
1340 * @pfn: Page number of the to be unpoisoned page
1341 *
1342 * Software-unpoison a page that has been poisoned by
1343 * memory_failure() earlier.
1344 *
1345 * This is only done on the software-level, so it only works
1346 * for linux injected failures, not real hardware failures
1347 *
1348 * Returns 0 for success, otherwise -errno.
1349 */
1350int unpoison_memory(unsigned long pfn)
1351{
1352 struct page *page;
1353 struct page *p;
1354 int freeit = 0;
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001355 unsigned int nr_pages;
Wu Fengguang847ce402009-12-16 12:19:58 +01001356
1357 if (!pfn_valid(pfn))
1358 return -ENXIO;
1359
1360 p = pfn_to_page(pfn);
1361 page = compound_head(p);
1362
1363 if (!PageHWPoison(p)) {
Andi Kleenfb46e732010-09-27 23:31:30 +02001364 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
Wu Fengguang847ce402009-12-16 12:19:58 +01001365 return 0;
1366 }
1367
Wanpeng Li0cea3fd2013-09-11 14:22:53 -07001368 /*
1369 * unpoison_memory() can encounter thp only when the thp is being
1370 * worked by memory_failure() and the page lock is not held yet.
1371 * In such case, we yield to memory_failure() and make unpoison fail.
1372 */
Wanpeng Lie76d30e2013-09-30 13:45:22 -07001373 if (!PageHuge(page) && PageTransHuge(page)) {
Wanpeng Li0cea3fd2013-09-11 14:22:53 -07001374 pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1375 return 0;
1376 }
1377
Wanpeng Lif9121152013-09-11 14:22:52 -07001378 nr_pages = 1 << compound_order(page);
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001379
Wu Fengguang847ce402009-12-16 12:19:58 +01001380 if (!get_page_unless_zero(page)) {
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001381 /*
1382 * Since HWPoisoned hugepage should have non-zero refcount,
1383 * race between memory failure and unpoison seems to happen.
1384 * In such case unpoison fails and memory failure runs
1385 * to the end.
1386 */
1387 if (PageHuge(page)) {
Dean Nelsondd73e852011-10-31 17:09:04 -07001388 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001389 return 0;
1390 }
Wu Fengguang847ce402009-12-16 12:19:58 +01001391 if (TestClearPageHWPoison(p))
Wanpeng Lidd9538a2013-09-11 14:22:54 -07001392 atomic_long_dec(&num_poisoned_pages);
Andi Kleenfb46e732010-09-27 23:31:30 +02001393 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
Wu Fengguang847ce402009-12-16 12:19:58 +01001394 return 0;
1395 }
1396
Jens Axboe7eaceac2011-03-10 08:52:07 +01001397 lock_page(page);
Wu Fengguang847ce402009-12-16 12:19:58 +01001398 /*
1399 * This test is racy because PG_hwpoison is set outside of page lock.
1400 * That's acceptable because that won't trigger kernel panic. Instead,
1401 * the PG_hwpoison page will be caught and isolated on the entrance to
1402 * the free buddy page pool.
1403 */
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001404 if (TestClearPageHWPoison(page)) {
Andi Kleenfb46e732010-09-27 23:31:30 +02001405 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
Xishi Qiu293c07e2013-02-22 16:34:02 -08001406 atomic_long_sub(nr_pages, &num_poisoned_pages);
Wu Fengguang847ce402009-12-16 12:19:58 +01001407 freeit = 1;
Naoya Horiguchi6a901812010-09-08 10:19:40 +09001408 if (PageHuge(page))
1409 clear_page_hwpoison_huge_page(page);
Wu Fengguang847ce402009-12-16 12:19:58 +01001410 }
1411 unlock_page(page);
1412
1413 put_page(page);
Wanpeng Li3ba5eeb2013-09-11 14:23:01 -07001414 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
Wu Fengguang847ce402009-12-16 12:19:58 +01001415 put_page(page);
1416
1417 return 0;
1418}
1419EXPORT_SYMBOL(unpoison_memory);
Andi Kleenfacb6012009-12-16 12:20:00 +01001420
1421static struct page *new_page(struct page *p, unsigned long private, int **x)
1422{
Andi Kleen12686d12009-12-16 12:20:01 +01001423 int nid = page_to_nid(p);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001424 if (PageHuge(p))
1425 return alloc_huge_page_node(page_hstate(compound_head(p)),
1426 nid);
1427 else
1428 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
Andi Kleenfacb6012009-12-16 12:20:00 +01001429}
1430
1431/*
1432 * Safely get reference count of an arbitrary page.
1433 * Returns 0 for a free page, -EIO for a zero refcount page
1434 * that is not free, and 1 for any other page type.
1435 * For 1 the page is returned with increased page count, otherwise not.
1436 */
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001437static int __get_any_page(struct page *p, unsigned long pfn, int flags)
Andi Kleenfacb6012009-12-16 12:20:00 +01001438{
1439 int ret;
1440
1441 if (flags & MF_COUNT_INCREASED)
1442 return 1;
1443
1444 /*
Naoya Horiguchid950b952010-09-08 10:19:39 +09001445 * When the target page is a free hugepage, just remove it
1446 * from free hugepage list.
1447 */
Andi Kleenfacb6012009-12-16 12:20:00 +01001448 if (!get_page_unless_zero(compound_head(p))) {
Naoya Horiguchid950b952010-09-08 10:19:39 +09001449 if (PageHuge(p)) {
Borislav Petkov71dd0b82012-05-29 15:06:16 -07001450 pr_info("%s: %#lx free huge page\n", __func__, pfn);
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001451 ret = 0;
Naoya Horiguchid950b952010-09-08 10:19:39 +09001452 } else if (is_free_buddy_page(p)) {
Borislav Petkov71dd0b82012-05-29 15:06:16 -07001453 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
Andi Kleenfacb6012009-12-16 12:20:00 +01001454 ret = 0;
1455 } else {
Borislav Petkov71dd0b82012-05-29 15:06:16 -07001456 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1457 __func__, pfn, p->flags);
Andi Kleenfacb6012009-12-16 12:20:00 +01001458 ret = -EIO;
1459 }
1460 } else {
1461 /* Not a free page */
1462 ret = 1;
1463 }
Andi Kleenfacb6012009-12-16 12:20:00 +01001464 return ret;
1465}
1466
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001467static int get_any_page(struct page *page, unsigned long pfn, int flags)
1468{
1469 int ret = __get_any_page(page, pfn, flags);
1470
1471 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1472 /*
1473 * Try to free it.
1474 */
1475 put_page(page);
1476 shake_page(page, 1);
1477
1478 /*
1479 * Did it turn free?
1480 */
1481 ret = __get_any_page(page, pfn, 0);
1482 if (!PageLRU(page)) {
1483 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1484 pfn, page->flags);
1485 return -EIO;
1486 }
1487 }
1488 return ret;
1489}
1490
Naoya Horiguchid950b952010-09-08 10:19:39 +09001491static int soft_offline_huge_page(struct page *page, int flags)
1492{
1493 int ret;
1494 unsigned long pfn = page_to_pfn(page);
1495 struct page *hpage = compound_head(page);
Naoya Horiguchib8ec1ce2013-09-11 14:22:01 -07001496 LIST_HEAD(pagelist);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001497
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001498 /*
1499 * This double-check of PageHWPoison is to avoid the race with
1500 * memory_failure(). See also comment in __soft_offline_page().
1501 */
1502 lock_page(hpage);
Xishi Qiu0ebff322013-02-22 16:33:59 -08001503 if (PageHWPoison(hpage)) {
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001504 unlock_page(hpage);
1505 put_page(hpage);
Xishi Qiu0ebff322013-02-22 16:33:59 -08001506 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001507 return -EBUSY;
Xishi Qiu0ebff322013-02-22 16:33:59 -08001508 }
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001509 unlock_page(hpage);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001510
Naoya Horiguchid950b952010-09-08 10:19:39 +09001511 /* Keep page count to indicate a given hugepage is isolated. */
Naoya Horiguchib8ec1ce2013-09-11 14:22:01 -07001512 list_move(&hpage->lru, &pagelist);
1513 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1514 MIGRATE_SYNC, MR_MEMORY_FAILURE);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001515 if (ret) {
Dean Nelsondd73e852011-10-31 17:09:04 -07001516 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1517 pfn, ret, page->flags);
Naoya Horiguchib8ec1ce2013-09-11 14:22:01 -07001518 /*
1519 * We know that soft_offline_huge_page() tries to migrate
1520 * only one hugepage pointed to by hpage, so we need not
1521 * run through the pagelist here.
1522 */
1523 putback_active_hugepage(hpage);
1524 if (ret > 0)
1525 ret = -EIO;
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001526 } else {
Jianguo Wua49ecbc2013-12-18 17:08:54 -08001527 /* overcommit hugetlb page will be freed to buddy */
1528 if (PageHuge(page)) {
1529 set_page_hwpoison_huge_page(hpage);
1530 dequeue_hwpoisoned_huge_page(hpage);
1531 atomic_long_add(1 << compound_order(hpage),
1532 &num_poisoned_pages);
1533 } else {
1534 SetPageHWPoison(page);
1535 atomic_long_inc(&num_poisoned_pages);
1536 }
Naoya Horiguchid950b952010-09-08 10:19:39 +09001537 }
Naoya Horiguchid950b952010-09-08 10:19:39 +09001538 return ret;
1539}
1540
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001541static int __soft_offline_page(struct page *page, int flags)
1542{
1543 int ret;
1544 unsigned long pfn = page_to_pfn(page);
Andi Kleenfacb6012009-12-16 12:20:00 +01001545
1546 /*
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001547 * Check PageHWPoison again inside page lock because PageHWPoison
1548 * is set by memory_failure() outside page lock. Note that
1549 * memory_failure() also double-checks PageHWPoison inside page lock,
1550 * so there's no race between soft_offline_page() and memory_failure().
Andi Kleenfacb6012009-12-16 12:20:00 +01001551 */
Xishi Qiu0ebff322013-02-22 16:33:59 -08001552 lock_page(page);
1553 wait_on_page_writeback(page);
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001554 if (PageHWPoison(page)) {
1555 unlock_page(page);
1556 put_page(page);
1557 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1558 return -EBUSY;
1559 }
Andi Kleenfacb6012009-12-16 12:20:00 +01001560 /*
1561 * Try to invalidate first. This should work for
1562 * non dirty unmapped page cache pages.
1563 */
1564 ret = invalidate_inode_page(page);
1565 unlock_page(page);
Andi Kleenfacb6012009-12-16 12:20:00 +01001566 /*
Andi Kleenfacb6012009-12-16 12:20:00 +01001567 * RED-PEN would be better to keep it isolated here, but we
1568 * would need to fix isolation locking first.
1569 */
Andi Kleenfacb6012009-12-16 12:20:00 +01001570 if (ret == 1) {
Konstantin Khlebnikovbd486282011-05-24 17:12:20 -07001571 put_page(page);
Andi Kleenfb46e732010-09-27 23:31:30 +02001572 pr_info("soft_offline: %#lx: invalidated\n", pfn);
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001573 SetPageHWPoison(page);
1574 atomic_long_inc(&num_poisoned_pages);
1575 return 0;
Andi Kleenfacb6012009-12-16 12:20:00 +01001576 }
1577
1578 /*
1579 * Simple invalidation didn't work.
1580 * Try to migrate to a new page instead. migrate.c
1581 * handles a large number of cases for us.
1582 */
1583 ret = isolate_lru_page(page);
Konstantin Khlebnikovbd486282011-05-24 17:12:20 -07001584 /*
1585 * Drop page reference which is came from get_any_page()
1586 * successful isolate_lru_page() already took another one.
1587 */
1588 put_page(page);
Andi Kleenfacb6012009-12-16 12:20:00 +01001589 if (!ret) {
1590 LIST_HEAD(pagelist);
Minchan Kim5db8a732011-06-15 15:08:48 -07001591 inc_zone_page_state(page, NR_ISOLATED_ANON +
Hugh Dickins9c620e22013-02-22 16:35:14 -08001592 page_is_file_cache(page));
Andi Kleenfacb6012009-12-16 12:20:00 +01001593 list_add(&page->lru, &pagelist);
Mel Gorman77f1fe62011-01-13 15:45:57 -08001594 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
Hugh Dickins9c620e22013-02-22 16:35:14 -08001595 MIGRATE_SYNC, MR_MEMORY_FAILURE);
Andi Kleenfacb6012009-12-16 12:20:00 +01001596 if (ret) {
Joonsoo Kim59c82b72014-01-21 15:51:17 -08001597 if (!list_empty(&pagelist)) {
1598 list_del(&page->lru);
1599 dec_zone_page_state(page, NR_ISOLATED_ANON +
1600 page_is_file_cache(page));
1601 putback_lru_page(page);
1602 }
1603
Andi Kleenfb46e732010-09-27 23:31:30 +02001604 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
Andi Kleenfacb6012009-12-16 12:20:00 +01001605 pfn, ret, page->flags);
1606 if (ret > 0)
1607 ret = -EIO;
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001608 } else {
Naoya Horiguchif15bdfa2013-07-03 15:02:37 -07001609 /*
1610 * After page migration succeeds, the source page can
1611 * be trapped in pagevec and actual freeing is delayed.
1612 * Freeing code works differently based on PG_hwpoison,
1613 * so there's a race. We need to make sure that the
1614 * source page should be freed back to buddy before
1615 * setting PG_hwpoison.
1616 */
1617 if (!is_free_buddy_page(page))
1618 lru_add_drain_all();
1619 if (!is_free_buddy_page(page))
1620 drain_all_pages();
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001621 SetPageHWPoison(page);
Naoya Horiguchif15bdfa2013-07-03 15:02:37 -07001622 if (!is_free_buddy_page(page))
1623 pr_info("soft offline: %#lx: page leaked\n",
1624 pfn);
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001625 atomic_long_inc(&num_poisoned_pages);
Andi Kleenfacb6012009-12-16 12:20:00 +01001626 }
1627 } else {
Andi Kleenfb46e732010-09-27 23:31:30 +02001628 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
Dean Nelsondd73e852011-10-31 17:09:04 -07001629 pfn, ret, page_count(page), page->flags);
Andi Kleenfacb6012009-12-16 12:20:00 +01001630 }
Andi Kleenfacb6012009-12-16 12:20:00 +01001631 return ret;
1632}
Wanpeng Li86e05772013-09-11 14:22:56 -07001633
1634/**
1635 * soft_offline_page - Soft offline a page.
1636 * @page: page to offline
1637 * @flags: flags. Same as memory_failure().
1638 *
1639 * Returns 0 on success, otherwise negated errno.
1640 *
1641 * Soft offline a page, by migration or invalidation,
1642 * without killing anything. This is for the case when
1643 * a page is not corrupted yet (so it's still valid to access),
1644 * but has had a number of corrected errors and is better taken
1645 * out.
1646 *
1647 * The actual policy on when to do that is maintained by
1648 * user space.
1649 *
1650 * This should never impact any application or cause data loss,
1651 * however it might take some time.
1652 *
1653 * This is not a 100% solution for all memory, but tries to be
1654 * ``good enough'' for the majority of memory.
1655 */
1656int soft_offline_page(struct page *page, int flags)
1657{
1658 int ret;
1659 unsigned long pfn = page_to_pfn(page);
David Rientjes668f9abb2014-03-03 15:38:18 -08001660 struct page *hpage = compound_head(page);
Wanpeng Li86e05772013-09-11 14:22:56 -07001661
1662 if (PageHWPoison(page)) {
1663 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1664 return -EBUSY;
1665 }
1666 if (!PageHuge(page) && PageTransHuge(hpage)) {
1667 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1668 pr_info("soft offline: %#lx: failed to split THP\n",
1669 pfn);
1670 return -EBUSY;
1671 }
1672 }
1673
Naoya Horiguchi03b61ff2013-11-12 15:07:26 -08001674 /*
1675 * The lock_memory_hotplug prevents a race with memory hotplug.
1676 * This is a big hammer, a better would be nicer.
1677 */
1678 lock_memory_hotplug();
1679
1680 /*
1681 * Isolate the page, so that it doesn't get reallocated if it
1682 * was free. This flag should be kept set until the source page
1683 * is freed and PG_hwpoison on it is set.
1684 */
1685 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
1686 set_migratetype_isolate(page, true);
1687
Wanpeng Li86e05772013-09-11 14:22:56 -07001688 ret = get_any_page(page, pfn, flags);
Naoya Horiguchi03b61ff2013-11-12 15:07:26 -08001689 unlock_memory_hotplug();
1690 if (ret > 0) { /* for in-use pages */
Wanpeng Li86e05772013-09-11 14:22:56 -07001691 if (PageHuge(page))
1692 ret = soft_offline_huge_page(page, flags);
1693 else
1694 ret = __soft_offline_page(page, flags);
Naoya Horiguchi03b61ff2013-11-12 15:07:26 -08001695 } else if (ret == 0) { /* for free pages */
Wanpeng Li86e05772013-09-11 14:22:56 -07001696 if (PageHuge(page)) {
1697 set_page_hwpoison_huge_page(hpage);
1698 dequeue_hwpoisoned_huge_page(hpage);
1699 atomic_long_add(1 << compound_order(hpage),
1700 &num_poisoned_pages);
1701 } else {
1702 SetPageHWPoison(page);
1703 atomic_long_inc(&num_poisoned_pages);
1704 }
1705 }
Wanpeng Li86e05772013-09-11 14:22:56 -07001706 unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1707 return ret;
1708}