aboutsummaryrefslogtreecommitdiff
path: root/fs/btrfs/inode.c
AgeCommit message (Collapse)Author
2022-05-24Merge tag 'folio-5.19' of git://git.infradead.org/users/willy/pagecacheLinus Torvalds
Pull page cache updates from Matthew Wilcox: - Appoint myself page cache maintainer - Fix how scsicam uses the page cache - Use the memalloc_nofs_save() API to replace AOP_FLAG_NOFS - Remove the AOP flags entirely - Remove pagecache_write_begin() and pagecache_write_end() - Documentation updates - Convert several address_space operations to use folios: - is_dirty_writeback - readpage becomes read_folio - releasepage becomes release_folio - freepage becomes free_folio - Change filler_t to require a struct file pointer be the first argument like ->read_folio * tag 'folio-5.19' of git://git.infradead.org/users/willy/pagecache: (107 commits) nilfs2: Fix some kernel-doc comments Appoint myself page cache maintainer fs: Remove aops->freepage secretmem: Convert to free_folio nfs: Convert to free_folio orangefs: Convert to free_folio fs: Add free_folio address space operation fs: Convert drop_buffers() to use a folio fs: Change try_to_free_buffers() to take a folio jbd2: Convert release_buffer_page() to use a folio jbd2: Convert jbd2_journal_try_to_free_buffers to take a folio reiserfs: Convert release_buffer_page() to use a folio fs: Remove last vestiges of releasepage ubifs: Convert to release_folio reiserfs: Convert to release_folio orangefs: Convert to release_folio ocfs2: Convert to release_folio nilfs2: Remove comment about releasepage nfs: Convert to release_folio jfs: Convert to release_folio ...
2022-05-17btrfs: do not account twice for inode ref when reserving metadata unitsFilipe Manana
When reserving metadata units for creating an inode, we don't need to reserve one extra unit for the inode ref item because when creating the inode, at btrfs_create_new_inode(), we always insert the inode item and the inode ref item in a single batch (a single btree insert operation, and both ending up in the same leaf). As we have accounted already one unit for the inode item, the extra unit for the inode ref item is superfluous, it only makes us reserve more metadata than necessary and often adding more reclaim pressure if we are low on available metadata space. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: allocate the btrfs_dio_private as part of the iomap dio bioChristoph Hellwig
Create a new bio_set that contains all the per-bio private data needed by btrfs for direct I/O and tell the iomap code to use that instead of separately allocation the btrfs_dio_private structure. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: move struct btrfs_dio_private to inode.cChristoph Hellwig
The btrfs_dio_private structure is only used in inode.c, so move the definition there. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: remove the disk_bytenr in struct btrfs_dio_privateChristoph Hellwig
This field is never used, so remove it. Last use was probably in 23ea8e5a0767 ("Btrfs: load checksum data once when submitting a direct read io"). Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: allocate dio_data on stackChristoph Hellwig
Make use of the new iomap_iter->private field to avoid a memory allocation per iomap range. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16iomap: add per-iomap_iter private dataChristoph Hellwig
Allow the file system to keep state for all iterations. For now only wire it up for direct I/O as there is an immediate need for it there. Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: add a btrfs_dio_rw wrapperChristoph Hellwig
Add a wrapper around iomap_dio_rw that keeps the direct I/O internals isolated in inode.c. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: rename bio_flags in parameters and switch typeDavid Sterba
Several functions take parameter bio_flags that was simplified to just compress type, unify it and change the type accordingly. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: simplify handling of bio_ctrl::bio_flagsDavid Sterba
The bio_flags are used only to encode the compression and there are no other EXTENT_BIO_* flags, so the compress type can be stored directly. The struct member name is left unchanged and will be cleaned in later patches. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: remove unused parameter bio_flags from btrfs_wq_submit_bioDavid Sterba
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: fix deadlock between concurrent dio writes when low on free data spaceFilipe Manana
When reserving data space for a direct IO write we can end up deadlocking if we have multiple tasks attempting a write to the same file range, there are multiple extents covered by that file range, we are low on available space for data and the writes don't expand the inode's i_size. The deadlock can happen like this: 1) We have a file with an i_size of 1M, at offset 0 it has an extent with a size of 128K and at offset 128K it has another extent also with a size of 128K; 2) Task A does a direct IO write against file range [0, 256K), and because the write is within the i_size boundary, it takes the inode's lock (VFS level) in shared mode; 3) Task A locks the file range [0, 256K) at btrfs_dio_iomap_begin(), and then gets the extent map for the extent covering the range [0, 128K). At btrfs_get_blocks_direct_write(), it creates an ordered extent for that file range ([0, 128K)); 4) Before returning from btrfs_dio_iomap_begin(), it unlocks the file range [0, 256K); 5) Task A executes btrfs_dio_iomap_begin() again, this time for the file range [128K, 256K), and locks the file range [128K, 256K); 6) Task B starts a direct IO write against file range [0, 256K) as well. It also locks the inode in shared mode, as it's within the i_size limit, and then tries to lock file range [0, 256K). It is able to lock the subrange [0, 128K) but then blocks waiting for the range [128K, 256K), as it is currently locked by task A; 7) Task A enters btrfs_get_blocks_direct_write() and tries to reserve data space. Because we are low on available free space, it triggers the async data reclaim task, and waits for it to reserve data space; 8) The async reclaim task decides to wait for all existing ordered extents to complete (through btrfs_wait_ordered_roots()). It finds the ordered extent previously created by task A for the file range [0, 128K) and waits for it to complete; 9) The ordered extent for the file range [0, 128K) can not complete because it blocks at btrfs_finish_ordered_io() when trying to lock the file range [0, 128K). This results in a deadlock, because: - task B is holding the file range [0, 128K) locked, waiting for the range [128K, 256K) to be unlocked by task A; - task A is holding the file range [128K, 256K) locked and it's waiting for the async data reclaim task to satisfy its space reservation request; - the async data reclaim task is waiting for ordered extent [0, 128K) to complete, but the ordered extent can not complete because the file range [0, 128K) is currently locked by task B, which is waiting on task A to unlock file range [128K, 256K) and task A waiting on the async data reclaim task. This results in a deadlock between 4 task: task A, task B, the async data reclaim task and the task doing ordered extent completion (a work queue task). This type of deadlock can sporadically be triggered by the test case generic/300 from fstests, and results in a stack trace like the following: [12084.033689] INFO: task kworker/u16:7:123749 blocked for more than 241 seconds. [12084.034877] Not tainted 5.18.0-rc2-btrfs-next-115 #1 [12084.035562] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [12084.036548] task:kworker/u16:7 state:D stack: 0 pid:123749 ppid: 2 flags:0x00004000 [12084.036554] Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs] [12084.036599] Call Trace: [12084.036601] <TASK> [12084.036606] __schedule+0x3cb/0xed0 [12084.036616] schedule+0x4e/0xb0 [12084.036620] btrfs_start_ordered_extent+0x109/0x1c0 [btrfs] [12084.036651] ? prepare_to_wait_exclusive+0xc0/0xc0 [12084.036659] btrfs_run_ordered_extent_work+0x1a/0x30 [btrfs] [12084.036688] btrfs_work_helper+0xf8/0x400 [btrfs] [12084.036719] ? lock_is_held_type+0xe8/0x140 [12084.036727] process_one_work+0x252/0x5a0 [12084.036736] ? process_one_work+0x5a0/0x5a0 [12084.036738] worker_thread+0x52/0x3b0 [12084.036743] ? process_one_work+0x5a0/0x5a0 [12084.036745] kthread+0xf2/0x120 [12084.036747] ? kthread_complete_and_exit+0x20/0x20 [12084.036751] ret_from_fork+0x22/0x30 [12084.036765] </TASK> [12084.036769] INFO: task kworker/u16:11:153787 blocked for more than 241 seconds. [12084.037702] Not tainted 5.18.0-rc2-btrfs-next-115 #1 [12084.038540] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [12084.039506] task:kworker/u16:11 state:D stack: 0 pid:153787 ppid: 2 flags:0x00004000 [12084.039511] Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs] [12084.039551] Call Trace: [12084.039553] <TASK> [12084.039557] __schedule+0x3cb/0xed0 [12084.039566] schedule+0x4e/0xb0 [12084.039569] schedule_timeout+0xed/0x130 [12084.039573] ? mark_held_locks+0x50/0x80 [12084.039578] ? _raw_spin_unlock_irq+0x24/0x50 [12084.039580] ? lockdep_hardirqs_on+0x7d/0x100 [12084.039585] __wait_for_common+0xaf/0x1f0 [12084.039587] ? usleep_range_state+0xb0/0xb0 [12084.039596] btrfs_wait_ordered_extents+0x3d6/0x470 [btrfs] [12084.039636] btrfs_wait_ordered_roots+0x175/0x240 [btrfs] [12084.039670] flush_space+0x25b/0x630 [btrfs] [12084.039712] btrfs_async_reclaim_data_space+0x108/0x1b0 [btrfs] [12084.039747] process_one_work+0x252/0x5a0 [12084.039756] ? process_one_work+0x5a0/0x5a0 [12084.039758] worker_thread+0x52/0x3b0 [12084.039762] ? process_one_work+0x5a0/0x5a0 [12084.039765] kthread+0xf2/0x120 [12084.039766] ? kthread_complete_and_exit+0x20/0x20 [12084.039770] ret_from_fork+0x22/0x30 [12084.039783] </TASK> [12084.039800] INFO: task kworker/u16:17:217907 blocked for more than 241 seconds. [12084.040709] Not tainted 5.18.0-rc2-btrfs-next-115 #1 [12084.041398] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [12084.042404] task:kworker/u16:17 state:D stack: 0 pid:217907 ppid: 2 flags:0x00004000 [12084.042411] Workqueue: btrfs-endio-write btrfs_work_helper [btrfs] [12084.042461] Call Trace: [12084.042463] <TASK> [12084.042471] __schedule+0x3cb/0xed0 [12084.042485] schedule+0x4e/0xb0 [12084.042490] wait_extent_bit.constprop.0+0x1eb/0x260 [btrfs] [12084.042539] ? prepare_to_wait_exclusive+0xc0/0xc0 [12084.042551] lock_extent_bits+0x37/0x90 [btrfs] [12084.042601] btrfs_finish_ordered_io.isra.0+0x3fd/0x960 [btrfs] [12084.042656] ? lock_is_held_type+0xe8/0x140 [12084.042667] btrfs_work_helper+0xf8/0x400 [btrfs] [12084.042716] ? lock_is_held_type+0xe8/0x140 [12084.042727] process_one_work+0x252/0x5a0 [12084.042742] worker_thread+0x52/0x3b0 [12084.042750] ? process_one_work+0x5a0/0x5a0 [12084.042754] kthread+0xf2/0x120 [12084.042757] ? kthread_complete_and_exit+0x20/0x20 [12084.042763] ret_from_fork+0x22/0x30 [12084.042783] </TASK> [12084.042798] INFO: task fio:234517 blocked for more than 241 seconds. [12084.043598] Not tainted 5.18.0-rc2-btrfs-next-115 #1 [12084.044282] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [12084.045244] task:fio state:D stack: 0 pid:234517 ppid:234515 flags:0x00004000 [12084.045248] Call Trace: [12084.045250] <TASK> [12084.045254] __schedule+0x3cb/0xed0 [12084.045263] schedule+0x4e/0xb0 [12084.045266] wait_extent_bit.constprop.0+0x1eb/0x260 [btrfs] [12084.045298] ? prepare_to_wait_exclusive+0xc0/0xc0 [12084.045306] lock_extent_bits+0x37/0x90 [btrfs] [12084.045336] btrfs_dio_iomap_begin+0x336/0xc60 [btrfs] [12084.045370] ? lock_is_held_type+0xe8/0x140 [12084.045378] iomap_iter+0x184/0x4c0 [12084.045383] __iomap_dio_rw+0x2c6/0x8a0 [12084.045406] iomap_dio_rw+0xa/0x30 [12084.045408] btrfs_do_write_iter+0x370/0x5e0 [btrfs] [12084.045440] aio_write+0xfa/0x2c0 [12084.045448] ? __might_fault+0x2a/0x70 [12084.045451] ? kvm_sched_clock_read+0x14/0x40 [12084.045455] ? lock_release+0x153/0x4a0 [12084.045463] io_submit_one+0x615/0x9f0 [12084.045467] ? __might_fault+0x2a/0x70 [12084.045469] ? kvm_sched_clock_read+0x14/0x40 [12084.045478] __x64_sys_io_submit+0x83/0x160 [12084.045483] ? syscall_enter_from_user_mode+0x1d/0x50 [12084.045489] do_syscall_64+0x3b/0x90 [12084.045517] entry_SYSCALL_64_after_hwframe+0x44/0xae [12084.045521] RIP: 0033:0x7fa76511af79 [12084.045525] RSP: 002b:00007ffd6d6b9058 EFLAGS: 00000246 ORIG_RAX: 00000000000000d1 [12084.045530] RAX: ffffffffffffffda RBX: 00007fa75ba6e760 RCX: 00007fa76511af79 [12084.045532] RDX: 0000557b304ff3f0 RSI: 0000000000000001 RDI: 00007fa75ba4c000 [12084.045535] RBP: 00007fa75ba4c000 R08: 00007fa751b76000 R09: 0000000000000330 [12084.045537] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000001 [12084.045540] R13: 0000000000000000 R14: 0000557b304ff3f0 R15: 0000557b30521eb0 [12084.045561] </TASK> Fix this issue by always reserving data space before locking a file range at btrfs_dio_iomap_begin(). If we can't reserve the space, then we don't error out immediately - instead after locking the file range, check if we can do a NOCOW write, and if we can we don't error out since we don't need to allocate a data extent, however if we can't NOCOW then error out with -ENOSPC. This also implies that we may end up reserving space when it's not needed because the write will end up being done in NOCOW mode - in that case we just release the space after we noticed we did a NOCOW write - this is the same type of logic that is done in the path for buffered IO writes. Fixes: f0bfa76a11e93d ("btrfs: fix ENOSPC failure when attempting direct IO write into NOCOW range") CC: stable@vger.kernel.org # 5.17+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: derive compression type from extent map during readsGoldwyn Rodrigues
Derive the compression type from extent map as opposed to the bio flags passed. This makes it more precise and not reliant on function parameters. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: turn fs_roots_radix in btrfs_fs_info into an XArrayGabriel Niebler
… rename it to simply fs_roots and adjust all usages of this object to use the XArray API, because it is notionally easier to use and understand, as it provides array semantics, and also takes care of locking for us, further simplifying the code. Also do some refactoring, esp. where the API change requires largely rewriting some functions, anyway. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Gabriel Niebler <gniebler@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: turn delayed_nodes_tree into an XArrayGabriel Niebler
… in the btrfs_root struct and adjust all usages of this object to use the XArray API, because it is notionally easier to use and understand, as it provides array semantics, and also takes care of locking for us, further simplifying the code. Also use the opportunity to do some light refactoring. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Gabriel Niebler <gniebler@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: do not return errors from submit_bio_hook_t instancesChristoph Hellwig
Both btrfs_repair_one_sector and submit_bio_one as the direct caller of one of the instances ignore errors as they expect the methods themselves to call ->bi_end_io on error. Remove the unused and dangerous return value. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: do not return errors from btrfs_submit_compressed_readChristoph Hellwig
btrfs_submit_compressed_read already calls ->bi_end_io on error and the caller must ignore the return value, so remove it. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: move btrfs_readpage to extent_io.cChristoph Hellwig
Keep btrfs_readpage next to btrfs_do_readpage and the other address space operations. This allows to keep submit_one_bio and struct btrfs_bio_ctrl file local in extent_io.c. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: avoid double search for block group during NOCOW writesFilipe Manana
When doing a NOCOW write, either through direct IO or buffered IO, we do two lookups for the block group that contains the target extent: once when we call btrfs_inc_nocow_writers() and then later again when we call btrfs_dec_nocow_writers() after creating the ordered extent. The lookups require taking a lock and navigating the red black tree used to track all block groups, which can take a non-negligible amount of time for a large filesystem with thousands of block groups, as well as lock contention and cache line bouncing. Improve on this by having a single block group search: making btrfs_inc_nocow_writers() return the block group to its caller and then have the caller pass that block group to btrfs_dec_nocow_writers(). This is part of a patchset comprised of the following patches: btrfs: remove search start argument from first_logical_byte() btrfs: use rbtree with leftmost node cached for tracking lowest block group btrfs: use a read/write lock for protecting the block groups tree btrfs: return block group directly at btrfs_next_block_group() btrfs: avoid double search for block group during NOCOW writes The following test was used to test these changes from a performance perspective: $ cat test.sh #!/bin/bash modprobe null_blk nr_devices=0 NULL_DEV_PATH=/sys/kernel/config/nullb/nullb0 mkdir $NULL_DEV_PATH if [ $? -ne 0 ]; then echo "Failed to create nullb0 directory." exit 1 fi echo 2 > $NULL_DEV_PATH/submit_queues echo 16384 > $NULL_DEV_PATH/size # 16G echo 1 > $NULL_DEV_PATH/memory_backed echo 1 > $NULL_DEV_PATH/power DEV=/dev/nullb0 MNT=/mnt/nullb0 LOOP_MNT="$MNT/loop" MOUNT_OPTIONS="-o ssd -o nodatacow" MKFS_OPTIONS="-R free-space-tree -O no-holes" cat <<EOF > /tmp/fio-job.ini [io_uring_writes] rw=randwrite fsync=0 fallocate=posix group_reporting=1 direct=1 ioengine=io_uring iodepth=64 bs=64k filesize=1g runtime=300 time_based directory=$LOOP_MNT numjobs=8 thread EOF echo performance | \ tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor echo echo "Using config:" echo cat /tmp/fio-job.ini echo umount $MNT &> /dev/null mkfs.btrfs -f $MKFS_OPTIONS $DEV &> /dev/null mount $MOUNT_OPTIONS $DEV $MNT mkdir $LOOP_MNT truncate -s 4T $MNT/loopfile mkfs.btrfs -f $MKFS_OPTIONS $MNT/loopfile &> /dev/null mount $MOUNT_OPTIONS $MNT/loopfile $LOOP_MNT # Trigger the allocation of about 3500 data block groups, without # actually consuming space on underlying filesystem, just to make # the tree of block group large. fallocate -l 3500G $LOOP_MNT/filler fio /tmp/fio-job.ini umount $LOOP_MNT umount $MNT echo 0 > $NULL_DEV_PATH/power rmdir $NULL_DEV_PATH The test was run on a non-debug kernel (Debian's default kernel config), the result were the following. Before patchset: WRITE: bw=1455MiB/s (1526MB/s), 1455MiB/s-1455MiB/s (1526MB/s-1526MB/s), io=426GiB (458GB), run=300006-300006msec After patchset: WRITE: bw=1503MiB/s (1577MB/s), 1503MiB/s-1503MiB/s (1577MB/s-1577MB/s), io=440GiB (473GB), run=300006-300006msec +3.3% write throughput and +3.3% IO done in the same time period. The test has somewhat limited coverage scope, as with only NOCOW writes we get less contention on the red black tree of block groups, since we don't have the extra contention caused by COW writes, namely when allocating data extents, pinning and unpinning data extents, but on the hand there's access to tree in the NOCOW path, when incrementing a block group's number of NOCOW writers. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: avoid double clean up when submit_one_bio() failedQu Wenruo
[BUG] When running generic/475 with 64K page size and 4K sector size, it has a very high chance (almost 100%) to hang, with mostly data page locked but no one is going to unlock it. [CAUSE] With commit 1784b7d502a9 ("btrfs: handle csum lookup errors properly on reads"), if we failed to lookup checksum due to metadata IO error, we will return error for btrfs_submit_data_bio(). This will cause the page to be unlocked twice in btrfs_do_readpage(): btrfs_do_readpage() |- submit_extent_page() | |- submit_one_bio() | |- btrfs_submit_data_bio() | |- if (ret) { | |- bio->bi_status = ret; | |- bio_endio(bio); } | In the endio function, we will call end_page_read() | and unlock_extent() to cleanup the subpage range. | |- if (ret) { |- unlock_extent(); end_page_read() } Here we unlock the extent and cleanup the subpage range again. For unlock_extent(), it's mostly double unlock safe. But for end_page_read(), it's not, especially for subpage case, as for subpage case we will call btrfs_subpage_end_reader() to reduce the reader number, and use that to number to determine if we need to unlock the full page. If double accounted, it can underflow the number and leave the page locked without anyone to unlock it. [FIX] The commit 1784b7d502a9 ("btrfs: handle csum lookup errors properly on reads") itself is completely fine, it's our existing code not properly handling the error from bio submission hook properly. This patch will make submit_one_bio() to return void so that the callers will never be able to do cleanup when bio submission hook fails. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: use BTRFS_DIR_START_INDEX at btrfs_create_new_inode()Filipe Manana
We are still using the magic value of 2 at btrfs_create_new_inode(), but there's now a constant for that, named BTRFS_DIR_START_INDEX, which was introduced in commit 528ee697126fd ("btrfs: put initial index value of a directory in a constant"). So change that to use the constant. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: do not test for free space inode during NOCOW check against file extentFilipe Manana
When checking if we can do a NOCOW write against a range covered by a file extent item, we do a quick a check to determine if the inode's root was snapshotted in a generation older than the generation of the file extent item or not. This is to quickly determine if the extent is likely shared and avoid the expensive check for cross references (this was added in commit 78d4295b1eeed4 ("btrfs: lift some btrfs_cross_ref_exist checks in nocow path"). We restrict that check to the case where the inode is not a free space inode (since commit 27a7ff554e8d34 ("btrfs: skip file_extent generation check for free_space_inode in run_delalloc_nocow")). That is because when we had the inode cache feature, inode caches were backed by a free space inode that belonged to the inode's root. However we don't have support for the inode cache feature since kernel 5.11, so we don't need this check anymore since free space inodes are now always related to free space caches, which are always associated to the root tree (which can't be snapshotted, and its last_snapshot field is always 0). So remove that condition. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: move common NOCOW checks against a file extent into a helperFilipe Manana
Verifying if we can do a NOCOW write against a range fully or partially covered by a file extent item requires verifying several constraints, and these are currently duplicated at two different places: can_nocow_extent() and run_delalloc_nocow(). This change moves those checks into a common helper function to avoid duplication. It adds some comments and also preserves all existing behaviour like for example can_nocow_extent() treating errors from the calls to btrfs_cross_ref_exist() and csum_exist_in_range() as meaning we can not NOCOW, instead of propagating the error back to the caller. That specific behaviour is questionable but also reasonable to some degree. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: factor out allocating an array of pagesSweet Tea Dorminy
Several functions currently populate an array of page pointers one allocated page at a time. Factor out the common code so as to allow improvements to all of the sites at once. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: remove unnecessary type castsYu Zhe
Explicit type casts are not necessary when it's void* to another pointer type. Signed-off-by: Yu Zhe <yuzhe@nfschina.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: make nodesize >= PAGE_SIZE case to reuse the non-subpage routineQu Wenruo
The reason why we only support 64K page size for subpage is, for 64K page size we can ensure no matter what the nodesize is, we can fit it into one page. When other page size come, especially like 16K, the limitation is a bit limiting. To remove such limitation, we allow nodesize >= PAGE_SIZE case to go the non-subpage routine. By this, we can allow 4K sectorsize on 16K page size. Although this introduces another smaller limitation, the metadata can not cross page boundary, which is already met by most recent mkfs. Another small improvement is, we can avoid the overhead for metadata if nodesize >= PAGE_SIZE. For 4K sector size and 64K page size/node size, or 4K sector size and 16K page size/node size, we don't need to allocate extra memory for the metadata pages. Please note that, this patch will not yet enable other page size support yet. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: replace memset with memzero_page in data checksum verificationQu Wenruo
The original code resets the page to 0x1 for not apparent reason, it's been like that since the initial 2007 code added in commit 07157aacb1ec ("Btrfs: Add file data csums back in via hooks in the extent map code"). It could mean that a failed buffer can be detected from the data but that's just a guess and any value is good. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: avoid blocking on space revervation when doing nowait dio writesFilipe Manana
When doing a NOWAIT direct IO write, if we can NOCOW then it means we can proceed with the non-blocking, NOWAIT path. However reserving the metadata space and qgroup meta space can often result in blocking - flushing delalloc, wait for ordered extents to complete, trigger transaction commits, etc, going against the semantics of a NOWAIT write. So make the NOWAIT write path to try to reserve all the metadata it needs without resulting in a blocking behaviour - if we get -ENOSPC or -EDQUOT then return -EAGAIN to make the caller fallback to a blocking direct IO write. This is part of a patchset comprised of the following patches: btrfs: avoid blocking on page locks with nowait dio on compressed range btrfs: avoid blocking nowait dio when locking file range btrfs: avoid double nocow check when doing nowait dio writes btrfs: stop allocating a path when checking if cross reference exists btrfs: free path at can_nocow_extent() before checking for checksum items btrfs: release path earlier at can_nocow_extent() btrfs: avoid blocking when allocating context for nowait dio read/write btrfs: avoid blocking on space revervation when doing nowait dio writes The following test was run before and after applying this patchset: $ cat io-uring-nodatacow-test.sh #!/bin/bash DEV=/dev/sdc MNT=/mnt/sdc MOUNT_OPTIONS="-o ssd -o nodatacow" MKFS_OPTIONS="-R free-space-tree -O no-holes" NUM_JOBS=4 FILE_SIZE=8G RUN_TIME=300 cat <<EOF > /tmp/fio-job.ini [io_uring_rw] rw=randrw fsync=0 fallocate=posix group_reporting=1 direct=1 ioengine=io_uring iodepth=64 bssplit=4k/20:8k/20:16k/20:32k/10:64k/10:128k/5:256k/5:512k/5:1m/5 filesize=$FILE_SIZE runtime=$RUN_TIME time_based filename=foobar directory=$MNT numjobs=$NUM_JOBS thread EOF echo performance | \ tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor umount $MNT &> /dev/null mkfs.btrfs -f $MKFS_OPTIONS $DEV &> /dev/null mount $MOUNT_OPTIONS $DEV $MNT fio /tmp/fio-job.ini umount $MNT The test was run a 12 cores box with 64G of ram, using a non-debug kernel config (Debian's default config) and a spinning disk. Result before the patchset: READ: bw=407MiB/s (427MB/s), 407MiB/s-407MiB/s (427MB/s-427MB/s), io=119GiB (128GB), run=300175-300175msec WRITE: bw=407MiB/s (427MB/s), 407MiB/s-407MiB/s (427MB/s-427MB/s), io=119GiB (128GB), run=300175-300175msec Result after the patchset: READ: bw=436MiB/s (457MB/s), 436MiB/s-436MiB/s (457MB/s-457MB/s), io=128GiB (137GB), run=300044-300044msec WRITE: bw=435MiB/s (456MB/s), 435MiB/s-435MiB/s (456MB/s-456MB/s), io=128GiB (137GB), run=300044-300044msec That's about +7.2% throughput for reads and +6.9% for writes. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: avoid blocking when allocating context for nowait dio read/writeFilipe Manana
When doing a NOWAIT direct IO read/write, we allocate a context object (struct btrfs_dio_data) with GFP_NOFS, which can result in blocking waiting for memory allocation (GFP_NOFS is __GFP_RECLAIM | __GFP_IO). This is undesirable for the NOWAIT semantics, so do the allocation with GFP_NOWAIT if we are serving a NOWAIT request and if the allocation fails return -EAGAIN, so that the caller can fallback to a blocking context and retry with a non-blocking write. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: release path earlier at can_nocow_extent()Filipe Manana
At can_nocow_extent(), we are releasing the path only after checking if the block group that has the target extent is read only, and after checking if there's delalloc in the range in case our extent is a preallocated extent. The read only extent check can be expensive if we have a very large filesystem with many block groups, as well as the check for delalloc in the inode's io_tree in case the io_tree is big due to IO on other file ranges. Our path is holding a read lock on a leaf and there's no need to keep the lock while doing those two checks, so release the path before doing them, immediately after the last use of the leaf. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: free path at can_nocow_extent() before checking for checksum itemsFilipe Manana
When we look for checksum items, through csum_exist_in_range(), at can_nocow_extent(), we no longer need the path that we have previously allocated. Through csum_exist_in_range() -> btrfs_lookup_csums_range(), we also end up allocating a path, so we are adding unnecessary extra memory usage. So free the path before calling csum_exist_in_range(). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: stop allocating a path when checking if cross reference existsFilipe Manana
At btrfs_cross_ref_exist() we always allocate a path, but we really don't need to because all its callers (only 2) already have an allocated path that is not being used when they call btrfs_cross_ref_exist(). So change btrfs_cross_ref_exist() to take a path as an argument and update both its callers to pass in the unused path they have when they call btrfs_cross_ref_exist(). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: avoid double nocow check when doing nowait dio writesFilipe Manana
When doing a NOWAIT direct IO write we are checking twice if we can COW into the target file range using can_nocow_extent() - once at the very beginning of the write path, at btrfs_write_check() via check_nocow_nolock(), and later again at btrfs_get_blocks_direct_write(). The can_nocow_extent() function does a lot of expensive things - searching for the file extent item in the inode's subvolume tree, searching for the extent item in the extent tree, checking delayed references, etc, so it isn't a very cheap call. We can remove the first check at btrfs_write_check(), and add there a quick check to verify if the inode has the NODATACOW or PREALLOC flags, and quickly bail out if it doesn't have neither of those flags, as that means we have to COW and therefore can't comply with the NOWAIT semantics. After this we do only one call to can_nocow_extent(), while we are at btrfs_get_blocks_direct_write(), where we have already locked the file range and we did a try lock on the range before, at btrfs_dio_iomap_begin() (since the previous patch in the series). Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: avoid blocking nowait dio when locking file rangeFilipe Manana
If we are doing a NOWAIT direct IO read/write, we can block when locking the file range at btrfs_dio_iomap_begin(), as it's possible the range (or a part of it) is already locked by another task (mmap writes, another direct IO read/write racing with us, fiemap, etc). We are also waiting for completion of any ordered extent we find in the range, which also can block us for a significant amount of time. There's also the incorrect fallback to buffered IO (returning -ENOTBLK) when we are dealing with a NOWAIT request and we can't proceed. In this case we should be returning -EAGAIN, as falling back to buffered IO can result in blocking for many different reasons, so that the caller can delegate a retry to a context where blocking is more acceptable. Fix these cases by: 1) Doing a try lock on the file range and failing with -EAGAIN if we can not lock right away; 2) Fail with -EAGAIN if we find an ordered extent; 3) Return -EAGAIN instead of -ENOTBLK when we need to fallback to buffered IO and we have a NOWAIT request. This will also allow us to avoid a duplicated check that verifies if we are able to do a NOCOW write for NOWAIT direct IO writes, done in the next patch. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: avoid blocking on page locks with nowait dio on compressed rangeFilipe Manana
If we are doing NOWAIT direct IO read/write and our inode has compressed extents, we call filemap_fdatawrite_range() against the range in order to wait for compressed writeback to complete, since the generic code at iomap_dio_rw() calls filemap_write_and_wait_range() once, which is not enough to wait for compressed writeback to complete. This call to filemap_fdatawrite_range() can block on page locks, since the first writepages() on a range that we will try to compress results only in queuing a work to compress the data while holding the pages locked. Even though the generic code at iomap_dio_rw() will do the right thing and return -EAGAIN for NOWAIT requests in case there are pages in the range, we can still end up at btrfs_dio_iomap_begin() with pages in the range because either of the following can happen: 1) Memory mapped writes, as we haven't locked the range yet; 2) Buffered reads might have started, which lock the pages, and we do the filemap_fdatawrite_range() call before locking the file range. So don't call filemap_fdatawrite_range() at btrfs_dio_iomap_begin() if we are doing a NOWAIT read/write. Instead call filemap_range_needs_writeback() to check if there are any locked, dirty, or under writeback pages, and return -EAGAIN if that's the case. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: add and use helper to assert an inode range is cleanFilipe Manana
We have four different scenarios where we don't expect to find ordered extents after locking a file range: 1) During plain fallocate; 2) During hole punching; 3) During zero range; 4) During reflinks (both cloning and deduplication). This is because in all these cases we follow the pattern: 1) Lock the inode's VFS lock in exclusive mode; 2) Lock the inode's i_mmap_lock in exclusive node, to serialize with mmap writes; 3) Flush delalloc in a file range and wait for all ordered extents to complete - both done through btrfs_wait_ordered_range(); 4) Lock the file range in the inode's io_tree. So add a helper that asserts that we don't have ordered extents for a given range. Make the four scenarios listed above use this helper after locking the respective file range. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: restore inode creation before xattr settingSweet Tea Dorminy
According to the tree checker, "all xattrs with a given objectid follow the inode with that objectid in the tree" is an invariant. This was broken by the recent change "btrfs: move common inode creation code into btrfs_create_new_inode()", which moved acl creation and property inheritance (stored in xattrs) to before inode insertion into the tree. As a result, under certain timings, the xattrs could be written to the tree before the inode, causing the tree checker to report violation of the invariant. Move property inheritance and acl creation back to their old ordering after the inode insertion. Suggested-by: Omar Sandoval <osandov@osandov.com> Reported-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: move common inode creation code into btrfs_create_new_inode()Omar Sandoval
All of our inode creation code paths duplicate the calls to btrfs_init_inode_security() and btrfs_add_link(). Subvolume creation additionally duplicates property inheritance and the call to btrfs_set_inode_index(). Fix this by moving the common code into btrfs_create_new_inode(). This accomplishes a few things at once: 1. It reduces code duplication. 2. It allows us to set up the inode completely before inserting the inode item, removing calls to btrfs_update_inode(). 3. It fixes a leak of an inode on disk in some error cases. For example, in btrfs_create(), if btrfs_new_inode() succeeds, then we have inserted an inode item and its inode ref. However, if something after that fails (e.g., btrfs_init_inode_security()), then we end the transaction and then decrement the link count on the inode. If the transaction is committed and the system crashes before the failed inode is deleted, then we leak that inode on disk. Instead, this refactoring aborts the transaction when we can't recover more gracefully. 4. It exposes various ways that subvolume creation diverges from mkdir in terms of inheriting flags, properties, permissions, and POSIX ACLs, a lot of which appears to be accidental. This patch explicitly does _not_ change the existing non-standard behavior, but it makes those differences more clear in the code and documents them so that we can discuss whether they should be changed. Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: reserve correct number of items for inode creationOmar Sandoval
The various inode creation code paths do not account for the compression property, POSIX ACLs, or the parent inode item when starting a transaction. Fix it by refactoring all of these code paths to use a new function, btrfs_new_inode_prepare(), which computes the correct number of items. To do so, it needs to know whether POSIX ACLs will be created, so move the ACL creation into that function. To reduce the number of arguments that need to be passed around for inode creation, define struct btrfs_new_inode_args containing all of the relevant information. btrfs_new_inode_prepare() will also be a good place to set up the fscrypt context and encrypted filename in the future. Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: factor out common part of btrfs_{mknod,create,mkdir}()Omar Sandoval
btrfs_{mknod,create,mkdir}() are now identical other than the inode initialization and some inconsequential function call order differences. Factor out the common code to reduce code duplication. Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: allocate inode outside of btrfs_new_inode()Omar Sandoval
Instead of calling new_inode() and inode_init_owner() inside of btrfs_new_inode(), do it in the callers. This allows us to pass in just the inode instead of the mnt_userns and mode and removes the need for memalloc_nofs_{save,restores}() since we do it before starting a transaction. In create_subvol(), it also means we no longer have to look up the inode again to instantiate it. This also paves the way for some more cleanups in later patches. This also removes the comments about Smack checking i_op, which are no longer true since commit 5d6c31910bc0 ("xattr: Add __vfs_{get,set,remove}xattr helpers"). Now it checks inode->i_opflags & IOP_XATTR, which is set based on sb->s_xattr. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: use btrfs_for_each_slot in btrfs_real_readdirGabriel Niebler
This function can be simplified by refactoring to use the new iterator macro. No functional changes. Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com> Signed-off-by: Gabriel Niebler <gniebler@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: set inode flags earlier in btrfs_new_inode()Omar Sandoval
btrfs_new_inode() inherits the inode flags from the parent directory and the mount options _after_ we fill the inode item. This works because all of the callers of btrfs_new_inode() make further changes to the inode and then call btrfs_update_inode(). It'd be better to fully initialize the inode once to avoid the extra update, so as a first step, set the inode flags _before_ filling the inode item. Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: move btrfs_get_free_objectid() call into btrfs_new_inode()Omar Sandoval
Every call of btrfs_new_inode() is immediately preceded by a call to btrfs_get_free_objectid(). Since getting an inode number is part of creating a new inode, this is better off being moved into btrfs_new_inode(). While we're here, get rid of the comment about reclaiming inode numbers, since we only did that when using the ino cache, which was removed by commit 5297199a8bca ("btrfs: remove inode number cache feature"). Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: don't pass parent objectid to btrfs_new_inode() explicitlyOmar Sandoval
For everything other than a subvolume root inode, we get the parent objectid from the parent directory. For the subvolume root inode, the parent objectid is the same as the inode's objectid. We can find this within btrfs_new_inode() instead of passing it. Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: remove unnecessary set_nlink() in btrfs_create_subvol_root()Omar Sandoval
btrfs_new_inode() already returns an inode with nlink set to 1 (via inode_init_always()). Get rid of the unnecessary set. Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: remove unnecessary inode_set_bytes(0) callOmar Sandoval
new_inode() always returns an inode with i_blocks and i_bytes set to 0 (via inode_init_always()). Remove the unnecessary call to inode_set_bytes() in btrfs_new_inode(). Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: remove unnecessary btrfs_i_size_write(0) callsOmar Sandoval
btrfs_new_inode() always returns an inode with i_size and disk_i_size set to 0 (via inode_init_always() and btrfs_alloc_inode(), respectively). Remove the unnecessary calls to btrfs_i_size_write() in btrfs_mkdir() and btrfs_create_subvol_root(). Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: get rid of btrfs_add_nondir()Omar Sandoval
This is a trivial wrapper around btrfs_add_link(). The only thing it does other than moving arguments around is translating a > 0 return value to -EEXIST. As far as I can tell, btrfs_add_link() won't return > 0 (and if it did, the existing callsites in, e.g., btrfs_mkdir() would be broken). The check itself dates back to commit 2c90e5d65842 ("Btrfs: still corruption hunting"), so it's probably left over from debugging. Let's just get rid of btrfs_add_nondir(). Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: reserve correct number of items for renameOmar Sandoval
btrfs_rename() and btrfs_rename_exchange() don't account for enough items. Replace the incorrect explanations with a specific breakdown of the number of items and account them accurately. Note that this glosses over RENAME_WHITEOUT because the next commit is going to rework that, too. Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>