aboutsummaryrefslogtreecommitdiff
path: root/drivers/staging/rt2860/common/eeprom.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/staging/rt2860/common/eeprom.c')
-rw-r--r--drivers/staging/rt2860/common/eeprom.c1268
1 files changed, 1267 insertions, 1 deletions
diff --git a/drivers/staging/rt2860/common/eeprom.c b/drivers/staging/rt2860/common/eeprom.c
index bed2d666629c..9729323baca5 100644
--- a/drivers/staging/rt2860/common/eeprom.c
+++ b/drivers/staging/rt2860/common/eeprom.c
@@ -73,12 +73,16 @@ USHORT ShiftInBits(
RaiseClock(pAd, &x);
RTMP_IO_READ32(pAd, E2PROM_CSR, &x);
-
+#ifdef RT30xx
+ LowerClock(pAd, &x); //prevent read failed
+#endif
x &= ~(EEDI);
if(x & EEDO)
data |= 1;
+#ifndef RT30xx
LowerClock(pAd, &x);
+#endif
}
return data;
@@ -181,6 +185,15 @@ USHORT RTMP_EEPROM_READ16(
UINT32 x;
USHORT data;
+#ifdef RT30xx
+ if (pAd->NicConfig2.field.AntDiversity)
+ {
+ pAd->EepromAccess = TRUE;
+ }
+//2008/09/11:KH add to support efuse<--
+//2008/09/11:KH add to support efuse-->
+{
+#endif
Offset /= 2;
// reset bits and set EECS
RTMP_IO_READ32(pAd, E2PROM_CSR, &x);
@@ -188,9 +201,17 @@ USHORT RTMP_EEPROM_READ16(
x |= EECS;
RTMP_IO_WRITE32(pAd, E2PROM_CSR, x);
+#ifdef RT30xx
+ // patch can not access e-Fuse issue
+ if (!IS_RT3090(pAd))
+ {
+#endif
// kick a pulse
RaiseClock(pAd, &x);
LowerClock(pAd, &x);
+#ifdef RT30xx
+ }
+#endif
// output the read_opcode and register number in that order
ShiftOutBits(pAd, EEPROM_READ_OPCODE, 3);
@@ -201,6 +222,17 @@ USHORT RTMP_EEPROM_READ16(
EEpromCleanup(pAd);
+#ifdef RT30xx
+ // Antenna and EEPROM access are both using EESK pin,
+ // Therefor we should avoid accessing EESK at the same time
+ // Then restore antenna after EEPROM access
+ if ((pAd->NicConfig2.field.AntDiversity) || (pAd->RfIcType == RFIC_3020))
+ {
+ pAd->EepromAccess = FALSE;
+ AsicSetRxAnt(pAd, pAd->RxAnt.Pair1PrimaryRxAnt);
+ }
+}
+#endif
return data;
} //ReadEEprom
@@ -211,6 +243,15 @@ VOID RTMP_EEPROM_WRITE16(
{
UINT32 x;
+#ifdef RT30xx
+ if (pAd->NicConfig2.field.AntDiversity)
+ {
+ pAd->EepromAccess = TRUE;
+ }
+ //2008/09/11:KH add to support efuse<--
+//2008/09/11:KH add to support efuse-->
+ {
+#endif
Offset /= 2;
EWEN(pAd);
@@ -221,9 +262,17 @@ VOID RTMP_EEPROM_WRITE16(
x |= EECS;
RTMP_IO_WRITE32(pAd, E2PROM_CSR, x);
+#ifdef RT30xx
+ // patch can not access e-Fuse issue
+ if (!IS_RT3090(pAd))
+ {
+#endif
// kick a pulse
RaiseClock(pAd, &x);
LowerClock(pAd, &x);
+#ifdef RT30xx
+ }
+#endif
// output the read_opcode ,register number and data in that order
ShiftOutBits(pAd, EEPROM_WRITE_OPCODE, 3);
@@ -240,5 +289,1222 @@ VOID RTMP_EEPROM_WRITE16(
EWDS(pAd);
EEpromCleanup(pAd);
+
+#ifdef RT30xx
+ // Antenna and EEPROM access are both using EESK pin,
+ // Therefor we should avoid accessing EESK at the same time
+ // Then restore antenna after EEPROM access
+ if ((pAd->NicConfig2.field.AntDiversity) || (pAd->RfIcType == RFIC_3020))
+ {
+ pAd->EepromAccess = FALSE;
+ AsicSetRxAnt(pAd, pAd->RxAnt.Pair1PrimaryRxAnt);
+ }
+}
+#endif
+}
+
+//2008/09/11:KH add to support efuse<--
+#ifdef RT30xx
+/*
+ ========================================================================
+
+ Routine Description:
+
+ Arguments:
+
+ Return Value:
+
+ IRQL =
+
+ Note:
+
+ ========================================================================
+*/
+UCHAR eFuseReadRegisters(
+ IN PRTMP_ADAPTER pAd,
+ IN USHORT Offset,
+ IN USHORT Length,
+ OUT USHORT* pData)
+{
+ EFUSE_CTRL_STRUC eFuseCtrlStruc;
+ int i;
+ USHORT efuseDataOffset;
+ UINT32 data;
+
+ RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
+
+ //Step0. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment.
+ //Use the eeprom logical address and covert to address to block number
+ eFuseCtrlStruc.field.EFSROM_AIN = Offset & 0xfff0;
+
+ //Step1. Write EFSROM_MODE (0x580, bit7:bit6) to 0.
+ eFuseCtrlStruc.field.EFSROM_MODE = 0;
+
+ //Step2. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical read procedure.
+ eFuseCtrlStruc.field.EFSROM_KICK = 1;
+
+ NdisMoveMemory(&data, &eFuseCtrlStruc, 4);
+ RTMP_IO_WRITE32(pAd, EFUSE_CTRL, data);
+
+ //Step3. Polling EFSROM_KICK(0x580, bit30) until it become 0 again.
+ i = 0;
+ while(i < 100)
+ {
+ //rtmp.HwMemoryReadDword(EFUSE_CTRL, (DWORD *) &eFuseCtrlStruc, 4);
+ RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
+ if(eFuseCtrlStruc.field.EFSROM_KICK == 0)
+ {
+ break;
+ }
+ RTMPusecDelay(2);
+ i++;
+ }
+
+ //if EFSROM_AOUT is not found in physical address, write 0xffff
+ if (eFuseCtrlStruc.field.EFSROM_AOUT == 0x3f)
+ {
+ for(i=0; i<Length/2; i++)
+ *(pData+2*i) = 0xffff;
+ }
+ else
+ {
+ //Step4. Read 16-byte of data from EFUSE_DATA0-3 (0x590-0x59C)
+ efuseDataOffset = EFUSE_DATA3 - (Offset & 0xC) ;
+ //data hold 4 bytes data.
+ //In RTMP_IO_READ32 will automatically execute 32-bytes swapping
+ RTMP_IO_READ32(pAd, efuseDataOffset, &data);
+ //Decide the upper 2 bytes or the bottom 2 bytes.
+ // Little-endian S | S Big-endian
+ // addr 3 2 1 0 | 0 1 2 3
+ // Ori-V D C B A | A B C D
+ //After swapping
+ // D C B A | D C B A
+ //Return 2-bytes
+ //The return byte statrs from S. Therefore, the little-endian will return BA, the Big-endian will return DC.
+ //For returning the bottom 2 bytes, the Big-endian should shift right 2-bytes.
+ data = data >> (8*(Offset & 0x3));
+
+ NdisMoveMemory(pData, &data, Length);
+ }
+
+ return (UCHAR) eFuseCtrlStruc.field.EFSROM_AOUT;
+
+}
+
+/*
+ ========================================================================
+
+ Routine Description:
+
+ Arguments:
+
+ Return Value:
+
+ IRQL =
+
+ Note:
+
+ ========================================================================
+*/
+VOID eFusePhysicalReadRegisters(
+ IN PRTMP_ADAPTER pAd,
+ IN USHORT Offset,
+ IN USHORT Length,
+ OUT USHORT* pData)
+{
+ EFUSE_CTRL_STRUC eFuseCtrlStruc;
+ int i;
+ USHORT efuseDataOffset;
+ UINT32 data;
+
+ RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
+
+ //Step0. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment.
+ eFuseCtrlStruc.field.EFSROM_AIN = Offset & 0xfff0;
+
+ //Step1. Write EFSROM_MODE (0x580, bit7:bit6) to 1.
+ //Read in physical view
+ eFuseCtrlStruc.field.EFSROM_MODE = 1;
+
+ //Step2. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical read procedure.
+ eFuseCtrlStruc.field.EFSROM_KICK = 1;
+
+ NdisMoveMemory(&data, &eFuseCtrlStruc, 4);
+ RTMP_IO_WRITE32(pAd, EFUSE_CTRL, data);
+
+ //Step3. Polling EFSROM_KICK(0x580, bit30) until it become 0 again.
+ i = 0;
+ while(i < 100)
+ {
+ RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
+ if(eFuseCtrlStruc.field.EFSROM_KICK == 0)
+ break;
+ RTMPusecDelay(2);
+ i++;
+ }
+
+ //Step4. Read 16-byte of data from EFUSE_DATA0-3 (0x59C-0x590)
+ //Because the size of each EFUSE_DATA is 4 Bytes, the size of address of each is 2 bits.
+ //The previous 2 bits is the EFUSE_DATA number, the last 2 bits is used to decide which bytes
+ //Decide which EFUSE_DATA to read
+ //590:F E D C
+ //594:B A 9 8
+ //598:7 6 5 4
+ //59C:3 2 1 0
+ efuseDataOffset = EFUSE_DATA3 - (Offset & 0xC) ;
+
+ RTMP_IO_READ32(pAd, efuseDataOffset, &data);
+
+ data = data >> (8*(Offset & 0x3));
+
+ NdisMoveMemory(pData, &data, Length);
+
+}
+
+/*
+ ========================================================================
+
+ Routine Description:
+
+ Arguments:
+
+ Return Value:
+
+ IRQL =
+
+ Note:
+
+ ========================================================================
+*/
+VOID eFuseReadPhysical(
+ IN PRTMP_ADAPTER pAd,
+ IN PUSHORT lpInBuffer,
+ IN ULONG nInBufferSize,
+ OUT PUSHORT lpOutBuffer,
+ IN ULONG nOutBufferSize
+)
+{
+ USHORT* pInBuf = (USHORT*)lpInBuffer;
+ USHORT* pOutBuf = (USHORT*)lpOutBuffer;
+
+ USHORT Offset = pInBuf[0]; //addr
+ USHORT Length = pInBuf[1]; //length
+ int i;
+
+ for(i=0; i<Length; i+=2)
+ {
+ eFusePhysicalReadRegisters(pAd,Offset+i, 2, &pOutBuf[i/2]);
+ }
+}
+
+/*
+ ========================================================================
+
+ Routine Description:
+
+ Arguments:
+
+ Return Value:
+
+ IRQL =
+
+ Note:
+
+ ========================================================================
+*/
+NTSTATUS eFuseRead(
+ IN PRTMP_ADAPTER pAd,
+ IN USHORT Offset,
+ OUT PUCHAR pData,
+ IN USHORT Length)
+{
+ USHORT* pOutBuf = (USHORT*)pData;
+ NTSTATUS Status = STATUS_SUCCESS;
+ UCHAR EFSROM_AOUT;
+ int i;
+
+ for(i=0; i<Length; i+=2)
+ {
+ EFSROM_AOUT = eFuseReadRegisters(pAd, Offset+i, 2, &pOutBuf[i/2]);
+ }
+ return Status;
+}
+
+/*
+ ========================================================================
+
+ Routine Description:
+
+ Arguments:
+
+ Return Value:
+
+ IRQL =
+
+ Note:
+
+ ========================================================================
+*/
+VOID eFusePhysicalWriteRegisters(
+ IN PRTMP_ADAPTER pAd,
+ IN USHORT Offset,
+ IN USHORT Length,
+ OUT USHORT* pData)
+{
+ EFUSE_CTRL_STRUC eFuseCtrlStruc;
+ int i;
+ USHORT efuseDataOffset;
+ UINT32 data, eFuseDataBuffer[4];
+
+ //Step0. Write 16-byte of data to EFUSE_DATA0-3 (0x590-0x59C), where EFUSE_DATA0 is the LSB DW, EFUSE_DATA3 is the MSB DW.
+
+ /////////////////////////////////////////////////////////////////
+ //read current values of 16-byte block
+ RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
+
+ //Step0. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment.
+ eFuseCtrlStruc.field.EFSROM_AIN = Offset & 0xfff0;
+
+ //Step1. Write EFSROM_MODE (0x580, bit7:bit6) to 1.
+ eFuseCtrlStruc.field.EFSROM_MODE = 1;
+
+ //Step2. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical read procedure.
+ eFuseCtrlStruc.field.EFSROM_KICK = 1;
+
+ NdisMoveMemory(&data, &eFuseCtrlStruc, 4);
+ RTMP_IO_WRITE32(pAd, EFUSE_CTRL, data);
+
+ //Step3. Polling EFSROM_KICK(0x580, bit30) until it become 0 again.
+ i = 0;
+ while(i < 100)
+ {
+ RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
+
+ if(eFuseCtrlStruc.field.EFSROM_KICK == 0)
+ break;
+ RTMPusecDelay(2);
+ i++;
+ }
+
+ //Step4. Read 16-byte of data from EFUSE_DATA0-3 (0x59C-0x590)
+ efuseDataOffset = EFUSE_DATA3;
+ for(i=0; i< 4; i++)
+ {
+ RTMP_IO_READ32(pAd, efuseDataOffset, (PUINT32) &eFuseDataBuffer[i]);
+ efuseDataOffset -= 4;
+ }
+
+ //Update the value, the offset is multiple of 2, length is 2
+ efuseDataOffset = (Offset & 0xc) >> 2;
+ data = pData[0] & 0xffff;
+ //The offset should be 0x***10 or 0x***00
+ if((Offset % 4) != 0)
+ {
+ eFuseDataBuffer[efuseDataOffset] = (eFuseDataBuffer[efuseDataOffset] & 0xffff) | (data << 16);
+ }
+ else
+ {
+ eFuseDataBuffer[efuseDataOffset] = (eFuseDataBuffer[efuseDataOffset] & 0xffff0000) | data;
+ }
+
+ efuseDataOffset = EFUSE_DATA3;
+ for(i=0; i< 4; i++)
+ {
+ RTMP_IO_WRITE32(pAd, efuseDataOffset, eFuseDataBuffer[i]);
+ efuseDataOffset -= 4;
+ }
+ /////////////////////////////////////////////////////////////////
+
+ //Step1. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment.
+ eFuseCtrlStruc.field.EFSROM_AIN = Offset & 0xfff0;
+
+ //Step2. Write EFSROM_MODE (0x580, bit7:bit6) to 3.
+ eFuseCtrlStruc.field.EFSROM_MODE = 3;
+
+ //Step3. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical write procedure.
+ eFuseCtrlStruc.field.EFSROM_KICK = 1;
+
+ NdisMoveMemory(&data, &eFuseCtrlStruc, 4);
+ RTMP_IO_WRITE32(pAd, EFUSE_CTRL, data);
+
+ //Step4. Polling EFSROM_KICK(0x580, bit30) until it become 0 again. It��s done.
+ i = 0;
+ while(i < 100)
+ {
+ RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
+
+ if(eFuseCtrlStruc.field.EFSROM_KICK == 0)
+ break;
+
+ RTMPusecDelay(2);
+ i++;
+ }
+}
+
+/*
+ ========================================================================
+
+ Routine Description:
+
+ Arguments:
+
+ Return Value:
+
+ IRQL =
+
+ Note:
+
+ ========================================================================
+*/
+NTSTATUS eFuseWriteRegisters(
+ IN PRTMP_ADAPTER pAd,
+ IN USHORT Offset,
+ IN USHORT Length,
+ IN USHORT* pData)
+{
+ USHORT i;
+ USHORT eFuseData;
+ USHORT LogicalAddress, BlkNum = 0xffff;
+ UCHAR EFSROM_AOUT;
+
+ USHORT addr,tmpaddr, InBuf[3], tmpOffset;
+ USHORT buffer[8];
+ BOOLEAN bWriteSuccess = TRUE;
+
+ DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters Offset=%x, pData=%x\n", Offset, *pData));
+
+ //Step 0. find the entry in the mapping table
+ //The address of EEPROM is 2-bytes alignment.
+ //The last bit is used for alignment, so it must be 0.
+ tmpOffset = Offset & 0xfffe;
+ EFSROM_AOUT = eFuseReadRegisters(pAd, tmpOffset, 2, &eFuseData);
+
+ if( EFSROM_AOUT == 0x3f)
+ { //find available logical address pointer
+ //the logical address does not exist, find an empty one
+ //from the first address of block 45=16*45=0x2d0 to the last address of block 47
+ //==>48*16-3(reserved)=2FC
+ for (i=EFUSE_USAGE_MAP_START; i<=EFUSE_USAGE_MAP_END; i+=2)
+ {
+ //Retrive the logical block nubmer form each logical address pointer
+ //It will access two logical address pointer each time.
+ eFusePhysicalReadRegisters(pAd, i, 2, &LogicalAddress);
+ if( (LogicalAddress & 0xff) == 0)
+ {//Not used logical address pointer
+ BlkNum = i-EFUSE_USAGE_MAP_START;
+ break;
+ }
+ else if(( (LogicalAddress >> 8) & 0xff) == 0)
+ {//Not used logical address pointer
+ if (i != EFUSE_USAGE_MAP_END)
+ {
+ BlkNum = i-EFUSE_USAGE_MAP_START+1;
+ }
+ break;
+ }
+ }
+ }
+ else
+ {
+ BlkNum = EFSROM_AOUT;
+ }
+
+ DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters BlkNum = %d \n", BlkNum));
+
+ if(BlkNum == 0xffff)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters: out of free E-fuse space!!!\n"));
+ return FALSE;
+ }
+
+ //Step 1. Save data of this block which is pointed by the avaible logical address pointer
+ // read and save the original block data
+ for(i =0; i<8; i++)
+ {
+ addr = BlkNum * 0x10 ;
+
+ InBuf[0] = addr+2*i;
+ InBuf[1] = 2;
+ InBuf[2] = 0x0;
+
+ eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2);
+
+ buffer[i] = InBuf[2];
+ }
+
+ //Step 2. Update the data in buffer, and write the data to Efuse
+ buffer[ (Offset >> 1) % 8] = pData[0];
+
+ do
+ {
+ //Step 3. Write the data to Efuse
+ if(!bWriteSuccess)
+ {
+ for(i =0; i<8; i++)
+ {
+ addr = BlkNum * 0x10 ;
+
+ InBuf[0] = addr+2*i;
+ InBuf[1] = 2;
+ InBuf[2] = buffer[i];
+
+ eFuseWritePhysical(pAd, &InBuf[0], 6, NULL, 2);
+ }
+ }
+ else
+ {
+ addr = BlkNum * 0x10 ;
+
+ InBuf[0] = addr+(Offset % 16);
+ InBuf[1] = 2;
+ InBuf[2] = pData[0];
+
+ eFuseWritePhysical(pAd, &InBuf[0], 6, NULL, 2);
+ }
+
+ //Step 4. Write mapping table
+ addr = EFUSE_USAGE_MAP_START+BlkNum;
+
+ tmpaddr = addr;
+
+ if(addr % 2 != 0)
+ addr = addr -1;
+ InBuf[0] = addr;
+ InBuf[1] = 2;
+
+ //convert the address from 10 to 8 bit ( bit7, 6 = parity and bit5 ~ 0 = bit9~4), and write to logical map entry
+ tmpOffset = Offset;
+ tmpOffset >>= 4;
+ tmpOffset |= ((~((tmpOffset & 0x01) ^ ( tmpOffset >> 1 & 0x01) ^ (tmpOffset >> 2 & 0x01) ^ (tmpOffset >> 3 & 0x01))) << 6) & 0x40;
+ tmpOffset |= ((~( (tmpOffset >> 2 & 0x01) ^ (tmpOffset >> 3 & 0x01) ^ (tmpOffset >> 4 & 0x01) ^ ( tmpOffset >> 5 & 0x01))) << 7) & 0x80;
+
+ // write the logical address
+ if(tmpaddr%2 != 0)
+ InBuf[2] = tmpOffset<<8;
+ else
+ InBuf[2] = tmpOffset;
+
+ eFuseWritePhysical(pAd,&InBuf[0], 6, NULL, 0);
+
+ //Step 5. Compare data if not the same, invalidate the mapping entry, then re-write the data until E-fuse is exhausted
+ bWriteSuccess = TRUE;
+ for(i =0; i<8; i++)
+ {
+ addr = BlkNum * 0x10 ;
+
+ InBuf[0] = addr+2*i;
+ InBuf[1] = 2;
+ InBuf[2] = 0x0;
+
+ eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2);
+
+ if(buffer[i] != InBuf[2])
+ {
+ bWriteSuccess = FALSE;
+ break;
+ }
+ }
+
+ //Step 6. invlidate mapping entry and find a free mapping entry if not succeed
+ if (!bWriteSuccess)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("Not bWriteSuccess BlkNum = %d\n", BlkNum));
+
+ // the offset of current mapping entry
+ addr = EFUSE_USAGE_MAP_START+BlkNum;
+
+ //find a new mapping entry
+ BlkNum = 0xffff;
+ for (i=EFUSE_USAGE_MAP_START; i<=EFUSE_USAGE_MAP_END; i+=2)
+ {
+ eFusePhysicalReadRegisters(pAd, i, 2, &LogicalAddress);
+ if( (LogicalAddress & 0xff) == 0)
+ {
+ BlkNum = i-EFUSE_USAGE_MAP_START;
+ break;
+ }
+ else if(( (LogicalAddress >> 8) & 0xff) == 0)
+ {
+ if (i != EFUSE_USAGE_MAP_END)
+ {
+ BlkNum = i+1-EFUSE_USAGE_MAP_START;
+ }
+ break;
+ }
+ }
+ DBGPRINT(RT_DEBUG_TRACE, ("Not bWriteSuccess new BlkNum = %d\n", BlkNum));
+ if(BlkNum == 0xffff)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters: out of free E-fuse space!!!\n"));
+ return FALSE;
+ }
+
+ //invalidate the original mapping entry if new entry is not found
+ tmpaddr = addr;
+
+ if(addr % 2 != 0)
+ addr = addr -1;
+ InBuf[0] = addr;
+ InBuf[1] = 2;
+
+ eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2);
+
+ // write the logical address
+ if(tmpaddr%2 != 0)
+ {
+ // Invalidate the high byte
+ for (i=8; i<15; i++)
+ {
+ if( ( (InBuf[2] >> i) & 0x01) == 0)
+ {
+ InBuf[2] |= (0x1 <<i);
+ break;
+ }
+ }
+ }
+ else
+ {
+ // invalidate the low byte
+ for (i=0; i<8; i++)
+ {
+ if( ( (InBuf[2] >> i) & 0x01) == 0)
+ {
+ InBuf[2] |= (0x1 <<i);
+ break;
+ }
+ }
+ }
+ eFuseWritePhysical(pAd, &InBuf[0], 6, NULL, 0);
+ }
+ }
+ while(!bWriteSuccess);
+
+ return TRUE;
+}
+
+/*
+ ========================================================================
+
+ Routine Description:
+
+ Arguments:
+
+ Return Value:
+
+ IRQL =
+
+ Note:
+
+ ========================================================================
+*/
+VOID eFuseWritePhysical(
+ IN PRTMP_ADAPTER pAd,
+ PUSHORT lpInBuffer,
+ ULONG nInBufferSize,
+ PUCHAR lpOutBuffer,
+ ULONG nOutBufferSize
+)
+{
+ USHORT* pInBuf = (USHORT*)lpInBuffer;
+ int i;
+ //USHORT* pOutBuf = (USHORT*)ioBuffer;
+
+ USHORT Offset = pInBuf[0]; //addr
+ USHORT Length = pInBuf[1]; //length
+ USHORT* pValueX = &pInBuf[2]; //value ...
+ // Little-endian S | S Big-endian
+ // addr 3 2 1 0 | 0 1 2 3
+ // Ori-V D C B A | A B C D
+ //After swapping
+ // D C B A | D C B A
+ //Both the little and big-endian use the same sequence to write data.
+ //Therefore, we only need swap data when read the data.
+ for(i=0; i<Length; i+=2)
+ {
+ eFusePhysicalWriteRegisters(pAd, Offset+i, 2, &pValueX[i/2]);
+ }
+}
+
+
+/*
+ ========================================================================
+
+ Routine Description:
+
+ Arguments:
+
+ Return Value:
+
+ IRQL =
+
+ Note:
+
+ ========================================================================
+*/
+NTSTATUS eFuseWrite(
+ IN PRTMP_ADAPTER pAd,
+ IN USHORT Offset,
+ IN PUCHAR pData,
+ IN USHORT length)
+{
+ int i;
+
+ USHORT* pValueX = (PUSHORT) pData; //value ...
+ //The input value=3070 will be stored as following
+ // Little-endian S | S Big-endian
+ // addr 1 0 | 0 1
+ // Ori-V 30 70 | 30 70
+ //After swapping
+ // 30 70 | 70 30
+ //Casting
+ // 3070 | 7030 (x)
+ //The swapping should be removed for big-endian
+ for(i=0; i<length; i+=2)
+ {
+ eFuseWriteRegisters(pAd, Offset+i, 2, &pValueX[i/2]);
+ }
+
+ return TRUE;
+}
+
+/*
+ ========================================================================
+
+ Routine Description:
+
+ Arguments:
+
+ Return Value:
+
+ IRQL =
+
+ Note:
+
+ ========================================================================
+*/
+INT set_eFuseGetFreeBlockCount_Proc(
+ IN PRTMP_ADAPTER pAd,
+ IN PUCHAR arg)
+{
+ USHORT i;
+ USHORT LogicalAddress;
+ USHORT efusefreenum=0;
+ if(!pAd->bUseEfuse)
+ return FALSE;
+ for (i = EFUSE_USAGE_MAP_START; i <= EFUSE_USAGE_MAP_END; i+=2)
+ {
+ eFusePhysicalReadRegisters(pAd, i, 2, &LogicalAddress);
+ if( (LogicalAddress & 0xff) == 0)
+ {
+ efusefreenum= (UCHAR) (EFUSE_USAGE_MAP_END-i+1);
+ break;
+ }
+ else if(( (LogicalAddress >> 8) & 0xff) == 0)
+ {
+ efusefreenum = (UCHAR) (EFUSE_USAGE_MAP_END-i);
+ break;
+ }
+
+ if(i == EFUSE_USAGE_MAP_END)
+ efusefreenum = 0;
+ }
+ printk("efuseFreeNumber is %d\n",efusefreenum);
+ return TRUE;
+}
+INT set_eFusedump_Proc(
+ IN PRTMP_ADAPTER pAd,
+ IN PUCHAR arg)
+{
+USHORT InBuf[3];
+ INT i=0;
+ if(!pAd->bUseEfuse)
+ return FALSE;
+ for(i =0; i<EFUSE_USAGE_MAP_END/2; i++)
+ {
+ InBuf[0] = 2*i;
+ InBuf[1] = 2;
+ InBuf[2] = 0x0;
+
+ eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2);
+ if(i%4==0)
+ printk("\nBlock %x:",i/8);
+ printk("%04x ",InBuf[2]);
+ }
+ return TRUE;
+}
+INT set_eFuseLoadFromBin_Proc(
+ IN PRTMP_ADAPTER pAd,
+ IN PUCHAR arg)
+{
+ CHAR *src;
+ struct file *srcf;
+ INT retval, orgfsuid, orgfsgid;
+ mm_segment_t orgfs;
+ UCHAR *buffer;
+ UCHAR BinFileSize=0;
+ INT i = 0,j=0,k=1;
+ USHORT *PDATA;
+ USHORT DATA;
+ BinFileSize=strlen("RT30xxEEPROM.bin");
+ src = kmalloc(128, MEM_ALLOC_FLAG);
+ NdisZeroMemory(src, 128);
+
+ if(strlen(arg)>0)
+ {
+
+ NdisMoveMemory(src, arg, strlen(arg));
+ }
+
+ else
+ {
+
+ NdisMoveMemory(src, "RT30xxEEPROM.bin", BinFileSize);
+ }
+
+ DBGPRINT(RT_DEBUG_TRACE, ("FileName=%s\n",src));
+ buffer = kmalloc(MAX_EEPROM_BIN_FILE_SIZE, MEM_ALLOC_FLAG);
+
+ if(buffer == NULL)
+ {
+ kfree(src);
+ return FALSE;
+}
+ PDATA=kmalloc(sizeof(USHORT)*8,MEM_ALLOC_FLAG);
+
+ if(PDATA==NULL)
+ {
+ kfree(src);
+
+ kfree(buffer);
+ return FALSE;
+ }
+ /* Don't change to uid 0, let the file be opened as the "normal" user */
+#if 0
+ orgfsuid = current->fsuid;
+ orgfsgid = current->fsgid;
+ current->fsuid=current->fsgid = 0;
+#endif
+ orgfs = get_fs();
+ set_fs(KERNEL_DS);
+
+ if (src && *src)
+ {
+ srcf = filp_open(src, O_RDONLY, 0);
+ if (IS_ERR(srcf))
+ {
+ DBGPRINT(RT_DEBUG_ERROR, ("--> Error %ld opening %s\n", -PTR_ERR(srcf),src));
+ return FALSE;
+ }
+ else
+ {
+ // The object must have a read method
+ if (srcf->f_op && srcf->f_op->read)
+ {
+ memset(buffer, 0x00, MAX_EEPROM_BIN_FILE_SIZE);
+ while(srcf->f_op->read(srcf, &buffer[i], 1, &srcf->f_pos)==1)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("%02X ",buffer[i]));
+ if((i+1)%8==0)
+ DBGPRINT(RT_DEBUG_TRACE, ("\n"));
+ i++;
+ if(i>=MAX_EEPROM_BIN_FILE_SIZE)
+ {
+ DBGPRINT(RT_DEBUG_ERROR, ("--> Error %ld reading %s, The file is too large[1024]\n", -PTR_ERR(srcf),src));
+ kfree(PDATA);
+ kfree(buffer);
+ kfree(src);
+ return FALSE;
+ }
+ }
+ }
+ else
+ {
+ DBGPRINT(RT_DEBUG_ERROR, ("--> Error!! System doest not support read function\n"));
+ kfree(PDATA);
+ kfree(buffer);
+ kfree(src);
+ return FALSE;
+ }
+ }
+
+
+ }
+ else
+ {
+ DBGPRINT(RT_DEBUG_ERROR, ("--> Error src or srcf is null\n"));
+ kfree(PDATA);
+ kfree(buffer);
+ return FALSE;
+
+ }
+
+
+ retval=filp_close(srcf,NULL);
+
+ if (retval)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("--> Error %d closing %s\n", -retval, src));
+ }
+ set_fs(orgfs);
+#if 0
+ current->fsuid = orgfsuid;
+ current->fsgid = orgfsgid;
+#endif
+ for(j=0;j<i;j++)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("%02X ",buffer[j]));
+ if((j+1)%2==0)
+ PDATA[j/2%8]=((buffer[j]<<8)&0xff00)|(buffer[j-1]&0xff);
+ if(j%16==0)
+ {
+ k=buffer[j];
+ }
+ else
+ {
+ k&=buffer[j];
+ if((j+1)%16==0)
+ {
+
+ DBGPRINT(RT_DEBUG_TRACE, (" result=%02X,blk=%02x\n",k,j/16));
+
+ if(k!=0xff)
+ eFuseWriteRegistersFromBin(pAd,(USHORT)j-15, 16, PDATA);
+ else
+ {
+ if(eFuseReadRegisters(pAd,j, 2,(PUSHORT)&DATA)!=0x3f)
+ eFuseWriteRegistersFromBin(pAd,(USHORT)j-15, 16, PDATA);
+ }
+ /*
+ for(l=0;l<8;l++)
+ printk("%04x ",PDATA[l]);
+ printk("\n");
+ */
+ NdisZeroMemory(PDATA,16);
+
+
+ }
+ }
+
+
+ }
+
+
+ kfree(PDATA);
+ kfree(buffer);
+ kfree(src);
+ return TRUE;
+}
+NTSTATUS eFuseWriteRegistersFromBin(
+ IN PRTMP_ADAPTER pAd,
+ IN USHORT Offset,
+ IN USHORT Length,
+ IN USHORT* pData)
+{
+ USHORT i;
+ USHORT eFuseData;
+ USHORT LogicalAddress, BlkNum = 0xffff;
+ UCHAR EFSROM_AOUT,Loop=0;
+ EFUSE_CTRL_STRUC eFuseCtrlStruc;
+ USHORT efuseDataOffset;
+ UINT32 data,tempbuffer;
+ USHORT addr,tmpaddr, InBuf[3], tmpOffset;
+ UINT32 buffer[4];
+ BOOLEAN bWriteSuccess = TRUE;
+ BOOLEAN bNotWrite=TRUE;
+ BOOLEAN bAllocateNewBlk=TRUE;
+
+ DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegistersFromBin Offset=%x, pData=%04x:%04x:%04x:%04x\n", Offset, *pData,*(pData+1),*(pData+2),*(pData+3)));
+
+ do
+ {
+ //Step 0. find the entry in the mapping table
+ //The address of EEPROM is 2-bytes alignment.
+ //The last bit is used for alignment, so it must be 0.
+ Loop++;
+ tmpOffset = Offset & 0xfffe;
+ EFSROM_AOUT = eFuseReadRegisters(pAd, tmpOffset, 2, &eFuseData);
+
+ if( EFSROM_AOUT == 0x3f)
+ { //find available logical address pointer
+ //the logical address does not exist, find an empty one
+ //from the first address of block 45=16*45=0x2d0 to the last address of block 47
+ //==>48*16-3(reserved)=2FC
+ bAllocateNewBlk=TRUE;
+ for (i=EFUSE_USAGE_MAP_START; i<=EFUSE_USAGE_MAP_END; i+=2)
+ {
+ //Retrive the logical block nubmer form each logical address pointer
+ //It will access two logical address pointer each time.
+ eFusePhysicalReadRegisters(pAd, i, 2, &LogicalAddress);
+ if( (LogicalAddress & 0xff) == 0)
+ {//Not used logical address pointer
+ BlkNum = i-EFUSE_USAGE_MAP_START;
+ break;
+ }
+ else if(( (LogicalAddress >> 8) & 0xff) == 0)
+ {//Not used logical address pointer
+ if (i != EFUSE_USAGE_MAP_END)
+ {
+ BlkNum = i-EFUSE_USAGE_MAP_START+1;
+ }
+ break;
+ }
+ }
+ }
+ else
+ {
+ bAllocateNewBlk=FALSE;
+ BlkNum = EFSROM_AOUT;
+ }
+
+ DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters BlkNum = %d \n", BlkNum));
+
+ if(BlkNum == 0xffff)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters: out of free E-fuse space!!!\n"));
+ return FALSE;
+ }
+ //Step 1.1.0
+ //If the block is not existing in mapping table, create one
+ //and write down the 16-bytes data to the new block
+ if(bAllocateNewBlk)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("Allocate New Blk\n"));
+ efuseDataOffset = EFUSE_DATA3;
+ for(i=0; i< 4; i++)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("Allocate New Blk, Data%d=%04x%04x\n",3-i,pData[2*i+1],pData[2*i]));
+ tempbuffer=((pData[2*i+1]<<16)&0xffff0000)|pData[2*i];
+
+
+ RTMP_IO_WRITE32(pAd, efuseDataOffset,tempbuffer);
+ efuseDataOffset -= 4;
+
+ }
+ /////////////////////////////////////////////////////////////////
+
+ //Step1.1.1. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment.
+ eFuseCtrlStruc.field.EFSROM_AIN = BlkNum* 0x10 ;
+
+ //Step1.1.2. Write EFSROM_MODE (0x580, bit7:bit6) to 3.
+ eFuseCtrlStruc.field.EFSROM_MODE = 3;
+
+ //Step1.1.3. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical write procedure.
+ eFuseCtrlStruc.field.EFSROM_KICK = 1;
+
+ NdisMoveMemory(&data, &eFuseCtrlStruc, 4);
+
+ RTMP_IO_WRITE32(pAd, EFUSE_CTRL, data);
+
+ //Step1.1.4. Polling EFSROM_KICK(0x580, bit30) until it become 0 again. It��s done.
+ i = 0;
+ while(i < 100)
+ {
+ RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
+
+ if(eFuseCtrlStruc.field.EFSROM_KICK == 0)
+ break;
+
+ RTMPusecDelay(2);
+ i++;
+ }
+
+ }
+ else
+ { //Step1.2.
+ //If the same logical number is existing, check if the writting data and the data
+ //saving in this block are the same.
+ /////////////////////////////////////////////////////////////////
+ //read current values of 16-byte block
+ RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
+
+ //Step1.2.0. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment.
+ eFuseCtrlStruc.field.EFSROM_AIN = Offset & 0xfff0;
+
+ //Step1.2.1. Write EFSROM_MODE (0x580, bit7:bit6) to 1.
+ eFuseCtrlStruc.field.EFSROM_MODE = 0;
+
+ //Step1.2.2. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical read procedure.
+ eFuseCtrlStruc.field.EFSROM_KICK = 1;
+
+ NdisMoveMemory(&data, &eFuseCtrlStruc, 4);
+ RTMP_IO_WRITE32(pAd, EFUSE_CTRL, data);
+
+ //Step1.2.3. Polling EFSROM_KICK(0x580, bit30) until it become 0 again.
+ i = 0;
+ while(i < 100)
+ {
+ RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
+
+ if(eFuseCtrlStruc.field.EFSROM_KICK == 0)
+ break;
+ RTMPusecDelay(2);
+ i++;
+ }
+
+ //Step1.2.4. Read 16-byte of data from EFUSE_DATA0-3 (0x59C-0x590)
+ efuseDataOffset = EFUSE_DATA3;
+ for(i=0; i< 4; i++)
+ {
+ RTMP_IO_READ32(pAd, efuseDataOffset, (PUINT32) &buffer[i]);
+ efuseDataOffset -= 4;
+ }
+ //Step1.2.5. Check if the data of efuse and the writing data are the same.
+ for(i =0; i<4; i++)
+ {
+ tempbuffer=((pData[2*i+1]<<16)&0xffff0000)|pData[2*i];
+ DBGPRINT(RT_DEBUG_TRACE, ("buffer[%d]=%x,pData[%d]=%x,pData[%d]=%x,tempbuffer=%x\n",i,buffer[i],2*i,pData[2*i],2*i+1,pData[2*i+1],tempbuffer));
+
+ if(((buffer[i]&0xffff0000)==(pData[2*i+1]<<16))&&((buffer[i]&0xffff)==pData[2*i]))
+ bNotWrite&=TRUE;
+ else
+ {
+ bNotWrite&=FALSE;
+ break;
+ }
+ }
+ if(!bNotWrite)
+ {
+ printk("The data is not the same\n");
+
+ for(i =0; i<8; i++)
+ {
+ addr = BlkNum * 0x10 ;
+
+ InBuf[0] = addr+2*i;
+ InBuf[1] = 2;
+ InBuf[2] = pData[i];
+
+ eFuseWritePhysical(pAd, &InBuf[0], 6, NULL, 2);
+ }
+
+ }
+ else
+ return TRUE;
+ }
+
+
+
+ //Step 2. Write mapping table
+ addr = EFUSE_USAGE_MAP_START+BlkNum;
+
+ tmpaddr = addr;
+
+ if(addr % 2 != 0)
+ addr = addr -1;
+ InBuf[0] = addr;
+ InBuf[1] = 2;
+
+ //convert the address from 10 to 8 bit ( bit7, 6 = parity and bit5 ~ 0 = bit9~4), and write to logical map entry
+ tmpOffset = Offset;
+ tmpOffset >>= 4;
+ tmpOffset |= ((~((tmpOffset & 0x01) ^ ( tmpOffset >> 1 & 0x01) ^ (tmpOffset >> 2 & 0x01) ^ (tmpOffset >> 3 & 0x01))) << 6) & 0x40;
+ tmpOffset |= ((~( (tmpOffset >> 2 & 0x01) ^ (tmpOffset >> 3 & 0x01) ^ (tmpOffset >> 4 & 0x01) ^ ( tmpOffset >> 5 & 0x01))) << 7) & 0x80;
+
+ // write the logical address
+ if(tmpaddr%2 != 0)
+ InBuf[2] = tmpOffset<<8;
+ else
+ InBuf[2] = tmpOffset;
+
+ eFuseWritePhysical(pAd,&InBuf[0], 6, NULL, 0);
+
+ //Step 3. Compare data if not the same, invalidate the mapping entry, then re-write the data until E-fuse is exhausted
+ bWriteSuccess = TRUE;
+ for(i =0; i<8; i++)
+ {
+ addr = BlkNum * 0x10 ;
+
+ InBuf[0] = addr+2*i;
+ InBuf[1] = 2;
+ InBuf[2] = 0x0;
+
+ eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2);
+ DBGPRINT(RT_DEBUG_TRACE, ("addr=%x, buffer[i]=%x,InBuf[2]=%x\n",InBuf[0],pData[i],InBuf[2]));
+ if(pData[i] != InBuf[2])
+ {
+ bWriteSuccess = FALSE;
+ break;
+ }
+ }
+
+ //Step 4. invlidate mapping entry and find a free mapping entry if not succeed
+
+ if (!bWriteSuccess&&Loop<2)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegistersFromBin::Not bWriteSuccess BlkNum = %d\n", BlkNum));
+
+ // the offset of current mapping entry
+ addr = EFUSE_USAGE_MAP_START+BlkNum;
+
+ //find a new mapping entry
+ BlkNum = 0xffff;
+ for (i=EFUSE_USAGE_MAP_START; i<=EFUSE_USAGE_MAP_END; i+=2)
+ {
+ eFusePhysicalReadRegisters(pAd, i, 2, &LogicalAddress);
+ if( (LogicalAddress & 0xff) == 0)
+ {
+ BlkNum = i-EFUSE_USAGE_MAP_START;
+ break;
+ }
+ else if(( (LogicalAddress >> 8) & 0xff) == 0)
+ {
+ if (i != EFUSE_USAGE_MAP_END)
+ {
+ BlkNum = i+1-EFUSE_USAGE_MAP_START;
+ }
+ break;
+ }
+ }
+ DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegistersFromBin::Not bWriteSuccess new BlkNum = %d\n", BlkNum));
+ if(BlkNum == 0xffff)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegistersFromBin: out of free E-fuse space!!!\n"));
+ return FALSE;
+ }
+
+ //invalidate the original mapping entry if new entry is not found
+ tmpaddr = addr;
+
+ if(addr % 2 != 0)
+ addr = addr -1;
+ InBuf[0] = addr;
+ InBuf[1] = 2;
+
+ eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2);
+
+ // write the logical address
+ if(tmpaddr%2 != 0)
+ {
+ // Invalidate the high byte
+ for (i=8; i<15; i++)
+ {
+ if( ( (InBuf[2] >> i) & 0x01) == 0)
+ {
+ InBuf[2] |= (0x1 <<i);
+ break;
+ }
+ }
+ }
+ else
+ {
+ // invalidate the low byte
+ for (i=0; i<8; i++)
+ {
+ if( ( (InBuf[2] >> i) & 0x01) == 0)
+ {
+ InBuf[2] |= (0x1 <<i);
+ break;
+ }
+ }
+ }
+ eFuseWritePhysical(pAd, &InBuf[0], 6, NULL, 0);
+ }
+
+ }
+ while(!bWriteSuccess&&Loop<2);
+
+ return TRUE;
}
+#endif // RT30xx //
+//2008/09/11:KH add to support efuse-->