aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/ExpandMemCmp.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/ExpandMemCmp.cpp')
-rw-r--r--lib/CodeGen/ExpandMemCmp.cpp828
1 files changed, 828 insertions, 0 deletions
diff --git a/lib/CodeGen/ExpandMemCmp.cpp b/lib/CodeGen/ExpandMemCmp.cpp
new file mode 100644
index 00000000000..c5910c18d89
--- /dev/null
+++ b/lib/CodeGen/ExpandMemCmp.cpp
@@ -0,0 +1,828 @@
+//===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass tries to partially inline the fast path of well-known library
+// functions, such as using square-root instructions for cases where sqrt()
+// does not need to set errno.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "expandmemcmp"
+
+STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
+STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
+STATISTIC(NumMemCmpGreaterThanMax,
+ "Number of memcmp calls with size greater than max size");
+STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
+
+static cl::opt<unsigned> MemCmpNumLoadsPerBlock(
+ "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
+ cl::desc("The number of loads per basic block for inline expansion of "
+ "memcmp that is only being compared against zero."));
+
+namespace {
+
+
+// This class provides helper functions to expand a memcmp library call into an
+// inline expansion.
+class MemCmpExpansion {
+ struct ResultBlock {
+ BasicBlock *BB = nullptr;
+ PHINode *PhiSrc1 = nullptr;
+ PHINode *PhiSrc2 = nullptr;
+
+ ResultBlock() = default;
+ };
+
+ CallInst *const CI;
+ ResultBlock ResBlock;
+ const uint64_t Size;
+ unsigned MaxLoadSize;
+ uint64_t NumLoadsNonOneByte;
+ const uint64_t NumLoadsPerBlock;
+ std::vector<BasicBlock *> LoadCmpBlocks;
+ BasicBlock *EndBlock;
+ PHINode *PhiRes;
+ const bool IsUsedForZeroCmp;
+ const DataLayout &DL;
+ IRBuilder<> Builder;
+ // Represents the decomposition in blocks of the expansion. For example,
+ // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
+ // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {32, 1}.
+ // TODO(courbet): Involve the target more in this computation. On X86, 7
+ // bytes can be done more efficiently with two overlaping 4-byte loads than
+ // covering the interval with [{4, 0},{2, 4},{1, 6}}.
+ struct LoadEntry {
+ LoadEntry(unsigned LoadSize, uint64_t Offset)
+ : LoadSize(LoadSize), Offset(Offset) {
+ assert(Offset % LoadSize == 0 && "invalid load entry");
+ }
+
+ uint64_t getGEPIndex() const { return Offset / LoadSize; }
+
+ // The size of the load for this block, in bytes.
+ const unsigned LoadSize;
+ // The offset of this load WRT the base pointer, in bytes.
+ const uint64_t Offset;
+ };
+ SmallVector<LoadEntry, 8> LoadSequence;
+
+ void createLoadCmpBlocks();
+ void createResultBlock();
+ void setupResultBlockPHINodes();
+ void setupEndBlockPHINodes();
+ Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
+ void emitLoadCompareBlock(unsigned BlockIndex);
+ void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
+ unsigned &LoadIndex);
+ void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned GEPIndex);
+ void emitMemCmpResultBlock();
+ Value *getMemCmpExpansionZeroCase();
+ Value *getMemCmpEqZeroOneBlock();
+ Value *getMemCmpOneBlock();
+
+ public:
+ MemCmpExpansion(CallInst *CI, uint64_t Size,
+ const TargetTransformInfo::MemCmpExpansionOptions &Options,
+ unsigned MaxNumLoads, const bool IsUsedForZeroCmp,
+ unsigned NumLoadsPerBlock, const DataLayout &DL);
+
+ unsigned getNumBlocks();
+ uint64_t getNumLoads() const { return LoadSequence.size(); }
+
+ Value *getMemCmpExpansion();
+};
+
+// Initialize the basic block structure required for expansion of memcmp call
+// with given maximum load size and memcmp size parameter.
+// This structure includes:
+// 1. A list of load compare blocks - LoadCmpBlocks.
+// 2. An EndBlock, split from original instruction point, which is the block to
+// return from.
+// 3. ResultBlock, block to branch to for early exit when a
+// LoadCmpBlock finds a difference.
+MemCmpExpansion::MemCmpExpansion(
+ CallInst *const CI, uint64_t Size,
+ const TargetTransformInfo::MemCmpExpansionOptions &Options,
+ const unsigned MaxNumLoads, const bool IsUsedForZeroCmp,
+ const unsigned NumLoadsPerBlock, const DataLayout &TheDataLayout)
+ : CI(CI),
+ Size(Size),
+ MaxLoadSize(0),
+ NumLoadsNonOneByte(0),
+ NumLoadsPerBlock(NumLoadsPerBlock),
+ IsUsedForZeroCmp(IsUsedForZeroCmp),
+ DL(TheDataLayout),
+ Builder(CI) {
+ assert(Size > 0 && "zero blocks");
+ // Scale the max size down if the target can load more bytes than we need.
+ size_t LoadSizeIndex = 0;
+ while (LoadSizeIndex < Options.LoadSizes.size() &&
+ Options.LoadSizes[LoadSizeIndex] > Size) {
+ ++LoadSizeIndex;
+ }
+ this->MaxLoadSize = Options.LoadSizes[LoadSizeIndex];
+ // Compute the decomposition.
+ uint64_t CurSize = Size;
+ uint64_t Offset = 0;
+ while (CurSize && LoadSizeIndex < Options.LoadSizes.size()) {
+ const unsigned LoadSize = Options.LoadSizes[LoadSizeIndex];
+ assert(LoadSize > 0 && "zero load size");
+ const uint64_t NumLoadsForThisSize = CurSize / LoadSize;
+ if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
+ // Do not expand if the total number of loads is larger than what the
+ // target allows. Note that it's important that we exit before completing
+ // the expansion to avoid using a ton of memory to store the expansion for
+ // large sizes.
+ LoadSequence.clear();
+ return;
+ }
+ if (NumLoadsForThisSize > 0) {
+ for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
+ LoadSequence.push_back({LoadSize, Offset});
+ Offset += LoadSize;
+ }
+ if (LoadSize > 1) {
+ ++NumLoadsNonOneByte;
+ }
+ CurSize = CurSize % LoadSize;
+ }
+ ++LoadSizeIndex;
+ }
+ assert(LoadSequence.size() <= MaxNumLoads && "broken invariant");
+}
+
+unsigned MemCmpExpansion::getNumBlocks() {
+ if (IsUsedForZeroCmp)
+ return getNumLoads() / NumLoadsPerBlock +
+ (getNumLoads() % NumLoadsPerBlock != 0 ? 1 : 0);
+ return getNumLoads();
+}
+
+void MemCmpExpansion::createLoadCmpBlocks() {
+ for (unsigned i = 0; i < getNumBlocks(); i++) {
+ BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
+ EndBlock->getParent(), EndBlock);
+ LoadCmpBlocks.push_back(BB);
+ }
+}
+
+void MemCmpExpansion::createResultBlock() {
+ ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
+ EndBlock->getParent(), EndBlock);
+}
+
+// This function creates the IR instructions for loading and comparing 1 byte.
+// It loads 1 byte from each source of the memcmp parameters with the given
+// GEPIndex. It then subtracts the two loaded values and adds this result to the
+// final phi node for selecting the memcmp result.
+void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
+ unsigned GEPIndex) {
+ Value *Source1 = CI->getArgOperand(0);
+ Value *Source2 = CI->getArgOperand(1);
+
+ Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
+ Type *LoadSizeType = Type::getInt8Ty(CI->getContext());
+ // Cast source to LoadSizeType*.
+ if (Source1->getType() != LoadSizeType)
+ Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
+ if (Source2->getType() != LoadSizeType)
+ Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
+
+ // Get the base address using the GEPIndex.
+ if (GEPIndex != 0) {
+ Source1 = Builder.CreateGEP(LoadSizeType, Source1,
+ ConstantInt::get(LoadSizeType, GEPIndex));
+ Source2 = Builder.CreateGEP(LoadSizeType, Source2,
+ ConstantInt::get(LoadSizeType, GEPIndex));
+ }
+
+ Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
+ Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
+
+ LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext()));
+ LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext()));
+ Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2);
+
+ PhiRes->addIncoming(Diff, LoadCmpBlocks[BlockIndex]);
+
+ if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
+ // Early exit branch if difference found to EndBlock. Otherwise, continue to
+ // next LoadCmpBlock,
+ Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
+ ConstantInt::get(Diff->getType(), 0));
+ BranchInst *CmpBr =
+ BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
+ Builder.Insert(CmpBr);
+ } else {
+ // The last block has an unconditional branch to EndBlock.
+ BranchInst *CmpBr = BranchInst::Create(EndBlock);
+ Builder.Insert(CmpBr);
+ }
+}
+
+/// Generate an equality comparison for one or more pairs of loaded values.
+/// This is used in the case where the memcmp() call is compared equal or not
+/// equal to zero.
+Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
+ unsigned &LoadIndex) {
+ assert(LoadIndex < getNumLoads() &&
+ "getCompareLoadPairs() called with no remaining loads");
+ std::vector<Value *> XorList, OrList;
+ Value *Diff;
+
+ const unsigned NumLoads =
+ std::min(getNumLoads() - LoadIndex, NumLoadsPerBlock);
+
+ // For a single-block expansion, start inserting before the memcmp call.
+ if (LoadCmpBlocks.empty())
+ Builder.SetInsertPoint(CI);
+ else
+ Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
+
+ Value *Cmp = nullptr;
+ // If we have multiple loads per block, we need to generate a composite
+ // comparison using xor+or. The type for the combinations is the largest load
+ // type.
+ IntegerType *const MaxLoadType =
+ NumLoads == 1 ? nullptr
+ : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
+ for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
+ const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
+
+ IntegerType *LoadSizeType =
+ IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
+
+ Value *Source1 = CI->getArgOperand(0);
+ Value *Source2 = CI->getArgOperand(1);
+
+ // Cast source to LoadSizeType*.
+ if (Source1->getType() != LoadSizeType)
+ Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
+ if (Source2->getType() != LoadSizeType)
+ Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
+
+ // Get the base address using a GEP.
+ if (CurLoadEntry.Offset != 0) {
+ Source1 = Builder.CreateGEP(
+ LoadSizeType, Source1,
+ ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
+ Source2 = Builder.CreateGEP(
+ LoadSizeType, Source2,
+ ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
+ }
+
+ // Get a constant or load a value for each source address.
+ Value *LoadSrc1 = nullptr;
+ if (auto *Source1C = dyn_cast<Constant>(Source1))
+ LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL);
+ if (!LoadSrc1)
+ LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
+
+ Value *LoadSrc2 = nullptr;
+ if (auto *Source2C = dyn_cast<Constant>(Source2))
+ LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL);
+ if (!LoadSrc2)
+ LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
+
+ if (NumLoads != 1) {
+ if (LoadSizeType != MaxLoadType) {
+ LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
+ LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
+ }
+ // If we have multiple loads per block, we need to generate a composite
+ // comparison using xor+or.
+ Diff = Builder.CreateXor(LoadSrc1, LoadSrc2);
+ Diff = Builder.CreateZExt(Diff, MaxLoadType);
+ XorList.push_back(Diff);
+ } else {
+ // If there's only one load per block, we just compare the loaded values.
+ Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2);
+ }
+ }
+
+ auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
+ std::vector<Value *> OutList;
+ for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
+ Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
+ OutList.push_back(Or);
+ }
+ if (InList.size() % 2 != 0)
+ OutList.push_back(InList.back());
+ return OutList;
+ };
+
+ if (!Cmp) {
+ // Pairwise OR the XOR results.
+ OrList = pairWiseOr(XorList);
+
+ // Pairwise OR the OR results until one result left.
+ while (OrList.size() != 1) {
+ OrList = pairWiseOr(OrList);
+ }
+ Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
+ }
+
+ return Cmp;
+}
+
+void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
+ unsigned &LoadIndex) {
+ Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
+
+ BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
+ ? EndBlock
+ : LoadCmpBlocks[BlockIndex + 1];
+ // Early exit branch if difference found to ResultBlock. Otherwise,
+ // continue to next LoadCmpBlock or EndBlock.
+ BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
+ Builder.Insert(CmpBr);
+
+ // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
+ // since early exit to ResultBlock was not taken (no difference was found in
+ // any of the bytes).
+ if (BlockIndex == LoadCmpBlocks.size() - 1) {
+ Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
+ PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
+ }
+}
+
+// This function creates the IR intructions for loading and comparing using the
+// given LoadSize. It loads the number of bytes specified by LoadSize from each
+// source of the memcmp parameters. It then does a subtract to see if there was
+// a difference in the loaded values. If a difference is found, it branches
+// with an early exit to the ResultBlock for calculating which source was
+// larger. Otherwise, it falls through to the either the next LoadCmpBlock or
+// the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
+// a special case through emitLoadCompareByteBlock. The special handling can
+// simply subtract the loaded values and add it to the result phi node.
+void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
+ // There is one load per block in this case, BlockIndex == LoadIndex.
+ const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
+
+ if (CurLoadEntry.LoadSize == 1) {
+ MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex,
+ CurLoadEntry.getGEPIndex());
+ return;
+ }
+
+ Type *LoadSizeType =
+ IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
+ Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
+ assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
+
+ Value *Source1 = CI->getArgOperand(0);
+ Value *Source2 = CI->getArgOperand(1);
+
+ Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
+ // Cast source to LoadSizeType*.
+ if (Source1->getType() != LoadSizeType)
+ Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
+ if (Source2->getType() != LoadSizeType)
+ Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
+
+ // Get the base address using a GEP.
+ if (CurLoadEntry.Offset != 0) {
+ Source1 = Builder.CreateGEP(
+ LoadSizeType, Source1,
+ ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
+ Source2 = Builder.CreateGEP(
+ LoadSizeType, Source2,
+ ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
+ }
+
+ // Load LoadSizeType from the base address.
+ Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
+ Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
+
+ if (DL.isLittleEndian()) {
+ Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
+ Intrinsic::bswap, LoadSizeType);
+ LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
+ LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
+ }
+
+ if (LoadSizeType != MaxLoadType) {
+ LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
+ LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
+ }
+
+ // Add the loaded values to the phi nodes for calculating memcmp result only
+ // if result is not used in a zero equality.
+ if (!IsUsedForZeroCmp) {
+ ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[BlockIndex]);
+ ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[BlockIndex]);
+ }
+
+ Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2);
+ BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
+ ? EndBlock
+ : LoadCmpBlocks[BlockIndex + 1];
+ // Early exit branch if difference found to ResultBlock. Otherwise, continue
+ // to next LoadCmpBlock or EndBlock.
+ BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
+ Builder.Insert(CmpBr);
+
+ // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
+ // since early exit to ResultBlock was not taken (no difference was found in
+ // any of the bytes).
+ if (BlockIndex == LoadCmpBlocks.size() - 1) {
+ Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
+ PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
+ }
+}
+
+// This function populates the ResultBlock with a sequence to calculate the
+// memcmp result. It compares the two loaded source values and returns -1 if
+// src1 < src2 and 1 if src1 > src2.
+void MemCmpExpansion::emitMemCmpResultBlock() {
+ // Special case: if memcmp result is used in a zero equality, result does not
+ // need to be calculated and can simply return 1.
+ if (IsUsedForZeroCmp) {
+ BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
+ Builder.SetInsertPoint(ResBlock.BB, InsertPt);
+ Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
+ PhiRes->addIncoming(Res, ResBlock.BB);
+ BranchInst *NewBr = BranchInst::Create(EndBlock);
+ Builder.Insert(NewBr);
+ return;
+ }
+ BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
+ Builder.SetInsertPoint(ResBlock.BB, InsertPt);
+
+ Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
+ ResBlock.PhiSrc2);
+
+ Value *Res =
+ Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
+ ConstantInt::get(Builder.getInt32Ty(), 1));
+
+ BranchInst *NewBr = BranchInst::Create(EndBlock);
+ Builder.Insert(NewBr);
+ PhiRes->addIncoming(Res, ResBlock.BB);
+}
+
+void MemCmpExpansion::setupResultBlockPHINodes() {
+ Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
+ Builder.SetInsertPoint(ResBlock.BB);
+ // Note: this assumes one load per block.
+ ResBlock.PhiSrc1 =
+ Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
+ ResBlock.PhiSrc2 =
+ Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
+}
+
+void MemCmpExpansion::setupEndBlockPHINodes() {
+ Builder.SetInsertPoint(&EndBlock->front());
+ PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
+}
+
+Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
+ unsigned LoadIndex = 0;
+ // This loop populates each of the LoadCmpBlocks with the IR sequence to
+ // handle multiple loads per block.
+ for (unsigned I = 0; I < getNumBlocks(); ++I) {
+ emitLoadCompareBlockMultipleLoads(I, LoadIndex);
+ }
+
+ emitMemCmpResultBlock();
+ return PhiRes;
+}
+
+/// A memcmp expansion that compares equality with 0 and only has one block of
+/// load and compare can bypass the compare, branch, and phi IR that is required
+/// in the general case.
+Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
+ unsigned LoadIndex = 0;
+ Value *Cmp = getCompareLoadPairs(0, LoadIndex);
+ assert(LoadIndex == getNumLoads() && "some entries were not consumed");
+ return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
+}
+
+/// A memcmp expansion that only has one block of load and compare can bypass
+/// the compare, branch, and phi IR that is required in the general case.
+Value *MemCmpExpansion::getMemCmpOneBlock() {
+ assert(NumLoadsPerBlock == 1 && "Only handles one load pair per block");
+
+ Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
+ Value *Source1 = CI->getArgOperand(0);
+ Value *Source2 = CI->getArgOperand(1);
+
+ // Cast source to LoadSizeType*.
+ if (Source1->getType() != LoadSizeType)
+ Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
+ if (Source2->getType() != LoadSizeType)
+ Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
+
+ // Load LoadSizeType from the base address.
+ Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
+ Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
+
+ if (DL.isLittleEndian() && Size != 1) {
+ Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
+ Intrinsic::bswap, LoadSizeType);
+ LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
+ LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
+ }
+
+ if (Size < 4) {
+ // The i8 and i16 cases don't need compares. We zext the loaded values and
+ // subtract them to get the suitable negative, zero, or positive i32 result.
+ LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty());
+ LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty());
+ return Builder.CreateSub(LoadSrc1, LoadSrc2);
+ }
+
+ // The result of memcmp is negative, zero, or positive, so produce that by
+ // subtracting 2 extended compare bits: sub (ugt, ult).
+ // If a target prefers to use selects to get -1/0/1, they should be able
+ // to transform this later. The inverse transform (going from selects to math)
+ // may not be possible in the DAG because the selects got converted into
+ // branches before we got there.
+ Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2);
+ Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2);
+ Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
+ Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
+ return Builder.CreateSub(ZextUGT, ZextULT);
+}
+
+// This function expands the memcmp call into an inline expansion and returns
+// the memcmp result.
+Value *MemCmpExpansion::getMemCmpExpansion() {
+ // A memcmp with zero-comparison with only one block of load and compare does
+ // not need to set up any extra blocks. This case could be handled in the DAG,
+ // but since we have all of the machinery to flexibly expand any memcpy here,
+ // we choose to handle this case too to avoid fragmented lowering.
+ if ((!IsUsedForZeroCmp && NumLoadsPerBlock != 1) || getNumBlocks() != 1) {
+ BasicBlock *StartBlock = CI->getParent();
+ EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
+ setupEndBlockPHINodes();
+ createResultBlock();
+
+ // If return value of memcmp is not used in a zero equality, we need to
+ // calculate which source was larger. The calculation requires the
+ // two loaded source values of each load compare block.
+ // These will be saved in the phi nodes created by setupResultBlockPHINodes.
+ if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
+
+ // Create the number of required load compare basic blocks.
+ createLoadCmpBlocks();
+
+ // Update the terminator added by splitBasicBlock to branch to the first
+ // LoadCmpBlock.
+ StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
+ }
+
+ Builder.SetCurrentDebugLocation(CI->getDebugLoc());
+
+ if (IsUsedForZeroCmp)
+ return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
+ : getMemCmpExpansionZeroCase();
+
+ // TODO: Handle more than one load pair per block in getMemCmpOneBlock().
+ if (getNumBlocks() == 1 && NumLoadsPerBlock == 1) return getMemCmpOneBlock();
+
+ for (unsigned I = 0; I < getNumBlocks(); ++I) {
+ emitLoadCompareBlock(I);
+ }
+
+ emitMemCmpResultBlock();
+ return PhiRes;
+}
+
+// This function checks to see if an expansion of memcmp can be generated.
+// It checks for constant compare size that is less than the max inline size.
+// If an expansion cannot occur, returns false to leave as a library call.
+// Otherwise, the library call is replaced with a new IR instruction sequence.
+/// We want to transform:
+/// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
+/// To:
+/// loadbb:
+/// %0 = bitcast i32* %buffer2 to i8*
+/// %1 = bitcast i32* %buffer1 to i8*
+/// %2 = bitcast i8* %1 to i64*
+/// %3 = bitcast i8* %0 to i64*
+/// %4 = load i64, i64* %2
+/// %5 = load i64, i64* %3
+/// %6 = call i64 @llvm.bswap.i64(i64 %4)
+/// %7 = call i64 @llvm.bswap.i64(i64 %5)
+/// %8 = sub i64 %6, %7
+/// %9 = icmp ne i64 %8, 0
+/// br i1 %9, label %res_block, label %loadbb1
+/// res_block: ; preds = %loadbb2,
+/// %loadbb1, %loadbb
+/// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
+/// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
+/// %10 = icmp ult i64 %phi.src1, %phi.src2
+/// %11 = select i1 %10, i32 -1, i32 1
+/// br label %endblock
+/// loadbb1: ; preds = %loadbb
+/// %12 = bitcast i32* %buffer2 to i8*
+/// %13 = bitcast i32* %buffer1 to i8*
+/// %14 = bitcast i8* %13 to i32*
+/// %15 = bitcast i8* %12 to i32*
+/// %16 = getelementptr i32, i32* %14, i32 2
+/// %17 = getelementptr i32, i32* %15, i32 2
+/// %18 = load i32, i32* %16
+/// %19 = load i32, i32* %17
+/// %20 = call i32 @llvm.bswap.i32(i32 %18)
+/// %21 = call i32 @llvm.bswap.i32(i32 %19)
+/// %22 = zext i32 %20 to i64
+/// %23 = zext i32 %21 to i64
+/// %24 = sub i64 %22, %23
+/// %25 = icmp ne i64 %24, 0
+/// br i1 %25, label %res_block, label %loadbb2
+/// loadbb2: ; preds = %loadbb1
+/// %26 = bitcast i32* %buffer2 to i8*
+/// %27 = bitcast i32* %buffer1 to i8*
+/// %28 = bitcast i8* %27 to i16*
+/// %29 = bitcast i8* %26 to i16*
+/// %30 = getelementptr i16, i16* %28, i16 6
+/// %31 = getelementptr i16, i16* %29, i16 6
+/// %32 = load i16, i16* %30
+/// %33 = load i16, i16* %31
+/// %34 = call i16 @llvm.bswap.i16(i16 %32)
+/// %35 = call i16 @llvm.bswap.i16(i16 %33)
+/// %36 = zext i16 %34 to i64
+/// %37 = zext i16 %35 to i64
+/// %38 = sub i64 %36, %37
+/// %39 = icmp ne i64 %38, 0
+/// br i1 %39, label %res_block, label %loadbb3
+/// loadbb3: ; preds = %loadbb2
+/// %40 = bitcast i32* %buffer2 to i8*
+/// %41 = bitcast i32* %buffer1 to i8*
+/// %42 = getelementptr i8, i8* %41, i8 14
+/// %43 = getelementptr i8, i8* %40, i8 14
+/// %44 = load i8, i8* %42
+/// %45 = load i8, i8* %43
+/// %46 = zext i8 %44 to i32
+/// %47 = zext i8 %45 to i32
+/// %48 = sub i32 %46, %47
+/// br label %endblock
+/// endblock: ; preds = %res_block,
+/// %loadbb3
+/// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
+/// ret i32 %phi.res
+static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
+ const TargetLowering *TLI, const DataLayout *DL) {
+ NumMemCmpCalls++;
+
+ // Early exit from expansion if -Oz.
+ if (CI->getFunction()->optForMinSize())
+ return false;
+
+ // Early exit from expansion if size is not a constant.
+ ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
+ if (!SizeCast) {
+ NumMemCmpNotConstant++;
+ return false;
+ }
+ const uint64_t SizeVal = SizeCast->getZExtValue();
+
+ if (SizeVal == 0) {
+ return false;
+ }
+
+ // TTI call to check if target would like to expand memcmp. Also, get the
+ // available load sizes.
+ const bool IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
+ const auto *const Options = TTI->enableMemCmpExpansion(IsUsedForZeroCmp);
+ if (!Options) return false;
+
+ const unsigned MaxNumLoads =
+ TLI->getMaxExpandSizeMemcmp(CI->getFunction()->optForSize());
+
+ MemCmpExpansion Expansion(CI, SizeVal, *Options, MaxNumLoads,
+ IsUsedForZeroCmp, MemCmpNumLoadsPerBlock, *DL);
+
+ // Don't expand if this will require more loads than desired by the target.
+ if (Expansion.getNumLoads() == 0) {
+ NumMemCmpGreaterThanMax++;
+ return false;
+ }
+
+ NumMemCmpInlined++;
+
+ Value *Res = Expansion.getMemCmpExpansion();
+
+ // Replace call with result of expansion and erase call.
+ CI->replaceAllUsesWith(Res);
+ CI->eraseFromParent();
+
+ return true;
+}
+
+
+
+class ExpandMemCmpPass : public FunctionPass {
+public:
+ static char ID;
+
+ ExpandMemCmpPass() : FunctionPass(ID) {
+ initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override {
+ if (skipFunction(F)) return false;
+
+ auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
+ if (!TPC) {
+ return false;
+ }
+ const TargetLowering* TL =
+ TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
+
+ const TargetLibraryInfo *TLI =
+ &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
+ const TargetTransformInfo *TTI =
+ &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ auto PA = runImpl(F, TLI, TTI, TL);
+ return !PA.areAllPreserved();
+ }
+
+private:
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ FunctionPass::getAnalysisUsage(AU);
+ }
+
+ PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
+ const TargetTransformInfo *TTI,
+ const TargetLowering* TL);
+ // Returns true if a change was made.
+ bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
+ const TargetTransformInfo *TTI, const TargetLowering* TL,
+ const DataLayout& DL);
+};
+
+bool ExpandMemCmpPass::runOnBlock(
+ BasicBlock &BB, const TargetLibraryInfo *TLI,
+ const TargetTransformInfo *TTI, const TargetLowering* TL,
+ const DataLayout& DL) {
+ for (Instruction& I : BB) {
+ CallInst *CI = dyn_cast<CallInst>(&I);
+ if (!CI) {
+ continue;
+ }
+ LibFunc Func;
+ if (TLI->getLibFunc(ImmutableCallSite(CI), Func) &&
+ Func == LibFunc_memcmp && expandMemCmp(CI, TTI, TL, &DL)) {
+ return true;
+ }
+ }
+ return false;
+}
+
+
+PreservedAnalyses ExpandMemCmpPass::runImpl(
+ Function &F, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI,
+ const TargetLowering* TL) {
+ const DataLayout& DL = F.getParent()->getDataLayout();
+ bool MadeChanges = false;
+ for (auto BBIt = F.begin(); BBIt != F.end();) {
+ if (runOnBlock(*BBIt, TLI, TTI, TL, DL)) {
+ MadeChanges = true;
+ // If changes were made, restart the function from the beginning, since
+ // the structure of the function was changed.
+ BBIt = F.begin();
+ } else {
+ ++BBIt;
+ }
+ }
+ return MadeChanges ? PreservedAnalyses::none() : PreservedAnalyses::all();
+}
+
+} // namespace
+
+char ExpandMemCmpPass::ID = 0;
+INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp",
+ "Expand memcmp() to load/stores", false, false)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp",
+ "Expand memcmp() to load/stores", false, false)
+
+FunctionPass *llvm::createExpandMemCmpPass() {
+ return new ExpandMemCmpPass();
+}