aboutsummaryrefslogtreecommitdiff
path: root/COFF/ICF.cpp
blob: 88e67443c26b41aa7e1a4ad3a585b3420e07e25e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
//===- ICF.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// ICF is short for Identical Code Folding. That is a size optimization to
// identify and merge two or more read-only sections (typically functions)
// that happened to have the same contents. It usually reduces output size
// by a few percent.
//
// On Windows, ICF is enabled by default.
//
// See ELF/ICF.cpp for the details about the algortihm.
//
//===----------------------------------------------------------------------===//

#include "ICF.h"
#include "Chunks.h"
#include "Symbols.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Threads.h"
#include "lld/Common/Timer.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/xxhash.h"
#include <algorithm>
#include <atomic>
#include <vector>

using namespace llvm;

namespace lld {
namespace coff {

static Timer ICFTimer("ICF", Timer::root());

class ICF {
public:
  void run(ArrayRef<Chunk *> V);

private:
  void segregate(size_t Begin, size_t End, bool Constant);

  bool assocEquals(const SectionChunk *A, const SectionChunk *B);

  bool equalsConstant(const SectionChunk *A, const SectionChunk *B);
  bool equalsVariable(const SectionChunk *A, const SectionChunk *B);

  uint32_t getHash(SectionChunk *C);
  bool isEligible(SectionChunk *C);

  size_t findBoundary(size_t Begin, size_t End);

  void forEachClassRange(size_t Begin, size_t End,
                         std::function<void(size_t, size_t)> Fn);

  void forEachClass(std::function<void(size_t, size_t)> Fn);

  std::vector<SectionChunk *> Chunks;
  int Cnt = 0;
  std::atomic<bool> Repeat = {false};
};

// Returns true if section S is subject of ICF.
//
// Microsoft's documentation
// (https://msdn.microsoft.com/en-us/library/bxwfs976.aspx; visited April
// 2017) says that /opt:icf folds both functions and read-only data.
// Despite that, the MSVC linker folds only functions. We found
// a few instances of programs that are not safe for data merging.
// Therefore, we merge only functions just like the MSVC tool. However, we also
// merge read-only sections in a couple of cases where the address of the
// section is insignificant to the user program and the behaviour matches that
// of the Visual C++ linker.
bool ICF::isEligible(SectionChunk *C) {
  // Non-comdat chunks, dead chunks, and writable chunks are not elegible.
  bool Writable = C->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_WRITE;
  if (!C->isCOMDAT() || !C->Live || Writable)
    return false;

  // Code sections are eligible.
  if (C->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_EXECUTE)
    return true;

  // .pdata and .xdata unwind info sections are eligible.
  StringRef OutSecName = C->getSectionName().split('$').first;
  if (OutSecName == ".pdata" || OutSecName == ".xdata")
    return true;

  // So are vtables.
  if (C->Sym && C->Sym->getName().startswith("??_7"))
    return true;

  // Anything else not in an address-significance table is eligible.
  return !C->KeepUnique;
}

// Split an equivalence class into smaller classes.
void ICF::segregate(size_t Begin, size_t End, bool Constant) {
  while (Begin < End) {
    // Divide [Begin, End) into two. Let Mid be the start index of the
    // second group.
    auto Bound = std::stable_partition(
        Chunks.begin() + Begin + 1, Chunks.begin() + End, [&](SectionChunk *S) {
          if (Constant)
            return equalsConstant(Chunks[Begin], S);
          return equalsVariable(Chunks[Begin], S);
        });
    size_t Mid = Bound - Chunks.begin();

    // Split [Begin, End) into [Begin, Mid) and [Mid, End). We use Mid as an
    // equivalence class ID because every group ends with a unique index.
    for (size_t I = Begin; I < Mid; ++I)
      Chunks[I]->Class[(Cnt + 1) % 2] = Mid;

    // If we created a group, we need to iterate the main loop again.
    if (Mid != End)
      Repeat = true;

    Begin = Mid;
  }
}

// Returns true if two sections' associative children are equal.
bool ICF::assocEquals(const SectionChunk *A, const SectionChunk *B) {
  auto ChildClasses = [&](const SectionChunk *SC) {
    std::vector<uint32_t> Classes;
    for (const SectionChunk *C : SC->children())
      if (!C->SectionName.startswith(".debug") &&
          C->SectionName != ".gfids$y" && C->SectionName != ".gljmp$y")
        Classes.push_back(C->Class[Cnt % 2]);
    return Classes;
  };
  return ChildClasses(A) == ChildClasses(B);
}

// Compare "non-moving" part of two sections, namely everything
// except relocation targets.
bool ICF::equalsConstant(const SectionChunk *A, const SectionChunk *B) {
  if (A->Relocs.size() != B->Relocs.size())
    return false;

  // Compare relocations.
  auto Eq = [&](const coff_relocation &R1, const coff_relocation &R2) {
    if (R1.Type != R2.Type ||
        R1.VirtualAddress != R2.VirtualAddress) {
      return false;
    }
    Symbol *B1 = A->File->getSymbol(R1.SymbolTableIndex);
    Symbol *B2 = B->File->getSymbol(R2.SymbolTableIndex);
    if (B1 == B2)
      return true;
    if (auto *D1 = dyn_cast<DefinedRegular>(B1))
      if (auto *D2 = dyn_cast<DefinedRegular>(B2))
        return D1->getValue() == D2->getValue() &&
               D1->getChunk()->Class[Cnt % 2] == D2->getChunk()->Class[Cnt % 2];
    return false;
  };
  if (!std::equal(A->Relocs.begin(), A->Relocs.end(), B->Relocs.begin(), Eq))
    return false;

  // Compare section attributes and contents.
  return A->getOutputCharacteristics() == B->getOutputCharacteristics() &&
         A->SectionName == B->SectionName &&
         A->Header->SizeOfRawData == B->Header->SizeOfRawData &&
         A->Checksum == B->Checksum && A->getContents() == B->getContents() &&
         assocEquals(A, B);
}

// Compare "moving" part of two sections, namely relocation targets.
bool ICF::equalsVariable(const SectionChunk *A, const SectionChunk *B) {
  // Compare relocations.
  auto Eq = [&](const coff_relocation &R1, const coff_relocation &R2) {
    Symbol *B1 = A->File->getSymbol(R1.SymbolTableIndex);
    Symbol *B2 = B->File->getSymbol(R2.SymbolTableIndex);
    if (B1 == B2)
      return true;
    if (auto *D1 = dyn_cast<DefinedRegular>(B1))
      if (auto *D2 = dyn_cast<DefinedRegular>(B2))
        return D1->getChunk()->Class[Cnt % 2] == D2->getChunk()->Class[Cnt % 2];
    return false;
  };
  return std::equal(A->Relocs.begin(), A->Relocs.end(), B->Relocs.begin(),
                    Eq) &&
         assocEquals(A, B);
}

// Find the first Chunk after Begin that has a different class from Begin.
size_t ICF::findBoundary(size_t Begin, size_t End) {
  for (size_t I = Begin + 1; I < End; ++I)
    if (Chunks[Begin]->Class[Cnt % 2] != Chunks[I]->Class[Cnt % 2])
      return I;
  return End;
}

void ICF::forEachClassRange(size_t Begin, size_t End,
                            std::function<void(size_t, size_t)> Fn) {
  while (Begin < End) {
    size_t Mid = findBoundary(Begin, End);
    Fn(Begin, Mid);
    Begin = Mid;
  }
}

// Call Fn on each class group.
void ICF::forEachClass(std::function<void(size_t, size_t)> Fn) {
  // If the number of sections are too small to use threading,
  // call Fn sequentially.
  if (Chunks.size() < 1024) {
    forEachClassRange(0, Chunks.size(), Fn);
    ++Cnt;
    return;
  }

  // Shard into non-overlapping intervals, and call Fn in parallel.
  // The sharding must be completed before any calls to Fn are made
  // so that Fn can modify the Chunks in its shard without causing data
  // races.
  const size_t NumShards = 256;
  size_t Step = Chunks.size() / NumShards;
  size_t Boundaries[NumShards + 1];
  Boundaries[0] = 0;
  Boundaries[NumShards] = Chunks.size();
  parallelForEachN(1, NumShards, [&](size_t I) {
    Boundaries[I] = findBoundary((I - 1) * Step, Chunks.size());
  });
  parallelForEachN(1, NumShards + 1, [&](size_t I) {
    if (Boundaries[I - 1] < Boundaries[I]) {
      forEachClassRange(Boundaries[I - 1], Boundaries[I], Fn);
    }
  });
  ++Cnt;
}

// Merge identical COMDAT sections.
// Two sections are considered the same if their section headers,
// contents and relocations are all the same.
void ICF::run(ArrayRef<Chunk *> Vec) {
  ScopedTimer T(ICFTimer);

  // Collect only mergeable sections and group by hash value.
  uint32_t NextId = 1;
  for (Chunk *C : Vec) {
    if (auto *SC = dyn_cast<SectionChunk>(C)) {
      if (isEligible(SC))
        Chunks.push_back(SC);
      else
        SC->Class[0] = NextId++;
    }
  }

  // Make sure that ICF doesn't merge sections that are being handled by string
  // tail merging.
  for (auto &P : MergeChunk::Instances)
    for (SectionChunk *SC : P.second->Sections)
      SC->Class[0] = NextId++;

  // Initially, we use hash values to partition sections.
  parallelForEach(Chunks, [&](SectionChunk *SC) {
    SC->Class[1] = xxHash64(SC->getContents());
  });

  // Combine the hashes of the sections referenced by each section into its
  // hash.
  parallelForEach(Chunks, [&](SectionChunk *SC) {
    uint32_t Hash = SC->Class[1];
    for (Symbol *B : SC->symbols())
      if (auto *Sym = dyn_cast_or_null<DefinedRegular>(B))
        Hash += Sym->getChunk()->Class[1];
    // Set MSB to 1 to avoid collisions with non-hash classs.
    SC->Class[0] = Hash | (1U << 31);
  });

  // From now on, sections in Chunks are ordered so that sections in
  // the same group are consecutive in the vector.
  std::stable_sort(Chunks.begin(), Chunks.end(),
                   [](SectionChunk *A, SectionChunk *B) {
                     return A->Class[0] < B->Class[0];
                   });

  // Compare static contents and assign unique IDs for each static content.
  forEachClass([&](size_t Begin, size_t End) { segregate(Begin, End, true); });

  // Split groups by comparing relocations until convergence is obtained.
  do {
    Repeat = false;
    forEachClass(
        [&](size_t Begin, size_t End) { segregate(Begin, End, false); });
  } while (Repeat);

  log("ICF needed " + Twine(Cnt) + " iterations");

  // Merge sections in the same classs.
  forEachClass([&](size_t Begin, size_t End) {
    if (End - Begin == 1)
      return;

    log("Selected " + Chunks[Begin]->getDebugName());
    for (size_t I = Begin + 1; I < End; ++I) {
      log("  Removed " + Chunks[I]->getDebugName());
      Chunks[Begin]->replace(Chunks[I]);
    }
  });
}

// Entry point to ICF.
void doICF(ArrayRef<Chunk *> Chunks) { ICF().run(Chunks); }

} // namespace coff
} // namespace lld