Rainer Orth | 2d8d593 | 2011-07-11 14:40:56 +0000 | [diff] [blame] | 1 | /* This is a software decimal floating point library. |
Jakub Jelinek | 85ec4fe | 2018-01-03 11:03:58 +0100 | [diff] [blame] | 2 | Copyright (C) 2005-2018 Free Software Foundation, Inc. |
Rainer Orth | 2d8d593 | 2011-07-11 14:40:56 +0000 | [diff] [blame] | 3 | |
| 4 | This file is part of GCC. |
| 5 | |
| 6 | GCC is free software; you can redistribute it and/or modify it under |
| 7 | the terms of the GNU General Public License as published by the Free |
| 8 | Software Foundation; either version 3, or (at your option) any later |
| 9 | version. |
| 10 | |
| 11 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| 12 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 14 | for more details. |
| 15 | |
| 16 | Under Section 7 of GPL version 3, you are granted additional |
| 17 | permissions described in the GCC Runtime Library Exception, version |
| 18 | 3.1, as published by the Free Software Foundation. |
| 19 | |
| 20 | You should have received a copy of the GNU General Public License and |
| 21 | a copy of the GCC Runtime Library Exception along with this program; |
| 22 | see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 | <http://www.gnu.org/licenses/>. */ |
| 24 | |
| 25 | /* This implements IEEE 754 decimal floating point arithmetic, but |
| 26 | does not provide a mechanism for setting the rounding mode, or for |
| 27 | generating or handling exceptions. Conversions between decimal |
| 28 | floating point types and other types depend on C library functions. |
| 29 | |
| 30 | Contributed by Ben Elliston <bje@au.ibm.com>. */ |
| 31 | |
| 32 | #include <stdio.h> |
| 33 | #include <stdlib.h> |
| 34 | /* FIXME: compile with -std=gnu99 to get these from stdlib.h */ |
| 35 | extern float strtof (const char *, char **); |
| 36 | extern long double strtold (const char *, char **); |
| 37 | #include <string.h> |
| 38 | #include <limits.h> |
| 39 | |
| 40 | #include "dfp-bit.h" |
| 41 | |
| 42 | /* Forward declarations. */ |
| 43 | #if WIDTH == 32 || WIDTH_TO == 32 |
| 44 | void __host_to_ieee_32 (_Decimal32 in, decimal32 *out); |
| 45 | void __ieee_to_host_32 (decimal32 in, _Decimal32 *out); |
| 46 | #endif |
| 47 | #if WIDTH == 64 || WIDTH_TO == 64 |
| 48 | void __host_to_ieee_64 (_Decimal64 in, decimal64 *out); |
| 49 | void __ieee_to_host_64 (decimal64 in, _Decimal64 *out); |
| 50 | #endif |
| 51 | #if WIDTH == 128 || WIDTH_TO == 128 |
| 52 | void __host_to_ieee_128 (_Decimal128 in, decimal128 *out); |
| 53 | void __ieee_to_host_128 (decimal128 in, _Decimal128 *out); |
| 54 | #endif |
| 55 | |
| 56 | /* A pointer to a binary decFloat operation. */ |
| 57 | typedef decFloat* (*dfp_binary_func) |
| 58 | (decFloat *, const decFloat *, const decFloat *, decContext *); |
| 59 | |
| 60 | /* Binary operations. */ |
| 61 | |
| 62 | /* Use a decFloat (decDouble or decQuad) function to perform a DFP |
| 63 | binary operation. */ |
| 64 | static inline decFloat |
| 65 | dfp_binary_op (dfp_binary_func op, decFloat arg_a, decFloat arg_b) |
| 66 | { |
| 67 | decFloat result; |
| 68 | decContext context; |
| 69 | |
| 70 | decContextDefault (&context, CONTEXT_INIT); |
| 71 | DFP_INIT_ROUNDMODE (context.round); |
| 72 | |
| 73 | /* Perform the operation. */ |
| 74 | op (&result, &arg_a, &arg_b, &context); |
| 75 | |
| 76 | if (DFP_EXCEPTIONS_ENABLED && context.status != 0) |
| 77 | { |
| 78 | /* decNumber exception flags we care about here. */ |
| 79 | int ieee_flags; |
| 80 | int dec_flags = DEC_IEEE_854_Division_by_zero | DEC_IEEE_854_Inexact |
| 81 | | DEC_IEEE_854_Invalid_operation | DEC_IEEE_854_Overflow |
| 82 | | DEC_IEEE_854_Underflow; |
| 83 | dec_flags &= context.status; |
| 84 | ieee_flags = DFP_IEEE_FLAGS (dec_flags); |
| 85 | if (ieee_flags != 0) |
| 86 | DFP_HANDLE_EXCEPTIONS (ieee_flags); |
| 87 | } |
| 88 | |
| 89 | return result; |
| 90 | } |
| 91 | |
| 92 | #if WIDTH == 32 |
| 93 | /* The decNumber package doesn't provide arithmetic for decSingle (32 bits); |
| 94 | convert to decDouble, use the operation for that, and convert back. */ |
| 95 | static inline _Decimal32 |
| 96 | d32_binary_op (dfp_binary_func op, _Decimal32 arg_a, _Decimal32 arg_b) |
| 97 | { |
| 98 | union { _Decimal32 c; decSingle f; } a32, b32, res32; |
| 99 | decDouble a, b, res; |
| 100 | decContext context; |
| 101 | |
| 102 | /* Widen the operands and perform the operation. */ |
| 103 | a32.c = arg_a; |
| 104 | b32.c = arg_b; |
| 105 | decSingleToWider (&a32.f, &a); |
| 106 | decSingleToWider (&b32.f, &b); |
| 107 | res = dfp_binary_op (op, a, b); |
| 108 | |
| 109 | /* Narrow the result, which might result in an underflow or overflow. */ |
| 110 | decContextDefault (&context, CONTEXT_INIT); |
| 111 | DFP_INIT_ROUNDMODE (context.round); |
| 112 | decSingleFromWider (&res32.f, &res, &context); |
| 113 | if (DFP_EXCEPTIONS_ENABLED && context.status != 0) |
| 114 | { |
| 115 | /* decNumber exception flags we care about here. */ |
| 116 | int ieee_flags; |
| 117 | int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Overflow |
| 118 | | DEC_IEEE_854_Underflow; |
| 119 | dec_flags &= context.status; |
| 120 | ieee_flags = DFP_IEEE_FLAGS (dec_flags); |
| 121 | if (ieee_flags != 0) |
| 122 | DFP_HANDLE_EXCEPTIONS (ieee_flags); |
| 123 | } |
| 124 | |
| 125 | return res32.c; |
| 126 | } |
| 127 | #else |
| 128 | /* decFloat operations are supported for decDouble (64 bits) and |
| 129 | decQuad (128 bits). The bit patterns for the types are the same. */ |
| 130 | static inline DFP_C_TYPE |
| 131 | dnn_binary_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) |
| 132 | { |
| 133 | union { DFP_C_TYPE c; decFloat f; } a, b, result; |
| 134 | |
| 135 | a.c = arg_a; |
| 136 | b.c = arg_b; |
| 137 | result.f = dfp_binary_op (op, a.f, b.f); |
| 138 | return result.c; |
| 139 | } |
| 140 | #endif |
| 141 | |
| 142 | /* Comparison operations. */ |
| 143 | |
| 144 | /* Use a decFloat (decDouble or decQuad) function to perform a DFP |
| 145 | comparison. */ |
| 146 | static inline CMPtype |
| 147 | dfp_compare_op (dfp_binary_func op, decFloat arg_a, decFloat arg_b) |
| 148 | { |
| 149 | decContext context; |
| 150 | decFloat res; |
| 151 | int result; |
| 152 | |
| 153 | decContextDefault (&context, CONTEXT_INIT); |
| 154 | DFP_INIT_ROUNDMODE (context.round); |
| 155 | |
| 156 | /* Perform the comparison. */ |
| 157 | op (&res, &arg_a, &arg_b, &context); |
| 158 | |
| 159 | if (DEC_FLOAT_IS_SIGNED (&res)) |
| 160 | result = -1; |
| 161 | else if (DEC_FLOAT_IS_ZERO (&res)) |
| 162 | result = 0; |
| 163 | else if (DEC_FLOAT_IS_NAN (&res)) |
| 164 | result = -2; |
| 165 | else |
| 166 | result = 1; |
| 167 | |
| 168 | return (CMPtype) result; |
| 169 | } |
| 170 | |
| 171 | #if WIDTH == 32 |
| 172 | /* The decNumber package doesn't provide comparisons for decSingle (32 bits); |
| 173 | convert to decDouble, use the operation for that, and convert back. */ |
| 174 | static inline CMPtype |
| 175 | d32_compare_op (dfp_binary_func op, _Decimal32 arg_a, _Decimal32 arg_b) |
| 176 | { |
| 177 | union { _Decimal32 c; decSingle f; } a32, b32; |
| 178 | decDouble a, b; |
| 179 | |
| 180 | a32.c = arg_a; |
| 181 | b32.c = arg_b; |
| 182 | decSingleToWider (&a32.f, &a); |
| 183 | decSingleToWider (&b32.f, &b); |
| 184 | return dfp_compare_op (op, a, b); |
| 185 | } |
| 186 | #else |
| 187 | /* decFloat comparisons are supported for decDouble (64 bits) and |
| 188 | decQuad (128 bits). The bit patterns for the types are the same. */ |
| 189 | static inline CMPtype |
| 190 | dnn_compare_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) |
| 191 | { |
| 192 | union { DFP_C_TYPE c; decFloat f; } a, b; |
| 193 | |
| 194 | a.c = arg_a; |
| 195 | b.c = arg_b; |
| 196 | return dfp_compare_op (op, a.f, b.f); |
| 197 | } |
| 198 | #endif |
| 199 | |
| 200 | #if defined(L_conv_sd) |
| 201 | void |
| 202 | __host_to_ieee_32 (_Decimal32 in, decimal32 *out) |
| 203 | { |
| 204 | memcpy (out, &in, 4); |
| 205 | } |
| 206 | |
| 207 | void |
| 208 | __ieee_to_host_32 (decimal32 in, _Decimal32 *out) |
| 209 | { |
| 210 | memcpy (out, &in, 4); |
| 211 | } |
| 212 | #endif /* L_conv_sd */ |
| 213 | |
| 214 | #if defined(L_conv_dd) |
| 215 | void |
| 216 | __host_to_ieee_64 (_Decimal64 in, decimal64 *out) |
| 217 | { |
| 218 | memcpy (out, &in, 8); |
| 219 | } |
| 220 | |
| 221 | void |
| 222 | __ieee_to_host_64 (decimal64 in, _Decimal64 *out) |
| 223 | { |
| 224 | memcpy (out, &in, 8); |
| 225 | } |
| 226 | #endif /* L_conv_dd */ |
| 227 | |
| 228 | #if defined(L_conv_td) |
| 229 | void |
| 230 | __host_to_ieee_128 (_Decimal128 in, decimal128 *out) |
| 231 | { |
| 232 | memcpy (out, &in, 16); |
| 233 | } |
| 234 | |
| 235 | void |
| 236 | __ieee_to_host_128 (decimal128 in, _Decimal128 *out) |
| 237 | { |
| 238 | memcpy (out, &in, 16); |
| 239 | } |
| 240 | #endif /* L_conv_td */ |
| 241 | |
| 242 | #if defined(L_addsub_sd) || defined(L_addsub_dd) || defined(L_addsub_td) |
| 243 | DFP_C_TYPE |
| 244 | DFP_ADD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) |
| 245 | { |
| 246 | return DFP_BINARY_OP (DEC_FLOAT_ADD, arg_a, arg_b); |
| 247 | } |
| 248 | |
| 249 | DFP_C_TYPE |
| 250 | DFP_SUB (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) |
| 251 | { |
| 252 | return DFP_BINARY_OP (DEC_FLOAT_SUBTRACT, arg_a, arg_b); |
| 253 | } |
| 254 | #endif /* L_addsub */ |
| 255 | |
| 256 | #if defined(L_mul_sd) || defined(L_mul_dd) || defined(L_mul_td) |
| 257 | DFP_C_TYPE |
| 258 | DFP_MULTIPLY (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) |
| 259 | { |
| 260 | return DFP_BINARY_OP (DEC_FLOAT_MULTIPLY, arg_a, arg_b); |
| 261 | } |
| 262 | #endif /* L_mul */ |
| 263 | |
| 264 | #if defined(L_div_sd) || defined(L_div_dd) || defined(L_div_td) |
| 265 | DFP_C_TYPE |
| 266 | DFP_DIVIDE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) |
| 267 | { |
| 268 | return DFP_BINARY_OP (DEC_FLOAT_DIVIDE, arg_a, arg_b); |
| 269 | } |
| 270 | #endif /* L_div */ |
| 271 | |
| 272 | #if defined (L_eq_sd) || defined (L_eq_dd) || defined (L_eq_td) |
| 273 | CMPtype |
| 274 | DFP_EQ (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) |
| 275 | { |
| 276 | CMPtype stat; |
| 277 | stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b); |
| 278 | /* For EQ return zero for true, nonzero for false. */ |
| 279 | return stat != 0; |
| 280 | } |
| 281 | #endif /* L_eq */ |
| 282 | |
| 283 | #if defined (L_ne_sd) || defined (L_ne_dd) || defined (L_ne_td) |
| 284 | CMPtype |
| 285 | DFP_NE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) |
| 286 | { |
| 287 | int stat; |
| 288 | stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b); |
| 289 | /* For NE return zero for true, nonzero for false. */ |
| 290 | if (__builtin_expect (stat == -2, 0)) /* An operand is NaN. */ |
| 291 | return 1; |
| 292 | return stat != 0; |
| 293 | } |
| 294 | #endif /* L_ne */ |
| 295 | |
| 296 | #if defined (L_lt_sd) || defined (L_lt_dd) || defined (L_lt_td) |
| 297 | CMPtype |
| 298 | DFP_LT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) |
| 299 | { |
| 300 | int stat; |
| 301 | stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b); |
| 302 | /* For LT return -1 (<0) for true, 1 for false. */ |
| 303 | return (stat == -1) ? -1 : 1; |
| 304 | } |
| 305 | #endif /* L_lt */ |
| 306 | |
| 307 | #if defined (L_gt_sd) || defined (L_gt_dd) || defined (L_gt_td) |
| 308 | CMPtype |
| 309 | DFP_GT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) |
| 310 | { |
| 311 | int stat; |
| 312 | stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b); |
| 313 | /* For GT return 1 (>0) for true, -1 for false. */ |
| 314 | return (stat == 1) ? 1 : -1; |
| 315 | } |
| 316 | #endif |
| 317 | |
| 318 | #if defined (L_le_sd) || defined (L_le_dd) || defined (L_le_td) |
| 319 | CMPtype |
| 320 | DFP_LE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) |
| 321 | { |
| 322 | int stat; |
| 323 | stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b); |
| 324 | /* For LE return 0 (<= 0) for true, 1 for false. */ |
| 325 | if (__builtin_expect (stat == -2, 0)) /* An operand is NaN. */ |
| 326 | return 1; |
| 327 | return stat == 1; |
| 328 | } |
| 329 | #endif /* L_le */ |
| 330 | |
| 331 | #if defined (L_ge_sd) || defined (L_ge_dd) || defined (L_ge_td) |
| 332 | CMPtype |
| 333 | DFP_GE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) |
| 334 | { |
| 335 | int stat; |
| 336 | stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b); |
| 337 | /* For GE return 1 (>=0) for true, -1 for false. */ |
| 338 | if (__builtin_expect (stat == -2, 0)) /* An operand is NaN. */ |
| 339 | return -1; |
| 340 | return (stat != -1) ? 1 : -1; |
| 341 | } |
| 342 | #endif /* L_ge */ |
| 343 | |
| 344 | #define BUFMAX 128 |
| 345 | |
| 346 | /* Check for floating point exceptions that are relevant for conversions |
| 347 | between decimal float values and handle them. */ |
| 348 | static inline void |
| 349 | dfp_conversion_exceptions (const int status) |
| 350 | { |
| 351 | /* decNumber exception flags we care about here. */ |
| 352 | int ieee_flags; |
| 353 | int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Invalid_operation |
| 354 | | DEC_IEEE_854_Overflow; |
| 355 | dec_flags &= status; |
| 356 | ieee_flags = DFP_IEEE_FLAGS (dec_flags); |
| 357 | if (ieee_flags != 0) |
| 358 | DFP_HANDLE_EXCEPTIONS (ieee_flags); |
| 359 | } |
| 360 | |
| 361 | #if defined (L_sd_to_dd) |
| 362 | /* Use decNumber to convert directly from _Decimal32 to _Decimal64. */ |
| 363 | _Decimal64 |
| 364 | DFP_TO_DFP (_Decimal32 f_from) |
| 365 | { |
| 366 | union { _Decimal32 c; decSingle f; } from; |
| 367 | union { _Decimal64 c; decDouble f; } to; |
| 368 | |
| 369 | from.c = f_from; |
| 370 | to.f = *decSingleToWider (&from.f, &to.f); |
| 371 | return to.c; |
| 372 | } |
| 373 | #endif |
| 374 | |
| 375 | #if defined (L_sd_to_td) |
| 376 | /* Use decNumber to convert directly from _Decimal32 to _Decimal128. */ |
| 377 | _Decimal128 |
| 378 | DFP_TO_DFP (_Decimal32 f_from) |
| 379 | { |
| 380 | union { _Decimal32 c; decSingle f; } from; |
| 381 | union { _Decimal128 c; decQuad f; } to; |
| 382 | decDouble temp; |
| 383 | |
| 384 | from.c = f_from; |
| 385 | temp = *decSingleToWider (&from.f, &temp); |
| 386 | to.f = *decDoubleToWider (&temp, &to.f); |
| 387 | return to.c; |
| 388 | } |
| 389 | #endif |
| 390 | |
| 391 | #if defined (L_dd_to_td) |
| 392 | /* Use decNumber to convert directly from _Decimal64 to _Decimal128. */ |
| 393 | _Decimal128 |
| 394 | DFP_TO_DFP (_Decimal64 f_from) |
| 395 | { |
| 396 | union { _Decimal64 c; decDouble f; } from; |
| 397 | union { _Decimal128 c; decQuad f; } to; |
| 398 | |
| 399 | from.c = f_from; |
| 400 | to.f = *decDoubleToWider (&from.f, &to.f); |
| 401 | return to.c; |
| 402 | } |
| 403 | #endif |
| 404 | |
| 405 | #if defined (L_dd_to_sd) |
| 406 | /* Use decNumber to convert directly from _Decimal64 to _Decimal32. */ |
| 407 | _Decimal32 |
| 408 | DFP_TO_DFP (_Decimal64 f_from) |
| 409 | { |
| 410 | union { _Decimal32 c; decSingle f; } to; |
| 411 | union { _Decimal64 c; decDouble f; } from; |
| 412 | decContext context; |
| 413 | |
| 414 | decContextDefault (&context, CONTEXT_INIT); |
| 415 | DFP_INIT_ROUNDMODE (context.round); |
| 416 | from.c = f_from; |
| 417 | to.f = *decSingleFromWider (&to.f, &from.f, &context); |
| 418 | if (DFP_EXCEPTIONS_ENABLED && context.status != 0) |
| 419 | dfp_conversion_exceptions (context.status); |
| 420 | return to.c; |
| 421 | } |
| 422 | #endif |
| 423 | |
| 424 | #if defined (L_td_to_sd) |
| 425 | /* Use decNumber to convert directly from _Decimal128 to _Decimal32. */ |
| 426 | _Decimal32 |
| 427 | DFP_TO_DFP (_Decimal128 f_from) |
| 428 | { |
| 429 | union { _Decimal32 c; decSingle f; } to; |
| 430 | union { _Decimal128 c; decQuad f; } from; |
| 431 | decDouble temp; |
| 432 | decContext context; |
| 433 | |
| 434 | decContextDefault (&context, CONTEXT_INIT); |
| 435 | DFP_INIT_ROUNDMODE (context.round); |
| 436 | from.c = f_from; |
| 437 | temp = *decDoubleFromWider (&temp, &from.f, &context); |
| 438 | to.f = *decSingleFromWider (&to.f, &temp, &context); |
| 439 | if (DFP_EXCEPTIONS_ENABLED && context.status != 0) |
| 440 | dfp_conversion_exceptions (context.status); |
| 441 | return to.c; |
| 442 | } |
| 443 | #endif |
| 444 | |
| 445 | #if defined (L_td_to_dd) |
| 446 | /* Use decNumber to convert directly from _Decimal128 to _Decimal64. */ |
| 447 | _Decimal64 |
| 448 | DFP_TO_DFP (_Decimal128 f_from) |
| 449 | { |
| 450 | union { _Decimal64 c; decDouble f; } to; |
| 451 | union { _Decimal128 c; decQuad f; } from; |
| 452 | decContext context; |
| 453 | |
| 454 | decContextDefault (&context, CONTEXT_INIT); |
| 455 | DFP_INIT_ROUNDMODE (context.round); |
| 456 | from.c = f_from; |
| 457 | to.f = *decDoubleFromWider (&to.f, &from.f, &context); |
| 458 | if (DFP_EXCEPTIONS_ENABLED && context.status != 0) |
| 459 | dfp_conversion_exceptions (context.status); |
| 460 | return to.c; |
| 461 | } |
| 462 | #endif |
| 463 | |
| 464 | #if defined (L_dd_to_si) || defined (L_td_to_si) \ |
| 465 | || defined (L_dd_to_usi) || defined (L_td_to_usi) |
| 466 | /* Use decNumber to convert directly from decimal float to integer types. */ |
| 467 | INT_TYPE |
| 468 | DFP_TO_INT (DFP_C_TYPE x) |
| 469 | { |
| 470 | union { DFP_C_TYPE c; decFloat f; } u; |
| 471 | decContext context; |
| 472 | INT_TYPE i; |
| 473 | |
| 474 | decContextDefault (&context, DEC_INIT_DECIMAL128); |
| 475 | context.round = DEC_ROUND_DOWN; |
| 476 | u.c = x; |
| 477 | i = DEC_FLOAT_TO_INT (&u.f, &context, context.round); |
| 478 | if (DFP_EXCEPTIONS_ENABLED && context.status != 0) |
| 479 | dfp_conversion_exceptions (context.status); |
| 480 | return i; |
| 481 | } |
| 482 | #endif |
| 483 | |
| 484 | #if defined (L_sd_to_si) || (L_sd_to_usi) |
| 485 | /* Use decNumber to convert directly from decimal float to integer types. */ |
| 486 | INT_TYPE |
| 487 | DFP_TO_INT (_Decimal32 x) |
| 488 | { |
| 489 | union { _Decimal32 c; decSingle f; } u32; |
| 490 | decDouble f64; |
| 491 | decContext context; |
| 492 | INT_TYPE i; |
| 493 | |
| 494 | decContextDefault (&context, DEC_INIT_DECIMAL128); |
| 495 | context.round = DEC_ROUND_DOWN; |
| 496 | u32.c = x; |
| 497 | f64 = *decSingleToWider (&u32.f, &f64); |
| 498 | i = DEC_FLOAT_TO_INT (&f64, &context, context.round); |
| 499 | if (DFP_EXCEPTIONS_ENABLED && context.status != 0) |
| 500 | dfp_conversion_exceptions (context.status); |
| 501 | return i; |
| 502 | } |
| 503 | #endif |
| 504 | |
| 505 | #if defined (L_sd_to_di) || defined (L_dd_to_di) || defined (L_td_to_di) \ |
| 506 | || defined (L_sd_to_udi) || defined (L_dd_to_udi) || defined (L_td_to_udi) |
| 507 | /* decNumber doesn't provide support for conversions to 64-bit integer |
| 508 | types, so do it the hard way. */ |
| 509 | INT_TYPE |
| 510 | DFP_TO_INT (DFP_C_TYPE x) |
| 511 | { |
| 512 | /* decNumber's decimal* types have the same format as C's _Decimal* |
| 513 | types, but they have different calling conventions. */ |
| 514 | |
| 515 | /* TODO: Decimal float to integer conversions should raise FE_INVALID |
| 516 | if the result value does not fit into the result type. */ |
| 517 | |
| 518 | IEEE_TYPE s; |
| 519 | char buf[BUFMAX]; |
| 520 | char *pos; |
| 521 | decNumber qval, n1, n2; |
| 522 | decContext context; |
| 523 | |
| 524 | /* Use a large context to avoid losing precision. */ |
| 525 | decContextDefault (&context, DEC_INIT_DECIMAL128); |
| 526 | /* Need non-default rounding mode here. */ |
| 527 | context.round = DEC_ROUND_DOWN; |
| 528 | |
| 529 | HOST_TO_IEEE (x, &s); |
| 530 | TO_INTERNAL (&s, &n1); |
| 531 | /* Rescale if the exponent is less than zero. */ |
| 532 | decNumberToIntegralValue (&n2, &n1, &context); |
| 533 | /* Get a value to use for the quantize call. */ |
| 534 | decNumberFromString (&qval, "1.", &context); |
| 535 | /* Force the exponent to zero. */ |
| 536 | decNumberQuantize (&n1, &n2, &qval, &context); |
| 537 | /* Get a string, which at this point will not include an exponent. */ |
| 538 | decNumberToString (&n1, buf); |
| 539 | /* Ignore the fractional part. */ |
| 540 | pos = strchr (buf, '.'); |
| 541 | if (pos) |
| 542 | *pos = 0; |
| 543 | /* Use a C library function to convert to the integral type. */ |
| 544 | return STR_TO_INT (buf, NULL, 10); |
| 545 | } |
| 546 | #endif |
| 547 | |
| 548 | #if defined (L_si_to_dd) || defined (L_si_to_td) \ |
| 549 | || defined (L_usi_to_dd) || defined (L_usi_to_td) |
| 550 | /* Use decNumber to convert directly from integer to decimal float types. */ |
| 551 | DFP_C_TYPE |
| 552 | INT_TO_DFP (INT_TYPE i) |
| 553 | { |
| 554 | union { DFP_C_TYPE c; decFloat f; } u; |
| 555 | |
| 556 | u.f = *DEC_FLOAT_FROM_INT (&u.f, i); |
| 557 | return u.c; |
| 558 | } |
| 559 | #endif |
| 560 | |
| 561 | #if defined (L_si_to_sd) || defined (L_usi_to_sd) |
| 562 | _Decimal32 |
| 563 | /* Use decNumber to convert directly from integer to decimal float types. */ |
| 564 | INT_TO_DFP (INT_TYPE i) |
| 565 | { |
| 566 | union { _Decimal32 c; decSingle f; } u32; |
| 567 | decDouble f64; |
| 568 | decContext context; |
| 569 | |
| 570 | decContextDefault (&context, DEC_INIT_DECIMAL128); |
| 571 | f64 = *DEC_FLOAT_FROM_INT (&f64, i); |
| 572 | u32.f = *decSingleFromWider (&u32.f, &f64, &context); |
| 573 | if (DFP_EXCEPTIONS_ENABLED && context.status != 0) |
| 574 | dfp_conversion_exceptions (context.status); |
| 575 | return u32.c; |
| 576 | } |
| 577 | #endif |
| 578 | |
| 579 | #if defined (L_di_to_sd) || defined (L_di_to_dd) || defined (L_di_to_td) \ |
| 580 | || defined (L_udi_to_sd) || defined (L_udi_to_dd) || defined (L_udi_to_td) |
| 581 | /* decNumber doesn't provide support for conversions from 64-bit integer |
| 582 | types, so do it the hard way. */ |
| 583 | DFP_C_TYPE |
| 584 | INT_TO_DFP (INT_TYPE i) |
| 585 | { |
| 586 | DFP_C_TYPE f; |
| 587 | IEEE_TYPE s; |
| 588 | char buf[BUFMAX]; |
| 589 | decContext context; |
| 590 | |
| 591 | decContextDefault (&context, CONTEXT_INIT); |
| 592 | DFP_INIT_ROUNDMODE (context.round); |
| 593 | |
| 594 | /* Use a C library function to get a floating point string. */ |
| 595 | sprintf (buf, INT_FMT ".", CAST_FOR_FMT(i)); |
| 596 | /* Convert from the floating point string to a decimal* type. */ |
| 597 | FROM_STRING (&s, buf, &context); |
| 598 | IEEE_TO_HOST (s, &f); |
| 599 | |
| 600 | if (DFP_EXCEPTIONS_ENABLED && context.status != 0) |
| 601 | dfp_conversion_exceptions (context.status); |
| 602 | |
| 603 | return f; |
| 604 | } |
| 605 | #endif |
| 606 | |
| 607 | #if defined (L_sd_to_sf) || defined (L_dd_to_sf) || defined (L_td_to_sf) \ |
| 608 | || defined (L_sd_to_df) || defined (L_dd_to_df) || defined (L_td_to_df) \ |
| 609 | || ((defined (L_sd_to_xf) || defined (L_dd_to_xf) || defined (L_td_to_xf)) \ |
| 610 | && LONG_DOUBLE_HAS_XF_MODE) \ |
| 611 | || ((defined (L_sd_to_tf) || defined (L_dd_to_tf) || defined (L_td_to_tf)) \ |
| 612 | && LONG_DOUBLE_HAS_TF_MODE) |
| 613 | BFP_TYPE |
| 614 | DFP_TO_BFP (DFP_C_TYPE f) |
| 615 | { |
| 616 | IEEE_TYPE s; |
| 617 | char buf[BUFMAX]; |
| 618 | |
| 619 | HOST_TO_IEEE (f, &s); |
| 620 | /* Write the value to a string. */ |
| 621 | TO_STRING (&s, buf); |
| 622 | /* Read it as the binary floating point type and return that. */ |
| 623 | return STR_TO_BFP (buf, NULL); |
| 624 | } |
| 625 | #endif |
| 626 | |
| 627 | #if defined (L_sf_to_sd) || defined (L_sf_to_dd) || defined (L_sf_to_td) \ |
| 628 | || defined (L_df_to_sd) || defined (L_df_to_dd) || defined (L_df_to_td) \ |
| 629 | || ((defined (L_xf_to_sd) || defined (L_xf_to_dd) || defined (L_xf_to_td)) \ |
| 630 | && LONG_DOUBLE_HAS_XF_MODE) \ |
| 631 | || ((defined (L_tf_to_sd) || defined (L_tf_to_dd) || defined (L_tf_to_td)) \ |
| 632 | && LONG_DOUBLE_HAS_TF_MODE) |
| 633 | DFP_C_TYPE |
| 634 | BFP_TO_DFP (BFP_TYPE x) |
| 635 | { |
| 636 | DFP_C_TYPE f; |
| 637 | IEEE_TYPE s; |
| 638 | char buf[BUFMAX]; |
| 639 | decContext context; |
| 640 | |
| 641 | decContextDefault (&context, CONTEXT_INIT); |
| 642 | DFP_INIT_ROUNDMODE (context.round); |
| 643 | |
| 644 | /* Use a C library function to write the floating point value to a string. */ |
| 645 | sprintf (buf, BFP_FMT, (BFP_VIA_TYPE) x); |
| 646 | |
| 647 | /* Convert from the floating point string to a decimal* type. */ |
| 648 | FROM_STRING (&s, buf, &context); |
| 649 | IEEE_TO_HOST (s, &f); |
| 650 | |
| 651 | if (DFP_EXCEPTIONS_ENABLED && context.status != 0) |
| 652 | { |
| 653 | /* decNumber exception flags we care about here. */ |
| 654 | int ieee_flags; |
| 655 | int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Invalid_operation |
| 656 | | DEC_IEEE_854_Overflow | DEC_IEEE_854_Underflow; |
| 657 | dec_flags &= context.status; |
| 658 | ieee_flags = DFP_IEEE_FLAGS (dec_flags); |
| 659 | if (ieee_flags != 0) |
| 660 | DFP_HANDLE_EXCEPTIONS (ieee_flags); |
| 661 | } |
| 662 | |
| 663 | return f; |
| 664 | } |
| 665 | #endif |
| 666 | |
| 667 | #if defined (L_unord_sd) || defined (L_unord_dd) || defined (L_unord_td) |
| 668 | CMPtype |
| 669 | DFP_UNORD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) |
| 670 | { |
| 671 | decNumber arg1, arg2; |
| 672 | IEEE_TYPE a, b; |
| 673 | |
| 674 | HOST_TO_IEEE (arg_a, &a); |
| 675 | HOST_TO_IEEE (arg_b, &b); |
| 676 | TO_INTERNAL (&a, &arg1); |
| 677 | TO_INTERNAL (&b, &arg2); |
| 678 | return (decNumberIsNaN (&arg1) || decNumberIsNaN (&arg2)); |
| 679 | } |
| 680 | #endif /* L_unord_sd || L_unord_dd || L_unord_td */ |