pbrook | cdbdb64 | 2006-04-09 01:32:52 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * ARM PrimeCell Timer modules. |
| 3 | * |
| 4 | * Copyright (c) 2005-2006 CodeSourcery. |
| 5 | * Written by Paul Brook |
| 6 | * |
| 7 | * This code is licenced under the GPL. |
| 8 | */ |
| 9 | |
| 10 | #include "vl.h" |
| 11 | #include "arm_pic.h" |
| 12 | |
| 13 | /* Common timer implementation. */ |
| 14 | |
| 15 | #define TIMER_CTRL_ONESHOT (1 << 0) |
| 16 | #define TIMER_CTRL_32BIT (1 << 1) |
| 17 | #define TIMER_CTRL_DIV1 (0 << 2) |
| 18 | #define TIMER_CTRL_DIV16 (1 << 2) |
| 19 | #define TIMER_CTRL_DIV256 (2 << 2) |
| 20 | #define TIMER_CTRL_IE (1 << 5) |
| 21 | #define TIMER_CTRL_PERIODIC (1 << 6) |
| 22 | #define TIMER_CTRL_ENABLE (1 << 7) |
| 23 | |
| 24 | typedef struct { |
| 25 | int64_t next_time; |
| 26 | int64_t expires; |
| 27 | int64_t loaded; |
| 28 | QEMUTimer *timer; |
| 29 | uint32_t control; |
| 30 | uint32_t count; |
| 31 | uint32_t limit; |
| 32 | int raw_freq; |
| 33 | int freq; |
| 34 | int int_level; |
| 35 | void *pic; |
| 36 | int irq; |
| 37 | } arm_timer_state; |
| 38 | |
| 39 | /* Calculate the new expiry time of the given timer. */ |
| 40 | |
| 41 | static void arm_timer_reload(arm_timer_state *s) |
| 42 | { |
| 43 | int64_t delay; |
| 44 | |
| 45 | s->loaded = s->expires; |
| 46 | delay = muldiv64(s->count, ticks_per_sec, s->freq); |
| 47 | if (delay == 0) |
| 48 | delay = 1; |
| 49 | s->expires += delay; |
| 50 | } |
| 51 | |
| 52 | /* Check all active timers, and schedule the next timer interrupt. */ |
| 53 | |
| 54 | static void arm_timer_update(arm_timer_state *s, int64_t now) |
| 55 | { |
| 56 | int64_t next; |
| 57 | |
| 58 | /* Ignore disabled timers. */ |
| 59 | if ((s->control & TIMER_CTRL_ENABLE) == 0) |
| 60 | return; |
| 61 | /* Ignore expired one-shot timers. */ |
| 62 | if (s->count == 0 && (s->control & TIMER_CTRL_ONESHOT)) |
| 63 | return; |
| 64 | if (s->expires - now <= 0) { |
| 65 | /* Timer has expired. */ |
| 66 | s->int_level = 1; |
| 67 | if (s->control & TIMER_CTRL_ONESHOT) { |
| 68 | /* One-shot. */ |
| 69 | s->count = 0; |
| 70 | } else { |
| 71 | if ((s->control & TIMER_CTRL_PERIODIC) == 0) { |
| 72 | /* Free running. */ |
| 73 | if (s->control & TIMER_CTRL_32BIT) |
| 74 | s->count = 0xffffffff; |
| 75 | else |
| 76 | s->count = 0xffff; |
| 77 | } else { |
| 78 | /* Periodic. */ |
| 79 | s->count = s->limit; |
| 80 | } |
| 81 | } |
| 82 | } |
| 83 | while (s->expires - now <= 0) { |
| 84 | arm_timer_reload(s); |
| 85 | } |
| 86 | /* Update interrupts. */ |
| 87 | if (s->int_level && (s->control & TIMER_CTRL_IE)) { |
| 88 | pic_set_irq_new(s->pic, s->irq, 1); |
| 89 | } else { |
| 90 | pic_set_irq_new(s->pic, s->irq, 0); |
| 91 | } |
| 92 | |
| 93 | next = now; |
| 94 | if (next - s->expires < 0) |
| 95 | next = s->expires; |
| 96 | |
| 97 | /* Schedule the next timer interrupt. */ |
| 98 | if (next == now) { |
| 99 | qemu_del_timer(s->timer); |
| 100 | s->next_time = 0; |
| 101 | } else if (next != s->next_time) { |
| 102 | qemu_mod_timer(s->timer, next); |
| 103 | s->next_time = next; |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | /* Return the current value of the timer. */ |
| 108 | static uint32_t arm_timer_getcount(arm_timer_state *s, int64_t now) |
| 109 | { |
| 110 | int64_t elapsed; |
| 111 | int64_t period; |
| 112 | |
| 113 | if (s->count == 0) |
| 114 | return 0; |
| 115 | if ((s->control & TIMER_CTRL_ENABLE) == 0) |
| 116 | return s->count; |
| 117 | elapsed = now - s->loaded; |
| 118 | period = s->expires - s->loaded; |
| 119 | /* If the timer should have expired then return 0. This can happen |
| 120 | when the host timer signal doesnt occur immediately. It's better to |
| 121 | have a timer appear to sit at zero for a while than have it wrap |
| 122 | around before the guest interrupt is raised. */ |
| 123 | /* ??? Could we trigger the interrupt here? */ |
| 124 | if (elapsed > period) |
| 125 | return 0; |
| 126 | /* We need to calculate count * elapsed / period without overfowing. |
| 127 | Scale both elapsed and period so they fit in a 32-bit int. */ |
| 128 | while (period != (int32_t)period) { |
| 129 | period >>= 1; |
| 130 | elapsed >>= 1; |
| 131 | } |
| 132 | return ((uint64_t)s->count * (uint64_t)(int32_t)elapsed) |
| 133 | / (int32_t)period; |
| 134 | } |
| 135 | |
| 136 | uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset) |
| 137 | { |
| 138 | arm_timer_state *s = (arm_timer_state *)opaque; |
| 139 | |
| 140 | switch (offset >> 2) { |
| 141 | case 0: /* TimerLoad */ |
| 142 | case 6: /* TimerBGLoad */ |
| 143 | return s->limit; |
| 144 | case 1: /* TimerValue */ |
| 145 | return arm_timer_getcount(s, qemu_get_clock(vm_clock)); |
| 146 | case 2: /* TimerControl */ |
| 147 | return s->control; |
| 148 | case 4: /* TimerRIS */ |
| 149 | return s->int_level; |
| 150 | case 5: /* TimerMIS */ |
| 151 | if ((s->control & TIMER_CTRL_IE) == 0) |
| 152 | return 0; |
| 153 | return s->int_level; |
| 154 | default: |
| 155 | cpu_abort (cpu_single_env, "arm_timer_read: Bad offset %x\n", offset); |
| 156 | return 0; |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | static void arm_timer_write(void *opaque, target_phys_addr_t offset, |
| 161 | uint32_t value) |
| 162 | { |
| 163 | arm_timer_state *s = (arm_timer_state *)opaque; |
| 164 | int64_t now; |
| 165 | |
| 166 | now = qemu_get_clock(vm_clock); |
| 167 | switch (offset >> 2) { |
| 168 | case 0: /* TimerLoad */ |
| 169 | s->limit = value; |
| 170 | s->count = value; |
| 171 | s->expires = now; |
| 172 | arm_timer_reload(s); |
| 173 | break; |
| 174 | case 1: /* TimerValue */ |
| 175 | /* ??? Linux seems to want to write to this readonly register. |
| 176 | Ignore it. */ |
| 177 | break; |
| 178 | case 2: /* TimerControl */ |
| 179 | if (s->control & TIMER_CTRL_ENABLE) { |
| 180 | /* Pause the timer if it is running. This may cause some |
| 181 | inaccuracy dure to rounding, but avoids a whole lot of other |
| 182 | messyness. */ |
| 183 | s->count = arm_timer_getcount(s, now); |
| 184 | } |
| 185 | s->control = value; |
| 186 | s->freq = s->raw_freq; |
| 187 | /* ??? Need to recalculate expiry time after changing divisor. */ |
| 188 | switch ((value >> 2) & 3) { |
| 189 | case 1: s->freq >>= 4; break; |
| 190 | case 2: s->freq >>= 8; break; |
| 191 | } |
| 192 | if (s->control & TIMER_CTRL_ENABLE) { |
| 193 | /* Restart the timer if still enabled. */ |
| 194 | s->expires = now; |
| 195 | arm_timer_reload(s); |
| 196 | } |
| 197 | break; |
| 198 | case 3: /* TimerIntClr */ |
| 199 | s->int_level = 0; |
| 200 | break; |
| 201 | case 6: /* TimerBGLoad */ |
| 202 | s->limit = value; |
| 203 | break; |
| 204 | default: |
| 205 | cpu_abort (cpu_single_env, "arm_timer_write: Bad offset %x\n", offset); |
| 206 | } |
| 207 | arm_timer_update(s, now); |
| 208 | } |
| 209 | |
| 210 | static void arm_timer_tick(void *opaque) |
| 211 | { |
| 212 | int64_t now; |
| 213 | |
| 214 | now = qemu_get_clock(vm_clock); |
| 215 | arm_timer_update((arm_timer_state *)opaque, now); |
| 216 | } |
| 217 | |
| 218 | static void *arm_timer_init(uint32_t freq, void *pic, int irq) |
| 219 | { |
| 220 | arm_timer_state *s; |
| 221 | |
| 222 | s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state)); |
| 223 | s->pic = pic; |
| 224 | s->irq = irq; |
| 225 | s->raw_freq = s->freq = 1000000; |
| 226 | s->control = TIMER_CTRL_IE; |
| 227 | s->count = 0xffffffff; |
| 228 | |
| 229 | s->timer = qemu_new_timer(vm_clock, arm_timer_tick, s); |
| 230 | /* ??? Save/restore. */ |
| 231 | return s; |
| 232 | } |
| 233 | |
| 234 | /* ARM PrimeCell SP804 dual timer module. |
| 235 | Docs for this device don't seem to be publicly available. This |
| 236 | implementation is based on gueswork, the linux kernel sources and the |
| 237 | Integrator/CP timer modules. */ |
| 238 | |
| 239 | typedef struct { |
| 240 | /* Include a pseudo-PIC device to merge the two interrupt sources. */ |
| 241 | arm_pic_handler handler; |
| 242 | void *timer[2]; |
| 243 | int level[2]; |
| 244 | uint32_t base; |
| 245 | /* The output PIC device. */ |
| 246 | void *pic; |
| 247 | int irq; |
| 248 | } sp804_state; |
| 249 | |
| 250 | static void sp804_set_irq(void *opaque, int irq, int level) |
| 251 | { |
| 252 | sp804_state *s = (sp804_state *)opaque; |
| 253 | |
| 254 | s->level[irq] = level; |
| 255 | pic_set_irq_new(s->pic, s->irq, s->level[0] || s->level[1]); |
| 256 | } |
| 257 | |
| 258 | static uint32_t sp804_read(void *opaque, target_phys_addr_t offset) |
| 259 | { |
| 260 | sp804_state *s = (sp804_state *)opaque; |
| 261 | |
| 262 | /* ??? Don't know the PrimeCell ID for this device. */ |
| 263 | offset -= s->base; |
| 264 | if (offset < 0x20) { |
| 265 | return arm_timer_read(s->timer[0], offset); |
| 266 | } else { |
| 267 | return arm_timer_read(s->timer[1], offset - 0x20); |
| 268 | } |
| 269 | } |
| 270 | |
| 271 | static void sp804_write(void *opaque, target_phys_addr_t offset, |
| 272 | uint32_t value) |
| 273 | { |
| 274 | sp804_state *s = (sp804_state *)opaque; |
| 275 | |
| 276 | offset -= s->base; |
| 277 | if (offset < 0x20) { |
| 278 | arm_timer_write(s->timer[0], offset, value); |
| 279 | } else { |
| 280 | arm_timer_write(s->timer[1], offset - 0x20, value); |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | static CPUReadMemoryFunc *sp804_readfn[] = { |
| 285 | sp804_read, |
| 286 | sp804_read, |
| 287 | sp804_read |
| 288 | }; |
| 289 | |
| 290 | static CPUWriteMemoryFunc *sp804_writefn[] = { |
| 291 | sp804_write, |
| 292 | sp804_write, |
| 293 | sp804_write |
| 294 | }; |
| 295 | |
| 296 | void sp804_init(uint32_t base, void *pic, int irq) |
| 297 | { |
| 298 | int iomemtype; |
| 299 | sp804_state *s; |
| 300 | |
| 301 | s = (sp804_state *)qemu_mallocz(sizeof(sp804_state)); |
| 302 | s->handler = sp804_set_irq; |
| 303 | s->base = base; |
| 304 | s->pic = pic; |
| 305 | s->irq = irq; |
| 306 | /* ??? The timers are actually configurable between 32kHz and 1MHz, but |
| 307 | we don't implement that. */ |
| 308 | s->timer[0] = arm_timer_init(1000000, s, 0); |
| 309 | s->timer[1] = arm_timer_init(1000000, s, 1); |
| 310 | iomemtype = cpu_register_io_memory(0, sp804_readfn, |
| 311 | sp804_writefn, s); |
| 312 | cpu_register_physical_memory(base, 0x00000fff, iomemtype); |
| 313 | /* ??? Save/restore. */ |
| 314 | } |
| 315 | |
| 316 | |
| 317 | /* Integrator/CP timer module. */ |
| 318 | |
| 319 | typedef struct { |
| 320 | void *timer[3]; |
| 321 | uint32_t base; |
| 322 | } icp_pit_state; |
| 323 | |
| 324 | static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset) |
| 325 | { |
| 326 | icp_pit_state *s = (icp_pit_state *)opaque; |
| 327 | int n; |
| 328 | |
| 329 | /* ??? Don't know the PrimeCell ID for this device. */ |
| 330 | offset -= s->base; |
| 331 | n = offset >> 8; |
| 332 | if (n > 3) |
| 333 | cpu_abort(cpu_single_env, "sp804_read: Bad timer %d\n", n); |
| 334 | |
| 335 | return arm_timer_read(s->timer[n], offset & 0xff); |
| 336 | } |
| 337 | |
| 338 | static void icp_pit_write(void *opaque, target_phys_addr_t offset, |
| 339 | uint32_t value) |
| 340 | { |
| 341 | icp_pit_state *s = (icp_pit_state *)opaque; |
| 342 | int n; |
| 343 | |
| 344 | offset -= s->base; |
| 345 | n = offset >> 8; |
| 346 | if (n > 3) |
| 347 | cpu_abort(cpu_single_env, "sp804_write: Bad timer %d\n", n); |
| 348 | |
| 349 | arm_timer_write(s->timer[n], offset & 0xff, value); |
| 350 | } |
| 351 | |
| 352 | |
| 353 | static CPUReadMemoryFunc *icp_pit_readfn[] = { |
| 354 | icp_pit_read, |
| 355 | icp_pit_read, |
| 356 | icp_pit_read |
| 357 | }; |
| 358 | |
| 359 | static CPUWriteMemoryFunc *icp_pit_writefn[] = { |
| 360 | icp_pit_write, |
| 361 | icp_pit_write, |
| 362 | icp_pit_write |
| 363 | }; |
| 364 | |
| 365 | void icp_pit_init(uint32_t base, void *pic, int irq) |
| 366 | { |
| 367 | int iomemtype; |
| 368 | icp_pit_state *s; |
| 369 | |
| 370 | s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state)); |
| 371 | s->base = base; |
| 372 | /* Timer 0 runs at the system clock speed (40MHz). */ |
| 373 | s->timer[0] = arm_timer_init(40000000, pic, irq); |
| 374 | /* The other two timers run at 1MHz. */ |
| 375 | s->timer[1] = arm_timer_init(1000000, pic, irq + 1); |
| 376 | s->timer[2] = arm_timer_init(1000000, pic, irq + 2); |
| 377 | |
| 378 | iomemtype = cpu_register_io_memory(0, icp_pit_readfn, |
| 379 | icp_pit_writefn, s); |
| 380 | cpu_register_physical_memory(base, 0x00000fff, iomemtype); |
| 381 | /* ??? Save/restore. */ |
| 382 | } |
| 383 | |