blob: f344d2ea50f56e22eca5a7ea017ab631c9498dbb [file] [log] [blame]
bellard158142c2005-03-13 16:54:06 +00001/*============================================================================
2
3This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
4Package, Release 2b.
5
6Written by John R. Hauser. This work was made possible in part by the
7International Computer Science Institute, located at Suite 600, 1947 Center
8Street, Berkeley, California 94704. Funding was partially provided by the
9National Science Foundation under grant MIP-9311980. The original version
10of this code was written as part of a project to build a fixed-point vector
11processor in collaboration with the University of California at Berkeley,
12overseen by Profs. Nelson Morgan and John Wawrzynek. More information
13is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
14arithmetic/SoftFloat.html'.
15
16THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
17been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
18RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
19AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
20COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
21EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
22INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
23OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
24
25Derivative works are acceptable, even for commercial purposes, so long as
26(1) the source code for the derivative work includes prominent notice that
27the work is derivative, and (2) the source code includes prominent notice with
28these four paragraphs for those parts of this code that are retained.
29
30=============================================================================*/
31
32#ifndef SOFTFLOAT_H
33#define SOFTFLOAT_H
34
ths0475a5c2007-04-01 18:54:44 +000035#if defined(HOST_SOLARIS) && defined(NEEDS_LIBSUNMATH)
36#include <sunmath.h>
37#endif
38
bellard158142c2005-03-13 16:54:06 +000039#include <inttypes.h>
40#include "config.h"
41
42/*----------------------------------------------------------------------------
43| Each of the following `typedef's defines the most convenient type that holds
44| integers of at least as many bits as specified. For example, `uint8' should
45| be the most convenient type that can hold unsigned integers of as many as
46| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
47| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
48| to the same as `int'.
49*----------------------------------------------------------------------------*/
bellard750afe92006-10-28 19:27:11 +000050typedef uint8_t flag;
bellard158142c2005-03-13 16:54:06 +000051typedef uint8_t uint8;
52typedef int8_t int8;
53typedef int uint16;
54typedef int int16;
55typedef unsigned int uint32;
56typedef signed int int32;
57typedef uint64_t uint64;
58typedef int64_t int64;
59
60/*----------------------------------------------------------------------------
61| Each of the following `typedef's defines a type that holds integers
62| of _exactly_ the number of bits specified. For instance, for most
63| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
64| `unsigned short int' and `signed short int' (or `short int'), respectively.
65*----------------------------------------------------------------------------*/
66typedef uint8_t bits8;
67typedef int8_t sbits8;
68typedef uint16_t bits16;
69typedef int16_t sbits16;
70typedef uint32_t bits32;
71typedef int32_t sbits32;
72typedef uint64_t bits64;
73typedef int64_t sbits64;
74
75#define LIT64( a ) a##LL
76#define INLINE static inline
77
78/*----------------------------------------------------------------------------
79| The macro `FLOATX80' must be defined to enable the extended double-precision
80| floating-point format `floatx80'. If this macro is not defined, the
81| `floatx80' type will not be defined, and none of the functions that either
82| input or output the `floatx80' type will be defined. The same applies to
83| the `FLOAT128' macro and the quadruple-precision format `float128'.
84*----------------------------------------------------------------------------*/
85#ifdef CONFIG_SOFTFLOAT
86/* bit exact soft float support */
87#define FLOATX80
88#define FLOAT128
89#else
90/* native float support */
91#if (defined(__i386__) || defined(__x86_64__)) && !defined(_BSD)
92#define FLOATX80
93#endif
94#endif /* !CONFIG_SOFTFLOAT */
95
96#define STATUS_PARAM , float_status *status
97#define STATUS(field) status->field
98#define STATUS_VAR , status
99
bellard1d6bda32005-03-13 18:52:29 +0000100/*----------------------------------------------------------------------------
101| Software IEC/IEEE floating-point ordering relations
102*----------------------------------------------------------------------------*/
103enum {
104 float_relation_less = -1,
105 float_relation_equal = 0,
106 float_relation_greater = 1,
107 float_relation_unordered = 2
108};
109
bellard158142c2005-03-13 16:54:06 +0000110#ifdef CONFIG_SOFTFLOAT
111/*----------------------------------------------------------------------------
112| Software IEC/IEEE floating-point types.
113*----------------------------------------------------------------------------*/
114typedef uint32_t float32;
115typedef uint64_t float64;
116#ifdef FLOATX80
117typedef struct {
118 uint64_t low;
119 uint16_t high;
120} floatx80;
121#endif
122#ifdef FLOAT128
123typedef struct {
124#ifdef WORDS_BIGENDIAN
125 uint64_t high, low;
126#else
127 uint64_t low, high;
128#endif
129} float128;
130#endif
131
132/*----------------------------------------------------------------------------
133| Software IEC/IEEE floating-point underflow tininess-detection mode.
134*----------------------------------------------------------------------------*/
135enum {
136 float_tininess_after_rounding = 0,
137 float_tininess_before_rounding = 1
138};
139
140/*----------------------------------------------------------------------------
141| Software IEC/IEEE floating-point rounding mode.
142*----------------------------------------------------------------------------*/
143enum {
144 float_round_nearest_even = 0,
145 float_round_down = 1,
146 float_round_up = 2,
147 float_round_to_zero = 3
148};
149
150/*----------------------------------------------------------------------------
151| Software IEC/IEEE floating-point exception flags.
152*----------------------------------------------------------------------------*/
153enum {
154 float_flag_invalid = 1,
155 float_flag_divbyzero = 4,
156 float_flag_overflow = 8,
157 float_flag_underflow = 16,
158 float_flag_inexact = 32
159};
160
161typedef struct float_status {
162 signed char float_detect_tininess;
163 signed char float_rounding_mode;
164 signed char float_exception_flags;
165#ifdef FLOATX80
166 signed char floatx80_rounding_precision;
167#endif
168} float_status;
169
170void set_float_rounding_mode(int val STATUS_PARAM);
bellard1d6bda32005-03-13 18:52:29 +0000171void set_float_exception_flags(int val STATUS_PARAM);
172INLINE int get_float_exception_flags(float_status *status)
173{
174 return STATUS(float_exception_flags);
175}
bellard158142c2005-03-13 16:54:06 +0000176#ifdef FLOATX80
177void set_floatx80_rounding_precision(int val STATUS_PARAM);
178#endif
179
180/*----------------------------------------------------------------------------
181| Routine to raise any or all of the software IEC/IEEE floating-point
182| exception flags.
183*----------------------------------------------------------------------------*/
bellardec530c82006-04-25 22:36:06 +0000184void float_raise( int8 flags STATUS_PARAM);
bellard158142c2005-03-13 16:54:06 +0000185
186/*----------------------------------------------------------------------------
187| Software IEC/IEEE integer-to-floating-point conversion routines.
188*----------------------------------------------------------------------------*/
189float32 int32_to_float32( int STATUS_PARAM );
190float64 int32_to_float64( int STATUS_PARAM );
bellard1d6bda32005-03-13 18:52:29 +0000191float32 uint32_to_float32( unsigned int STATUS_PARAM );
192float64 uint32_to_float64( unsigned int STATUS_PARAM );
bellard158142c2005-03-13 16:54:06 +0000193#ifdef FLOATX80
194floatx80 int32_to_floatx80( int STATUS_PARAM );
195#endif
196#ifdef FLOAT128
197float128 int32_to_float128( int STATUS_PARAM );
198#endif
199float32 int64_to_float32( int64_t STATUS_PARAM );
j_mayer75d62a52007-03-20 22:10:42 +0000200float32 uint64_to_float32( uint64_t STATUS_PARAM );
bellard158142c2005-03-13 16:54:06 +0000201float64 int64_to_float64( int64_t STATUS_PARAM );
j_mayer75d62a52007-03-20 22:10:42 +0000202float64 uint64_to_float64( uint64_t STATUS_PARAM );
bellard158142c2005-03-13 16:54:06 +0000203#ifdef FLOATX80
204floatx80 int64_to_floatx80( int64_t STATUS_PARAM );
205#endif
206#ifdef FLOAT128
207float128 int64_to_float128( int64_t STATUS_PARAM );
208#endif
209
210/*----------------------------------------------------------------------------
211| Software IEC/IEEE single-precision conversion routines.
212*----------------------------------------------------------------------------*/
213int float32_to_int32( float32 STATUS_PARAM );
214int float32_to_int32_round_to_zero( float32 STATUS_PARAM );
bellard1d6bda32005-03-13 18:52:29 +0000215unsigned int float32_to_uint32( float32 STATUS_PARAM );
216unsigned int float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
bellard158142c2005-03-13 16:54:06 +0000217int64_t float32_to_int64( float32 STATUS_PARAM );
218int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM );
219float64 float32_to_float64( float32 STATUS_PARAM );
220#ifdef FLOATX80
221floatx80 float32_to_floatx80( float32 STATUS_PARAM );
222#endif
223#ifdef FLOAT128
224float128 float32_to_float128( float32 STATUS_PARAM );
225#endif
226
227/*----------------------------------------------------------------------------
228| Software IEC/IEEE single-precision operations.
229*----------------------------------------------------------------------------*/
230float32 float32_round_to_int( float32 STATUS_PARAM );
231float32 float32_add( float32, float32 STATUS_PARAM );
232float32 float32_sub( float32, float32 STATUS_PARAM );
233float32 float32_mul( float32, float32 STATUS_PARAM );
234float32 float32_div( float32, float32 STATUS_PARAM );
235float32 float32_rem( float32, float32 STATUS_PARAM );
236float32 float32_sqrt( float32 STATUS_PARAM );
bellard750afe92006-10-28 19:27:11 +0000237int float32_eq( float32, float32 STATUS_PARAM );
238int float32_le( float32, float32 STATUS_PARAM );
239int float32_lt( float32, float32 STATUS_PARAM );
240int float32_eq_signaling( float32, float32 STATUS_PARAM );
241int float32_le_quiet( float32, float32 STATUS_PARAM );
242int float32_lt_quiet( float32, float32 STATUS_PARAM );
243int float32_compare( float32, float32 STATUS_PARAM );
244int float32_compare_quiet( float32, float32 STATUS_PARAM );
ths924b2c02007-05-31 16:17:52 +0000245int float32_is_nan( float32 );
bellard750afe92006-10-28 19:27:11 +0000246int float32_is_signaling_nan( float32 );
bellard158142c2005-03-13 16:54:06 +0000247
bellard1d6bda32005-03-13 18:52:29 +0000248INLINE float32 float32_abs(float32 a)
249{
250 return a & 0x7fffffff;
251}
252
253INLINE float32 float32_chs(float32 a)
254{
255 return a ^ 0x80000000;
256}
257
bellard158142c2005-03-13 16:54:06 +0000258/*----------------------------------------------------------------------------
259| Software IEC/IEEE double-precision conversion routines.
260*----------------------------------------------------------------------------*/
261int float64_to_int32( float64 STATUS_PARAM );
262int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
bellard1d6bda32005-03-13 18:52:29 +0000263unsigned int float64_to_uint32( float64 STATUS_PARAM );
264unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
bellard158142c2005-03-13 16:54:06 +0000265int64_t float64_to_int64( float64 STATUS_PARAM );
266int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
j_mayer75d62a52007-03-20 22:10:42 +0000267uint64_t float64_to_uint64 (float64 a STATUS_PARAM);
268uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
bellard158142c2005-03-13 16:54:06 +0000269float32 float64_to_float32( float64 STATUS_PARAM );
270#ifdef FLOATX80
271floatx80 float64_to_floatx80( float64 STATUS_PARAM );
272#endif
273#ifdef FLOAT128
274float128 float64_to_float128( float64 STATUS_PARAM );
275#endif
276
277/*----------------------------------------------------------------------------
278| Software IEC/IEEE double-precision operations.
279*----------------------------------------------------------------------------*/
280float64 float64_round_to_int( float64 STATUS_PARAM );
pbrooke6e59062006-10-22 00:18:54 +0000281float64 float64_trunc_to_int( float64 STATUS_PARAM );
bellard158142c2005-03-13 16:54:06 +0000282float64 float64_add( float64, float64 STATUS_PARAM );
283float64 float64_sub( float64, float64 STATUS_PARAM );
284float64 float64_mul( float64, float64 STATUS_PARAM );
285float64 float64_div( float64, float64 STATUS_PARAM );
286float64 float64_rem( float64, float64 STATUS_PARAM );
287float64 float64_sqrt( float64 STATUS_PARAM );
bellard750afe92006-10-28 19:27:11 +0000288int float64_eq( float64, float64 STATUS_PARAM );
289int float64_le( float64, float64 STATUS_PARAM );
290int float64_lt( float64, float64 STATUS_PARAM );
291int float64_eq_signaling( float64, float64 STATUS_PARAM );
292int float64_le_quiet( float64, float64 STATUS_PARAM );
293int float64_lt_quiet( float64, float64 STATUS_PARAM );
294int float64_compare( float64, float64 STATUS_PARAM );
295int float64_compare_quiet( float64, float64 STATUS_PARAM );
ths924b2c02007-05-31 16:17:52 +0000296int float64_is_nan( float64 a );
bellard750afe92006-10-28 19:27:11 +0000297int float64_is_signaling_nan( float64 );
bellard158142c2005-03-13 16:54:06 +0000298
bellard1d6bda32005-03-13 18:52:29 +0000299INLINE float64 float64_abs(float64 a)
300{
301 return a & 0x7fffffffffffffffLL;
302}
303
304INLINE float64 float64_chs(float64 a)
305{
306 return a ^ 0x8000000000000000LL;
307}
308
bellard158142c2005-03-13 16:54:06 +0000309#ifdef FLOATX80
310
311/*----------------------------------------------------------------------------
312| Software IEC/IEEE extended double-precision conversion routines.
313*----------------------------------------------------------------------------*/
314int floatx80_to_int32( floatx80 STATUS_PARAM );
315int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
316int64_t floatx80_to_int64( floatx80 STATUS_PARAM );
317int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
318float32 floatx80_to_float32( floatx80 STATUS_PARAM );
319float64 floatx80_to_float64( floatx80 STATUS_PARAM );
320#ifdef FLOAT128
321float128 floatx80_to_float128( floatx80 STATUS_PARAM );
322#endif
323
324/*----------------------------------------------------------------------------
325| Software IEC/IEEE extended double-precision operations.
326*----------------------------------------------------------------------------*/
327floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
328floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
329floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
330floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
331floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
332floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
333floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
bellard750afe92006-10-28 19:27:11 +0000334int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
335int floatx80_le( floatx80, floatx80 STATUS_PARAM );
336int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
337int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
338int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
339int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
ths924b2c02007-05-31 16:17:52 +0000340int floatx80_is_nan( floatx80 );
bellard750afe92006-10-28 19:27:11 +0000341int floatx80_is_signaling_nan( floatx80 );
bellard158142c2005-03-13 16:54:06 +0000342
bellard1d6bda32005-03-13 18:52:29 +0000343INLINE floatx80 floatx80_abs(floatx80 a)
344{
345 a.high &= 0x7fff;
346 return a;
347}
348
349INLINE floatx80 floatx80_chs(floatx80 a)
350{
351 a.high ^= 0x8000;
352 return a;
353}
354
bellard158142c2005-03-13 16:54:06 +0000355#endif
356
357#ifdef FLOAT128
358
359/*----------------------------------------------------------------------------
360| Software IEC/IEEE quadruple-precision conversion routines.
361*----------------------------------------------------------------------------*/
362int float128_to_int32( float128 STATUS_PARAM );
363int float128_to_int32_round_to_zero( float128 STATUS_PARAM );
364int64_t float128_to_int64( float128 STATUS_PARAM );
365int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM );
366float32 float128_to_float32( float128 STATUS_PARAM );
367float64 float128_to_float64( float128 STATUS_PARAM );
368#ifdef FLOATX80
369floatx80 float128_to_floatx80( float128 STATUS_PARAM );
370#endif
371
372/*----------------------------------------------------------------------------
373| Software IEC/IEEE quadruple-precision operations.
374*----------------------------------------------------------------------------*/
375float128 float128_round_to_int( float128 STATUS_PARAM );
376float128 float128_add( float128, float128 STATUS_PARAM );
377float128 float128_sub( float128, float128 STATUS_PARAM );
378float128 float128_mul( float128, float128 STATUS_PARAM );
379float128 float128_div( float128, float128 STATUS_PARAM );
380float128 float128_rem( float128, float128 STATUS_PARAM );
381float128 float128_sqrt( float128 STATUS_PARAM );
bellard750afe92006-10-28 19:27:11 +0000382int float128_eq( float128, float128 STATUS_PARAM );
383int float128_le( float128, float128 STATUS_PARAM );
384int float128_lt( float128, float128 STATUS_PARAM );
385int float128_eq_signaling( float128, float128 STATUS_PARAM );
386int float128_le_quiet( float128, float128 STATUS_PARAM );
387int float128_lt_quiet( float128, float128 STATUS_PARAM );
ths924b2c02007-05-31 16:17:52 +0000388int float128_is_nan( float128 );
bellard750afe92006-10-28 19:27:11 +0000389int float128_is_signaling_nan( float128 );
bellard158142c2005-03-13 16:54:06 +0000390
bellard1d6bda32005-03-13 18:52:29 +0000391INLINE float128 float128_abs(float128 a)
392{
393 a.high &= 0x7fffffffffffffffLL;
394 return a;
395}
396
397INLINE float128 float128_chs(float128 a)
398{
399 a.high ^= 0x8000000000000000LL;
400 return a;
401}
402
bellard158142c2005-03-13 16:54:06 +0000403#endif
404
405#else /* CONFIG_SOFTFLOAT */
406
407#include "softfloat-native.h"
408
409#endif /* !CONFIG_SOFTFLOAT */
410
411#endif /* !SOFTFLOAT_H */