blob: b0b0bb270cf511baaaa46f4dee3ad29fd9feb9b8 [file] [log] [blame]
/*
* TI OMAP on-chip I2C controller. Only "new I2C" mode supported.
*
* Copyright (C) 2007 Andrzej Zaborowski <balrog@zabor.org>
* Copyright (C) 2009 Nokia Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "hw.h"
#include "i2c.h"
#include "omap.h"
#include "sysbus.h"
#define I2C_MAX_FIFO_SIZE (1 << 6)
#define I2C_FIFO_SIZE_MASK ((I2C_MAX_FIFO_SIZE) - 1)
typedef struct omap_i2c_bus_s {
i2c_bus *bus;
qemu_irq irq;
qemu_irq drq[2];
uint8_t revision;
int fifosize;
char *id;
uint16_t mask;
uint16_t stat;
uint16_t we;
uint16_t dma;
uint16_t count;
int count_cur;
uint16_t sysc;
uint16_t control;
uint16_t own_addr[4];
uint16_t slave_addr;
uint8_t sblock;
uint8_t divider;
uint16_t times[2];
uint16_t test;
int fifostart;
int fifolen;
uint8_t fifo[I2C_MAX_FIFO_SIZE];
} OMAPI2CBusState;
typedef struct omap_i2c_s {
SysBusDevice busdev;
int32_t mpu_model;
int buscount;
OMAPI2CBusState *bus;
} OMAPI2CState;
/* I2C controller revision register values */
#define OMAP1_INTR_REV 0x11
#define OMAP2_INTR_REV 0x34
#define OMAP3_INTR_REV 0x3c
#define OMAP3630_INTR_REV 0x40
//#define I2C_DEBUG
#ifdef I2C_DEBUG
#define TRACE(fmt, ...) \
fprintf(stderr, "%s " fmt "\n", __FUNCTION__, ##__VA_ARGS__)
#else
#define TRACE(...)
#endif
static void omap_i2c_interrupts_update(OMAPI2CBusState *s)
{
TRACE("IRQ=%04x,RDRQ=%d,XDRQ=%d",
s->stat & s->mask,
((s->dma >> 15 ) & 1) & ((s->stat >> 3) & 1),
((s->dma >> 7 ) & 1 )& ((s->stat >> 4 ) & 1));
qemu_set_irq(s->irq, s->stat & s->mask);
if ((s->dma >> 15) & 1) /* RDMA_EN */
qemu_set_irq(s->drq[0], (s->stat >> 3) & 1); /* RRDY */
if ((s->dma >> 7) & 1) /* XDMA_EN */
qemu_set_irq(s->drq[1], (s->stat >> 4) & 1); /* XRDY */
}
static void omap_i2c_fifo_run(OMAPI2CBusState *s)
{
int ack = 1, i;
if (!i2c_bus_busy(s->bus))
return;
if ((s->control >> 2) & 1) { /* RM */
if ((s->control >> 1) & 1) { /* STP */
i2c_end_transfer(s->bus);
s->control &= ~(1 << 1); /* STP */
s->count_cur = s->count;
s->fifolen = 0;
} else if ((s->control >> 9) & 1) { /* TRX */
while (ack && s->fifolen) {
ack = (i2c_send(s->bus, s->fifo[s->fifostart++]) >= 0);
s->fifostart &= I2C_FIFO_SIZE_MASK;
s->fifolen--;
}
s->fifolen = 0;
s->stat |= 1 << 4; /* XRDY */
} else {
for (i = 0; i < 4; i++)
s->fifo[(s->fifostart + i) & I2C_FIFO_SIZE_MASK] =
i2c_recv(s->bus);
s->fifolen = 4;
s->stat |= 1 << 3; /* RRDY */
}
} else {
if ((s->control >> 9) & 1) { /* TRX */
TRACE("master transmit, count_cur=%d, fifolen=%d",
s->count_cur, s->fifolen);
for (; ack && s->count_cur && s->fifolen; s->count_cur--) {
ack = (i2c_send(s->bus, s->fifo[s->fifostart++]) >= 0);
s->fifostart &= I2C_FIFO_SIZE_MASK;
s->fifolen--;
}
s->stat &= ~0x4410; /* XDR | XUDF | XRDY */
if (ack && s->count_cur) { /* send more? */
/* we know that FIFO is empty */
if (s->revision < OMAP3_INTR_REV)
s->stat |= 1 << 4; /* XRDY */
else {
if (s->count_cur > (s->dma & 0x3f)) /* XTRSH */
s->stat |= 1 << 4; /* XRDY */
else
s->stat |= 1 << 14; /* XDR */
}
}
if (!s->count_cur) /* everything sent? */
s->stat |= 1 << 2; /* ARDY */
} else { /* !TRX */
TRACE("master receive");
for (; s->count_cur && s->fifolen < s->fifosize; s->count_cur--) {
i = i2c_recv(s->bus);
if (i < 0) break; /* stop receiving if nothing to receive */
s->fifo[(s->fifostart + s->fifolen++) & I2C_FIFO_SIZE_MASK] =
(uint8_t)(i & 0xff);
TRACE("received fifo[%02x] = %02x", s->fifolen - 1,
s->fifo[(s->fifostart + s->fifolen - 1)
& I2C_FIFO_SIZE_MASK]);
}
s->stat &= ~((1 << 3) | (1 << 13)); /* RRDY | RDR */
if (s->fifolen) {
if (s->revision < OMAP3_INTR_REV)
s->stat |= 1 << 3; /* RRDY */
else {
if (s->fifolen > ((s->dma >> 8) & 0x3f)) /* RTRSH */
s->stat |= 1 << 3; /* RRDY */
else
s->stat |= 1 << 13; /* RDR */
}
} else if (!s->count_cur && (s->control & 2)) /* STP */
s->stat |= 1 << 2; /* ARDY */
}
if (!s->count_cur) {
TRACE("no more data to transmit/receive");
i2c_end_transfer(s->bus);
if ((s->control >> 1) & 1) { /* STP */
s->control &= ~0x0602; /* MST | TRX | STP */
s->count_cur = s->count;
}
}
}
s->stat |= (!ack) << 1; /* NACK */
if (!ack)
s->control &= ~(1 << 1); /* STP */
TRACE("finished, STAT = %04x, CNT = %d", s->stat, s->count_cur);
}
static void omap_i2c_bus_reset(OMAPI2CBusState *s)
{
s->mask = 0;
s->stat = 0;
s->dma = 0;
s->count = 0;
s->count_cur = 0;
s->we = 0;
s->sysc = 0;
s->fifolen = 0;
s->fifostart = 0;
s->control = 0;
s->own_addr[0] = 0;
s->own_addr[1] = 0;
s->own_addr[2] = 0;
s->own_addr[3] = 0;
s->slave_addr = 0;
s->sblock = 0;
s->divider = 0;
s->times[0] = 0;
s->times[1] = 0;
s->test = 0;
i2c_end_transfer(s->bus);
}
static uint32_t omap_i2c_read(void *opaque, target_phys_addr_t addr)
{
OMAPI2CBusState *s = opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
uint16_t ret;
switch (offset) {
case 0x00: /* I2C_REV */
TRACE("REV returns %04x", s->revision);
return s->revision;
case 0x04: /* I2C_IE */
TRACE("IE returns %04x", s->mask);
return s->mask;
case 0x08: /* I2C_STAT */
ret = s->stat | (i2c_bus_busy(s->bus) << 12 );
if (s->revision >= OMAP3_INTR_REV
&& (s->stat & 0x4010)) { /* XRDY or XDR */
s->stat |= 1 << 10; /* XUDF as required by errata 1.153 */
}
TRACE("STAT returns %04x", ret);
return ret;
case 0x0c: /* I2C_IV / I2C_WE */
if (s->revision >= OMAP3_INTR_REV)
return s->we;
if (s->revision >= OMAP2_INTR_REV)
break;
ret = ffs(s->stat & s->mask);
if (ret)
s->stat ^= 1 << (ret - 1);
omap_i2c_interrupts_update(s);
return ret;
case 0x10: /* I2C_SYSS */
return (s->control >> 15) & 1; /* reset completed == I2C_EN */
case 0x14: /* I2C_BUF */
TRACE("BUF returns %04x", s->dma);
return s->dma;
case 0x18: /* I2C_CNT */
TRACE("CNT returns %04x", s->count_cur);
return s->count_cur; /* DCOUNT */
case 0x1c: /* I2C_DATA */
ret = 0;
if (s->fifolen) {
if (s->revision < OMAP3_INTR_REV) {
if (s->control & (1 << 14)) /* BE */
ret = (((uint16_t)s->fifo[s->fifostart]) << 8)
| s->fifo[(s->fifostart + 1) & I2C_FIFO_SIZE_MASK];
else
ret = (((uint16_t)s->fifo[(s->fifostart + 1)
& I2C_FIFO_SIZE_MASK]) << 8)
| s->fifo[s->fifostart];
s->fifostart = (s->fifostart + 2) & I2C_FIFO_SIZE_MASK;
if (s->fifolen == 1) {
s->stat |= 1 << 15; /* SBD */
s->fifolen = 0;
} else
s->fifolen -= 2;
if (!s->fifolen) {
s->stat &= ~(1 << 3); /* RRDY */
s->stat |= 1 << 2; /* ARDY */
}
} else {
s->stat &= ~(1 << 7); /* AERR */
ret = s->fifo[s->fifostart++];
s->fifostart &= I2C_FIFO_SIZE_MASK;
if (--s->fifolen) {
if (s->fifolen <= ((s->dma >> 8) & 0x3f)) {
s->stat &= ~(1 << 3); /* RRDY */
s->stat |= 1 << 13; /* RDR */
}
} else {
s->stat &= ~((1 << 3) | (1 << 13)); /* RRDY | RDR */
s->stat |= 1 << 2; /* ARDY */
}
}
s->stat &= ~(1 << 11); /* ROVR */
} else if (s->revision >= OMAP3_INTR_REV)
s->stat |= (1 << 7); /* AERR */
TRACE("DATA returns %04x", ret);
omap_i2c_fifo_run(s);
omap_i2c_interrupts_update(s);
return ret;
case 0x20: /* I2C_SYSC */
TRACE("SYSC returns %04x", s->sysc);
return s->sysc;
case 0x24: /* I2C_CON */
TRACE("CON returns %04x", s->control);
return s->control;
case 0x28: /* I2C_OA / I2C_OA0 */
return s->own_addr[0];
case 0x2c: /* I2C_SA */
return s->slave_addr;
case 0x30: /* I2C_PSC */
return s->divider;
case 0x34: /* I2C_SCLL */
return s->times[0];
case 0x38: /* I2C_SCLH */
return s->times[1];
case 0x3c: /* I2C_SYSTEST */
if (s->test & (1 << 15)) { /* ST_EN */
s->test ^= 0xa;
return s->test;
}
return s->test & ~0x300f;
case 0x40: /* I2C_BUFSTAT */
if (s->revision >= OMAP3_INTR_REV) {
switch (s->fifosize) {
case 8: ret = 0x0000; break;
case 16: ret = 0x4000; break;
case 32: ret = 0x8000; break;
case 64: ret = 0xc000; break;
default: ret = 0x0000; break;
}
ret |= ((s->fifolen) & 0x3f) << 8; /* RXSTAT */
ret |= (s->count_cur) & 0x3f; /* TXSTAT */
TRACE("BUFSTAT returns %04x", ret);
return ret;
}
break;
case 0x44: /* I2C_OA1 */
case 0x48: /* I2C_OA2 */
case 0x4c: /* I2C_OA3 */
if (s->revision >= OMAP3_INTR_REV)
return s->own_addr[(addr >> 2) & 3];
break;
case 0x50: /* I2C_ACTOA */
if (s->revision >= OMAP3_INTR_REV)
return 0; /* TODO: determine accessed slave own address */
break;
case 0x54: /* I2C_SBLOCK */
if (s->revision >= OMAP3_INTR_REV)
return s->sblock;
break;
default:
break;
}
OMAP_BAD_REG(addr);
return 0;
}
static uint32_t omap_i2c_readb(void *opaque, target_phys_addr_t addr)
{
OMAPI2CBusState *s = opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
uint8_t ret;
switch (offset) {
case 0x1c: /* I2C_DATA */
ret = 0;
if (s->fifolen) {
if (s->revision < OMAP3_INTR_REV) {
if (s->control & (1 << 14)) /* BE */
ret = (((uint8_t)s->fifo[s->fifostart]) << 8)
| s->fifo[(s->fifostart + 1) & I2C_FIFO_SIZE_MASK];
else
ret = (((uint8_t)s->fifo[(s->fifostart + 1)
& I2C_FIFO_SIZE_MASK]) << 8)
| s->fifo[s->fifostart];
s->fifostart = (s->fifostart + 2) & I2C_FIFO_SIZE_MASK;
if (s->fifolen == 1) {
s->stat |= 1 << 15; /* SBD */
s->fifolen = 0;
} else
s->fifolen -= 2;
if (!s->fifolen) {
s->stat &= ~(1 << 3); /* RRDY */
s->stat |= 1 << 2; /* ARDY */
}
} else {
s->stat &= ~(1 << 7); /* AERR */
ret = (uint8_t)s->fifo[s->fifostart++];
s->fifostart &= I2C_FIFO_SIZE_MASK;
if (--s->fifolen) {
if (s->fifolen <= ((s->dma >> 8) & 0x3f)) {
s->stat &= ~(1 << 3); /* RRDY */
s->stat |= 1 << 13; /* RDR */
}
} else {
s->stat &= ~((1 << 3) | (1 << 13)); /* RRDY | RDR */
s->stat |= 1 << 2; /* ARDY */
}
}
s->stat &= ~(1 << 11); /* ROVR */
} else if (s->revision >= OMAP3_INTR_REV)
s->stat |= (1 << 7); /* AERR */
TRACE("DATA returns %04x", ret);
omap_i2c_fifo_run(s);
omap_i2c_interrupts_update(s);
return ret;
default:
break;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_i2c_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
OMAPI2CBusState *s = opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
int nack;
switch (offset) {
case 0x00: /* I2C_REV */
case 0x10: /* I2C_SYSS */
case 0x40: /* I2C_BUFSTAT */
case 0x50: /* I2C_ACTOA */
OMAP_RO_REG(addr);
break;
case 0x04: /* I2C_IE */
TRACE("IE = %04x", value);
if (s->revision < OMAP2_INTR_REV) {
s->mask = value & 0x1f;
} else if (s->revision < OMAP3_INTR_REV) {
s->mask = value & 0x3f;
} else if (s->revision == OMAP3_INTR_REV) {
s->mask = value & 0x63ff;
} else { /* omap3630 */
s->mask = value & 0x6fff;
}
omap_i2c_interrupts_update(s);
break;
case 0x08: /* I2C_STAT */
if (s->revision < OMAP2_INTR_REV) {
OMAP_RO_REG(addr);
} else {
TRACE("STAT = %04x", value);
/* RRDY and XRDY are reset by hardware. (in all versions???) */
if (s->revision < OMAP3_INTR_REV) {
value &= 0x27;
} else if (s->revision == OMAP3_INTR_REV) {
value &= 0x63e7;
} else { /* omap3630 */
value &= 0x6ee7;
}
s->stat &= ~value;
omap_i2c_interrupts_update(s);
}
break;
case 0x0c: /* I2C_IV / I2C_WE */
if (s->revision < OMAP3_INTR_REV) {
OMAP_RO_REG(addr);
} else if (s->revision == OMAP3_INTR_REV) {
s->we = value & 0x636f;
} else { /* omap3630 */
s->we = value & 0x6f6f;
}
break;
case 0x14: /* I2C_BUF */
TRACE("BUF = %04x", value);
if (s->revision < OMAP3_INTR_REV)
s->dma = value & 0x8080;
else {
s->dma = value & 0xbfbf;
if ((value & (1 << 14)) /* RXFIFO_CLR */
|| (value & (1 << 6))) /* TXFIFO_CLR */
s->fifolen = 0;
}
if (value & (1 << 15)) /* RDMA_EN */
s->mask &= ~(1 << 3); /* RRDY_IE */
if (value & (1 << 7)) /* XDMA_EN */
s->mask &= ~(1 << 4); /* XRDY_IE */
break;
case 0x18: /* I2C_CNT */
TRACE("CNT = %04x", value);
s->count = value; /* DCOUNT */
break;
case 0x1c: /* I2C_DATA */
TRACE("DATA = %04x", value);
if (s->revision < OMAP3_INTR_REV) {
if (s->fifolen > 2) {
/* XXX: remote access (qualifier) error - what's that? */
break;
}
if (s->control & (1 << 14)) { /* BE */
s->fifo[(s->fifostart + s->fifolen++)
& I2C_FIFO_SIZE_MASK] =
(uint8_t)((value >> 8) & 0xff);
s->fifo[(s->fifostart + s->fifolen++)
& I2C_FIFO_SIZE_MASK] =
(uint8_t)(value & 0xff);
} else {
s->fifo[(s->fifostart + s->fifolen++)
& I2C_FIFO_SIZE_MASK] =
(uint8_t)(value & 0xff);
s->fifo[(s->fifostart + s->fifolen++)
& I2C_FIFO_SIZE_MASK] =
(uint8_t)((value >> 8) & 0xff);
}
} else {
if (s->fifolen < s->fifosize) {
s->stat &= ~(1 << 7); /* AERR */
s->fifo[(s->fifostart + s->fifolen++)
& I2C_FIFO_SIZE_MASK] =
(uint8_t)(value & 0xff);
} else
s->stat |= (1 << 7); /* AERR */
}
s->stat &= ~(1 << 10); /* XUDF */
omap_i2c_fifo_run(s);
omap_i2c_interrupts_update(s);
break;
case 0x20: /* I2C_SYSC */
if (s->revision < OMAP2_INTR_REV) {
OMAP_BAD_REG(addr);
break;
}
TRACE("SYSC = %04x", value);
if (value & 2)
omap_i2c_bus_reset(s);
else if (s->revision >= OMAP3_INTR_REV)
s->sysc = value & 0x031d;
break;
case 0x24: /* I2C_CON */
TRACE("CON = %04x", value);
s->control = value & (s->revision < OMAP3_INTR_REV
? 0xcf87 : 0xbff3);
if (~value & (1 << 15)) { /* I2C_EN */
if (s->revision < OMAP2_INTR_REV)
omap_i2c_bus_reset(s);
break;
}
if (s->revision >= OMAP3_INTR_REV &&
((value >> 12) & 3) > 1) { /* OPMODE */
fprintf(stderr,
"%s: only FS and HS modes are supported\n",
__FUNCTION__);
break;
}
if ((value & (1 << 10))) { /* MST */
if (value & 1) { /* STT */
nack = !!i2c_start_transfer(s->bus, s->slave_addr, /*SA*/
(~value >> 9) & 1); /*TRX*/
s->stat |= nack << 1; /* NACK */
s->control &= ~(1 << 0); /* STT */
s->fifolen = 0;
if (nack)
s->control &= ~(1 << 1); /* STP */
else {
s->count_cur = s->count;
omap_i2c_fifo_run(s);
}
omap_i2c_interrupts_update(s);
} else if (value & 2) { /* STP, but not STT */
i2c_end_transfer(s->bus);
s->control &= ~0x0602; /* MST | TRX | STP */
s->count_cur = s->count;
}
}
break;
case 0x28: /* I2C_OA / I2C_OA0 */
TRACE("OA0 = %04x", value);
s->own_addr[0] = value & (s->revision < OMAP3_INTR_REV
? 0x3ff : 0xe3ff);
/*i2c_set_slave_address(&s->slave[0],
value & (s->revision >= OMAP3_INTR_REV
&& (s->control & 0x80)
? 0x3ff: 0x7f));*/
break;
case 0x2c: /* I2C_SA */
TRACE("SA = %04x", value);
s->slave_addr = value & 0x3ff;
break;
case 0x30: /* I2C_PSC */
s->divider = value;
break;
case 0x34: /* I2C_SCLL */
s->times[0] = value & (s->revision < OMAP3_INTR_REV
? 0xff : 0xffff);
break;
case 0x38: /* I2C_SCLH */
s->times[1] = value & (s->revision < OMAP3_INTR_REV
? 0xff : 0xffff);
break;
case 0x3c: /* I2C_SYSTEST */
if (s->revision < OMAP3_INTR_REV) {
value &= 0xf805;
} else if (s->revision == OMAP3_INTR_REV) {
value &= 0xf815;
} else { /* omap3630 */
value = (value & 0xf835) | 0x1c00;
}
if ((value & (1 << 15))) { /* ST_EN */
fprintf(stderr, "%s: System Test not supported\n",
__FUNCTION__);
s->test = (s->test & 0x0a) | value;
} else {
value &= ~0xff;
s->test = (s->test & 0x1f) | value;
}
if (value & (1 << 11)) { /* SBB */
if (s->revision >= OMAP2_INTR_REV) {
s->stat |= 0x3f;
if (s->revision >= OMAP3_INTR_REV) {
s->stat |= 0x6300;
if (s->revision > OMAP3_INTR_REV) {
s->stat |= 0x0c00;
}
}
omap_i2c_interrupts_update(s);
}
}
break;
case 0x44: /* I2C_OA1 */
case 0x48: /* I2C_OA2 */
case 0x4c: /* I2C_OA3 */
if (s->revision < OMAP3_INTR_REV) {
OMAP_BAD_REG(addr);
} else {
addr = (addr >> 2) & 3;
TRACE("OA%d = %04x", (int)addr, value);
s->own_addr[addr] = value & 0x3ff;
/*i2c_set_slave_address(&s->slave[addr],
value & ((s->control & (0x80 >> addr))
? 0x3ff: 0x7f));*/
}
break;
case 0x54: /* I2C_SBLOCK */
if (s->revision < OMAP3_INTR_REV)
OMAP_BAD_REG(addr);
else {
s->sblock = value & 0x0f;
}
break;
default:
OMAP_BAD_REG(addr);
break;
}
}
static void omap_i2c_writeb(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
OMAPI2CBusState *s = opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
switch (offset) {
case 0x1c: /* I2C_DATA */
TRACE("DATA = %02x", value);
if (s->revision < OMAP3_INTR_REV && s->fifolen > 2) {
/* XXX: remote access (qualifier) error - what's that? */
break;
}
if (s->fifolen < s->fifosize) {
s->fifo[(s->fifostart + s->fifolen++) & I2C_FIFO_SIZE_MASK] =
(uint8_t)(value & 0xff);
if (s->revision >= OMAP3_INTR_REV)
s->stat &= ~(1 << 7); /* AERR */
s->stat &= ~(1 << 10); /* XUDF */
omap_i2c_fifo_run(s);
} else if (s->revision >= OMAP3_INTR_REV)
s->stat |= (1 << 7); /* AERR */
omap_i2c_interrupts_update(s);
break;
default:
OMAP_BAD_REG(addr);
break;
}
}
static CPUReadMemoryFunc * const omap_i2c_readfn[] = {
omap_i2c_readb,
omap_i2c_read,
omap_i2c_read,
};
static CPUWriteMemoryFunc * const omap_i2c_writefn[] = {
omap_i2c_writeb, /* Only the last fifo write can be 8 bit. */
omap_i2c_write,
omap_i2c_write,
};
static int omap_i2c_bus_post_load(void *opaque, int version_id)
{
OMAPI2CBusState *s = opaque;
omap_i2c_interrupts_update(s);
return 0;
}
static const VMStateDescription vmstate_omap_i2c_bus = {
.name = "omap_i2c",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.post_load = omap_i2c_bus_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT16(mask, OMAPI2CBusState),
VMSTATE_UINT16(stat, OMAPI2CBusState),
VMSTATE_UINT16(we, OMAPI2CBusState),
VMSTATE_UINT16(dma, OMAPI2CBusState),
VMSTATE_UINT16(count, OMAPI2CBusState),
VMSTATE_INT32(count_cur, OMAPI2CBusState),
VMSTATE_UINT16(sysc, OMAPI2CBusState),
VMSTATE_UINT16(control, OMAPI2CBusState),
VMSTATE_UINT16_ARRAY(own_addr, OMAPI2CBusState, 4),
VMSTATE_UINT16(slave_addr, OMAPI2CBusState),
VMSTATE_UINT8(sblock, OMAPI2CBusState),
VMSTATE_UINT8(divider, OMAPI2CBusState),
VMSTATE_UINT16_ARRAY(times, OMAPI2CBusState, 2),
VMSTATE_UINT16(test, OMAPI2CBusState),
VMSTATE_INT32(fifostart, OMAPI2CBusState),
VMSTATE_INT32(fifolen, OMAPI2CBusState),
VMSTATE_INT32(fifosize, OMAPI2CBusState),
VMSTATE_UINT8_ARRAY(fifo, OMAPI2CBusState, I2C_MAX_FIFO_SIZE),
VMSTATE_END_OF_LIST()
}
};
static int omap_i2c_init(SysBusDevice *dev)
{
int i;
uint8_t rev;
OMAPI2CState *s = FROM_SYSBUS(OMAPI2CState, dev);
if (s->mpu_model < omap2410) {
rev = OMAP1_INTR_REV;
s->buscount = 1;
} else if (s->mpu_model < omap3430) {
rev = OMAP2_INTR_REV;
s->buscount = 2;
} else {
s->buscount = 3;
if (s->mpu_model < omap3630) {
rev = OMAP3_INTR_REV;
} else {
rev = OMAP3630_INTR_REV;
}
}
s->bus = g_new0(OMAPI2CBusState, s->buscount);
for (i = 0; i < s->buscount; i++) {
s->bus[i].revision = rev;
if (rev < OMAP3_INTR_REV) {
s->bus[i].fifosize = 4;
} else {
s->bus[i].fifosize = (i < 2) ? 8 : 64;
}
sysbus_init_irq(dev, &s->bus[i].irq);
sysbus_init_irq(dev, &s->bus[i].drq[0]);
sysbus_init_irq(dev, &s->bus[i].drq[1]);
sysbus_init_mmio(dev, (rev < OMAP2_INTR_REV) ? 0x800 : 0x1000,
cpu_register_io_memory(omap_i2c_readfn,
omap_i2c_writefn, &s->bus[i],
DEVICE_NATIVE_ENDIAN));
s->bus[i].bus = i2c_init_bus(&dev->qdev, NULL);
vmstate_register(&dev->qdev, i, &vmstate_omap_i2c_bus, &s->bus[i]);
}
return 0;
}
static void omap_i2c_reset(DeviceState *dev)
{
OMAPI2CState *s = FROM_SYSBUS(OMAPI2CState, sysbus_from_qdev(dev));
int i;
for (i = 0; i < s->buscount; i++) {
omap_i2c_bus_reset(&s->bus[i]);
}
}
static SysBusDeviceInfo omap_i2c_info = {
.init = omap_i2c_init,
.qdev.name = "omap_i2c",
.qdev.size = sizeof(OMAPI2CState),
.qdev.reset = omap_i2c_reset,
.qdev.props = (Property[]) {
DEFINE_PROP_INT32("mpu_model", OMAPI2CState, mpu_model, 0),
DEFINE_PROP_END_OF_LIST()
}
};
static void omap_i2c_register_devices(void)
{
sysbus_register_withprop(&omap_i2c_info);
}
i2c_bus *omap_i2c_bus(DeviceState *omap_i2c, int n)
{
OMAPI2CState *s = FROM_SYSBUS(OMAPI2CState, sysbus_from_qdev(omap_i2c));
if (n >= s->buscount) {
hw_error("%s: requested bus %d (maximum allowed bus number is %d)\n",
__FUNCTION__, n, s->buscount - 1);
}
return s->bus[n].bus;
}
device_init(omap_i2c_register_devices)