Damien George | 8bfec2b | 2014-03-10 13:27:02 +0000 | [diff] [blame^] | 1 | /*********************************************************************** |
| 2 | |
| 3 | formatfloat.c - Ruutine for converting a single-precision floating |
Dave Hylands | ca5a241 | 2014-03-10 00:10:01 -0700 | [diff] [blame] | 4 | point number into a string. |
Damien George | 8bfec2b | 2014-03-10 13:27:02 +0000 | [diff] [blame^] | 5 | |
Dave Hylands | ca5a241 | 2014-03-10 00:10:01 -0700 | [diff] [blame] | 6 | The code in this funcion was inspired from Fred Bayer's pdouble.c. |
| 7 | Since pdouble.c was released as Public Domain, I'm releasing this |
| 8 | code as public domain as well. |
Damien George | 8bfec2b | 2014-03-10 13:27:02 +0000 | [diff] [blame^] | 9 | |
Dave Hylands | ca5a241 | 2014-03-10 00:10:01 -0700 | [diff] [blame] | 10 | The original code can be found in https://github.com/dhylands/format-float |
Damien George | 8bfec2b | 2014-03-10 13:27:02 +0000 | [diff] [blame^] | 11 | |
Dave Hylands | ca5a241 | 2014-03-10 00:10:01 -0700 | [diff] [blame] | 12 | Dave Hylands |
Damien George | 8bfec2b | 2014-03-10 13:27:02 +0000 | [diff] [blame^] | 13 | |
Dave Hylands | ca5a241 | 2014-03-10 00:10:01 -0700 | [diff] [blame] | 14 | ***********************************************************************/ |
| 15 | |
Damien George | 8bfec2b | 2014-03-10 13:27:02 +0000 | [diff] [blame^] | 16 | #include <stdint.h> |
Dave Hylands | ca5a241 | 2014-03-10 00:10:01 -0700 | [diff] [blame] | 17 | #include <stdlib.h> |
| 18 | |
| 19 | #include "mpconfig.h" |
| 20 | |
| 21 | #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT |
Damien George | 8bfec2b | 2014-03-10 13:27:02 +0000 | [diff] [blame^] | 22 | #include "formatfloat.h" |
Dave Hylands | ca5a241 | 2014-03-10 00:10:01 -0700 | [diff] [blame] | 23 | |
| 24 | // 1 sign bit, 8 exponent bits, and 23 mantissa bits. |
| 25 | // exponent values 0 and 255 are reserved, exponent can be 1 to 254. |
| 26 | // exponent is stored with a bias of 127. |
| 27 | // The min and max floats are on the order of 1x10^37 and 1x10^-37 |
| 28 | |
| 29 | #define FLT_SIGN_MASK 0x80000000 |
| 30 | #define FLT_EXP_MASK 0x7F800000 |
| 31 | #define FLT_MAN_MASK 0x007FFFFF |
| 32 | |
| 33 | static const float g_pos_pow[] = { |
| 34 | 1e32, 1e16, 1e8, 1e4, 1e2, 1e1 |
| 35 | }; |
| 36 | static const float g_neg_pow[] = { |
| 37 | 1e-32, 1e-16, 1e-8, 1e-4, 1e-2, 1e-1 |
| 38 | }; |
| 39 | |
| 40 | int format_float(float f, char *buf, size_t buf_size, char fmt, int prec, char sign) { |
| 41 | |
| 42 | char *s = buf; |
| 43 | int buf_remaining = buf_size - 1; |
| 44 | |
| 45 | union { |
| 46 | float f; |
| 47 | uint32_t u; |
| 48 | } num = {f}; |
| 49 | |
| 50 | if (buf_size < 7) { |
| 51 | // Smallest exp notion is -9e+99 which is 6 chars plus terminating |
| 52 | // nulll. |
| 53 | |
| 54 | if (buf_size >= 2) { |
| 55 | *s++ = '?'; |
| 56 | } |
| 57 | if (buf_size >= 1) { |
| 58 | *s++ = '\0'; |
| 59 | } |
| 60 | return buf_size >= 2; |
| 61 | } |
| 62 | if (num.u & FLT_SIGN_MASK) { |
| 63 | *s++ = '-'; |
| 64 | num.u &= ~FLT_SIGN_MASK; |
| 65 | } else { |
| 66 | if (sign) { |
| 67 | *s++ = sign; |
| 68 | } |
| 69 | } |
| 70 | buf_remaining -= (s - buf); // Adjust for sign |
| 71 | |
| 72 | if ((num.u & FLT_EXP_MASK) == FLT_EXP_MASK) { |
| 73 | char uc = fmt & 0x20; |
| 74 | if ((num.u & FLT_MAN_MASK) == 0) { |
| 75 | *s++ = 'I' ^ uc; |
| 76 | *s++ = 'N' ^ uc; |
| 77 | *s++ = 'F' ^ uc; |
| 78 | } else { |
| 79 | *s++ = 'N' ^ uc; |
| 80 | *s++ = 'A' ^ uc; |
| 81 | *s++ = 'N' ^ uc; |
| 82 | } |
| 83 | *s = '\0'; |
| 84 | return s - buf; |
| 85 | } |
| 86 | |
| 87 | if (prec < 0) { |
| 88 | prec = 6; |
| 89 | } |
| 90 | char e_char = 'E' | (fmt & 0x20); // e_char will match case of fmt |
| 91 | fmt |= 0x20; // Force fmt to be lowercase |
| 92 | char org_fmt = fmt; |
| 93 | if (fmt == 'g' && prec == 0) { |
| 94 | prec = 1; |
| 95 | } |
| 96 | int e, e1; |
| 97 | int dec = 0; |
| 98 | char e_sign = '\0'; |
| 99 | int num_digits = 0; |
| 100 | const float *pos_pow = g_pos_pow; |
| 101 | const float *neg_pow = g_neg_pow; |
| 102 | |
| 103 | if (num.u == 0) { |
| 104 | e = 0; |
| 105 | if (fmt == 'e') { |
| 106 | e_sign = '+'; |
| 107 | } else if (fmt == 'f') { |
| 108 | num_digits = prec + 1; |
| 109 | } |
| 110 | } else if (num.u < 0x3f800000) { // f < 1.0 |
| 111 | // Build negative exponent |
| 112 | for (e = 0, e1 = 32; e1; e1 >>= 1, pos_pow++, neg_pow++) { |
| 113 | if (*neg_pow > num.f) { |
| 114 | e += e1; |
| 115 | num.f *= *pos_pow; |
| 116 | } |
| 117 | } |
| 118 | if (num.f < 1.0F && num.f >= 0.9999995F) { |
| 119 | num.f = 1.0F; |
| 120 | } else { |
| 121 | e++; |
| 122 | num.f *= 10.0F; |
| 123 | } |
| 124 | |
| 125 | // If the user specified 'g' format, and e is <= 4, then we'll switch |
| 126 | // to the fixed format ('f') |
| 127 | |
| 128 | if (fmt == 'f' || (fmt == 'g' && e <= 4)) { |
| 129 | fmt = 'f'; |
| 130 | dec = -1; |
| 131 | *s++ = '0'; |
| 132 | |
| 133 | if (prec + e + 1 > buf_remaining) { |
| 134 | prec = buf_remaining - e - 1; |
| 135 | } |
| 136 | |
| 137 | if (org_fmt == 'g') { |
| 138 | prec += (e - 1); |
| 139 | } |
| 140 | num_digits = prec; |
| 141 | if (num_digits) { |
| 142 | *s++ = '.'; |
| 143 | while (--e && num_digits) { |
| 144 | *s++ = '0'; |
| 145 | num_digits--; |
| 146 | } |
| 147 | } |
| 148 | } else { |
| 149 | // For e & g formats, we'll be printing the exponent, so set the |
| 150 | // sign. |
| 151 | e_sign = '-'; |
| 152 | dec = 0; |
| 153 | |
| 154 | if (prec > (buf_remaining - 6)) { |
| 155 | prec = buf_remaining - 6; |
| 156 | if (fmt == 'g') { |
| 157 | prec++; |
| 158 | } |
| 159 | } |
| 160 | } |
| 161 | } else { |
| 162 | // Build positive exponent |
| 163 | for (e = 0, e1 = 32; e1; e1 >>= 1, pos_pow++, neg_pow++) { |
| 164 | if (*pos_pow <= num.f) { |
| 165 | e += e1; |
| 166 | num.f *= *neg_pow; |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | // If the user specified fixed format (fmt == 'f') and e makes the |
| 171 | // number too big to fit into the available buffer, then we'll |
| 172 | // switch to the 'e' format. |
| 173 | |
| 174 | if (fmt == 'f') { |
| 175 | if (e >= buf_remaining) { |
| 176 | fmt = 'e'; |
| 177 | } else if ((e + prec + 2) > buf_remaining) { |
| 178 | prec = buf_remaining - e - 2; |
| 179 | if (prec < 0) { |
| 180 | // This means no decimal point, so we can add one back |
| 181 | // for the decimal. |
| 182 | prec++; |
| 183 | } |
| 184 | } |
| 185 | } |
| 186 | if (fmt == 'e' && prec > (buf_remaining - 6)) { |
| 187 | prec = buf_remaining - 6; |
| 188 | } |
| 189 | // If the user specified 'g' format, and e is < prec, then we'll switch |
| 190 | // to the fixed format. |
| 191 | |
| 192 | if (fmt == 'g' && e < prec) { |
| 193 | fmt = 'f'; |
| 194 | prec -= (e + 1); |
| 195 | } |
| 196 | if (fmt == 'f') { |
| 197 | dec = e; |
| 198 | num_digits = prec + e + 1; |
| 199 | } else { |
| 200 | e_sign = '+'; |
| 201 | } |
| 202 | } |
| 203 | if (prec < 0) { |
| 204 | // This can happen when the prec is trimmed to prevent buffer overflow |
| 205 | prec = 0; |
| 206 | } |
| 207 | |
| 208 | // We now have num.f as a floating point number between >= 1 and < 10 |
| 209 | // (or equal to zero), and e contains the absolute value of the power of |
| 210 | // 10 exponent. and (dec + 1) == the number of dgits before the decimal. |
| 211 | |
| 212 | // For e, prec is # digits after the decimal |
| 213 | // For f, prec is # digits after the decimal |
| 214 | // For g, prec is the max number of significant digits |
| 215 | // |
| 216 | // For e & g there will be a single digit before the decimal |
| 217 | // for f there will be e digits before the decimal |
| 218 | |
| 219 | if (fmt == 'e') { |
| 220 | num_digits = prec + 1; |
| 221 | } else if (fmt == 'g') { |
| 222 | if (prec == 0) { |
| 223 | prec = 1; |
| 224 | } |
| 225 | num_digits = prec; |
| 226 | } |
| 227 | |
| 228 | // Print the digits of the mantissa |
| 229 | for (int i = 0; i < num_digits; ++i, --dec) { |
| 230 | int32_t d = num.f; |
| 231 | *s++ = '0' + d; |
| 232 | if (dec == 0 && prec > 0) { |
| 233 | *s++ = '.'; |
| 234 | } |
| 235 | num.f -= (float)d; |
| 236 | num.f *= 10.0F; |
| 237 | } |
| 238 | |
| 239 | // Round |
| 240 | if (num.f >= 5.0F) { |
| 241 | char *rs = s; |
| 242 | rs--; |
| 243 | while (1) { |
| 244 | if (*rs == '.') { |
| 245 | rs--; |
| 246 | continue; |
| 247 | } |
| 248 | if (*rs < '0' || *rs > '9') { |
| 249 | // + or - |
| 250 | rs++; // So we sit on the digit to the right of the sign |
| 251 | break; |
| 252 | } |
| 253 | if (*rs < '9') { |
| 254 | (*rs)++; |
| 255 | break; |
| 256 | } |
| 257 | *rs = '0'; |
| 258 | if (rs == buf) { |
| 259 | break; |
| 260 | } |
| 261 | rs--; |
| 262 | } |
| 263 | if (*rs == '0') { |
| 264 | // We need to insert a 1 |
| 265 | if (rs[1] == '.' && fmt != 'f') { |
| 266 | // We're going to round 9.99 to 10.00 |
| 267 | // Move the decimal point |
| 268 | rs[0] = '.'; |
| 269 | rs[1] = '0'; |
| 270 | if (e_sign == '-') { |
| 271 | e--; |
| 272 | } else { |
| 273 | e++; |
| 274 | } |
| 275 | } |
| 276 | s++; |
| 277 | char *ss = s; |
| 278 | while (ss > rs) { |
| 279 | *ss = ss[-1]; |
| 280 | ss--; |
| 281 | } |
| 282 | *rs = '1'; |
| 283 | } |
| 284 | if (num.u < 0x3f800000 && fmt == 'f') { |
| 285 | // We rounded up to 1.0 |
| 286 | prec--; |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | if (org_fmt == 'g' && prec > 0) { |
| 291 | // Remove trailing zeros and a trailing decimal point |
| 292 | while (s[-1] == '0') { |
| 293 | s--; |
| 294 | } |
| 295 | if (s[-1] == '.') { |
| 296 | s--; |
| 297 | } |
| 298 | } |
| 299 | // Append the exponent |
| 300 | if (e_sign) { |
| 301 | *s++ = e_char; |
| 302 | *s++ = e_sign; |
| 303 | *s++ = '0' + (e / 10); |
| 304 | *s++ = '0' + (e % 10); |
| 305 | } |
| 306 | *s = '\0'; |
| 307 | |
| 308 | return s - buf; |
| 309 | } |
| 310 | |
| 311 | #endif |