Dave Hylands | 4f1b7fe | 2014-06-15 22:33:14 -0700 | [diff] [blame] | 1 | /* |
| 2 | * This file is part of the Micro Python project, http://micropython.org/ |
| 3 | * |
| 4 | * The MIT License (MIT) |
| 5 | * |
| 6 | * Copyright (c) 2013, 2014 Damien P. George |
| 7 | * |
| 8 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 9 | * of this software and associated documentation files (the "Software"), to deal |
| 10 | * in the Software without restriction, including without limitation the rights |
| 11 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 12 | * copies of the Software, and to permit persons to whom the Software is |
| 13 | * furnished to do so, subject to the following conditions: |
| 14 | * |
| 15 | * The above copyright notice and this permission notice shall be included in |
| 16 | * all copies or substantial portions of the Software. |
| 17 | * |
| 18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 19 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 20 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 21 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 22 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 23 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 24 | * THE SOFTWARE. |
| 25 | */ |
| 26 | |
| 27 | #include <stdio.h> |
| 28 | #include <string.h> |
| 29 | |
Damien George | b68d98d | 2015-01-01 21:13:30 +0000 | [diff] [blame] | 30 | #include "py/nlr.h" |
| 31 | #include "py/runtime.h" |
Damien George | 7a37f64 | 2014-07-02 13:42:37 +0100 | [diff] [blame] | 32 | #include MICROPY_HAL_H |
Dave Hylands | 4f1b7fe | 2014-06-15 22:33:14 -0700 | [diff] [blame] | 33 | #include "bufhelper.h" |
| 34 | #include "uart.h" |
| 35 | |
| 36 | /// \moduleref pyb |
| 37 | /// \class UART - duplex serial communication bus |
| 38 | /// |
| 39 | /// UART implements the standard UART/USART duplex serial communications protocol. At |
| 40 | /// the physical level it consists of 2 lines: RX and TX. |
| 41 | /// |
| 42 | /// See usage model of I2C. UART is very similar. Main difference is |
| 43 | /// parameters to init the UART bus: |
| 44 | /// |
| 45 | /// from pyb import UART |
| 46 | /// |
| 47 | /// uart = UART(1, 9600) # init with given baudrate |
| 48 | /// uart.init(9600, bits=8, stop=1, parity=None) # init with given parameters |
| 49 | /// |
| 50 | /// Bits can be 8 or 9, stop can be 1 or 2, parity can be None, 0 (even), 1 (odd). |
| 51 | /// |
| 52 | /// Extra method: |
| 53 | /// |
| 54 | /// uart.any() # returns True if any characters waiting |
| 55 | |
| 56 | struct _pyb_uart_obj_t { |
| 57 | mp_obj_base_t base; |
| 58 | pyb_uart_t uart_id; |
| 59 | bool is_enabled; |
| 60 | // UART_HandleTypeDef uart; |
| 61 | }; |
| 62 | |
| 63 | pyb_uart_obj_t *pyb_uart_global_debug = NULL; |
| 64 | |
| 65 | // assumes Init parameters have been set up correctly |
| 66 | bool uart_init2(pyb_uart_obj_t *uart_obj) { |
| 67 | #if 0 |
| 68 | USART_TypeDef *UARTx = NULL; |
| 69 | |
| 70 | uint32_t GPIO_Pin = 0; |
| 71 | uint8_t GPIO_AF_UARTx = 0; |
| 72 | GPIO_TypeDef* GPIO_Port = NULL; |
| 73 | |
| 74 | switch (uart_obj->uart_id) { |
| 75 | // USART1 is on PA9/PA10 (CK on PA8), PB6/PB7 |
| 76 | case PYB_UART_1: |
| 77 | UARTx = USART1; |
| 78 | GPIO_AF_UARTx = GPIO_AF7_USART1; |
| 79 | |
| 80 | #if defined (PYBV4) || defined(PYBV10) |
| 81 | GPIO_Port = GPIOB; |
| 82 | GPIO_Pin = GPIO_PIN_6 | GPIO_PIN_7; |
| 83 | #else |
| 84 | GPIO_Port = GPIOA; |
| 85 | GPIO_Pin = GPIO_PIN_9 | GPIO_PIN_10; |
| 86 | #endif |
| 87 | |
| 88 | __USART1_CLK_ENABLE(); |
| 89 | break; |
| 90 | |
| 91 | // USART2 is on PA2/PA3 (CK on PA4), PD5/PD6 (CK on PD7) |
| 92 | case PYB_UART_2: |
| 93 | UARTx = USART2; |
| 94 | GPIO_AF_UARTx = GPIO_AF7_USART2; |
| 95 | |
| 96 | GPIO_Port = GPIOA; |
| 97 | GPIO_Pin = GPIO_PIN_2 | GPIO_PIN_3; |
| 98 | |
| 99 | __USART2_CLK_ENABLE(); |
| 100 | break; |
| 101 | |
| 102 | // USART3 is on PB10/PB11 (CK on PB12), PC10/PC11 (CK on PC12), PD8/PD9 (CK on PD10) |
| 103 | case PYB_UART_3: |
| 104 | UARTx = USART3; |
| 105 | GPIO_AF_UARTx = GPIO_AF7_USART3; |
| 106 | |
| 107 | #if defined(PYBV3) || defined(PYBV4) | defined(PYBV10) |
| 108 | GPIO_Port = GPIOB; |
| 109 | GPIO_Pin = GPIO_PIN_10 | GPIO_PIN_11; |
| 110 | #else |
| 111 | GPIO_Port = GPIOD; |
| 112 | GPIO_Pin = GPIO_PIN_8 | GPIO_PIN_9; |
| 113 | #endif |
| 114 | __USART3_CLK_ENABLE(); |
| 115 | break; |
| 116 | |
| 117 | // UART4 is on PA0/PA1, PC10/PC11 |
| 118 | case PYB_UART_4: |
| 119 | UARTx = UART4; |
| 120 | GPIO_AF_UARTx = GPIO_AF8_UART4; |
| 121 | |
| 122 | GPIO_Port = GPIOA; |
| 123 | GPIO_Pin = GPIO_PIN_0 | GPIO_PIN_1; |
| 124 | |
| 125 | __UART4_CLK_ENABLE(); |
| 126 | break; |
| 127 | |
| 128 | // USART6 is on PC6/PC7 (CK on PC8) |
| 129 | case PYB_UART_6: |
| 130 | UARTx = USART6; |
| 131 | GPIO_AF_UARTx = GPIO_AF8_USART6; |
| 132 | |
| 133 | GPIO_Port = GPIOC; |
| 134 | GPIO_Pin = GPIO_PIN_6 | GPIO_PIN_7; |
| 135 | |
| 136 | __USART6_CLK_ENABLE(); |
| 137 | break; |
| 138 | |
| 139 | default: |
| 140 | return false; |
| 141 | } |
| 142 | |
| 143 | // init GPIO |
| 144 | GPIO_InitTypeDef GPIO_InitStructure; |
| 145 | GPIO_InitStructure.Pin = GPIO_Pin; |
| 146 | GPIO_InitStructure.Speed = GPIO_SPEED_HIGH; |
| 147 | GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; |
| 148 | GPIO_InitStructure.Pull = GPIO_PULLUP; |
| 149 | GPIO_InitStructure.Alternate = GPIO_AF_UARTx; |
| 150 | HAL_GPIO_Init(GPIO_Port, &GPIO_InitStructure); |
| 151 | |
| 152 | // init UARTx |
| 153 | uart_obj->uart.Instance = UARTx; |
| 154 | HAL_UART_Init(&uart_obj->uart); |
| 155 | |
| 156 | uart_obj->is_enabled = true; |
| 157 | #endif |
| 158 | return true; |
| 159 | } |
| 160 | |
| 161 | bool uart_init(pyb_uart_obj_t *uart_obj, uint32_t baudrate) { |
| 162 | #if 0 |
| 163 | UART_HandleTypeDef *uh = &uart_obj->uart; |
| 164 | memset(uh, 0, sizeof(*uh)); |
| 165 | uh->Init.BaudRate = baudrate; |
| 166 | uh->Init.WordLength = UART_WORDLENGTH_8B; |
| 167 | uh->Init.StopBits = UART_STOPBITS_1; |
| 168 | uh->Init.Parity = UART_PARITY_NONE; |
| 169 | uh->Init.Mode = UART_MODE_TX_RX; |
| 170 | uh->Init.HwFlowCtl = UART_HWCONTROL_NONE; |
| 171 | uh->Init.OverSampling = UART_OVERSAMPLING_16; |
| 172 | #endif |
| 173 | return uart_init2(uart_obj); |
| 174 | } |
| 175 | |
Dave Hylands | 4f1b7fe | 2014-06-15 22:33:14 -0700 | [diff] [blame] | 176 | bool uart_rx_any(pyb_uart_obj_t *uart_obj) { |
| 177 | #if 0 |
| 178 | return __HAL_UART_GET_FLAG(&uart_obj->uart, UART_FLAG_RXNE); |
| 179 | #else |
| 180 | return false; |
| 181 | #endif |
| 182 | } |
| 183 | |
| 184 | int uart_rx_char(pyb_uart_obj_t *uart_obj) { |
| 185 | uint8_t ch; |
| 186 | #if 0 |
| 187 | if (HAL_UART_Receive(&uart_obj->uart, &ch, 1, 0) != HAL_OK) { |
| 188 | ch = 0; |
| 189 | } |
| 190 | #else |
| 191 | ch = 'A'; |
| 192 | #endif |
| 193 | return ch; |
| 194 | } |
| 195 | |
| 196 | void uart_tx_char(pyb_uart_obj_t *uart_obj, int c) { |
| 197 | #if 0 |
| 198 | uint8_t ch = c; |
| 199 | HAL_UART_Transmit(&uart_obj->uart, &ch, 1, 100000); |
| 200 | #endif |
| 201 | } |
| 202 | |
| 203 | void uart_tx_str(pyb_uart_obj_t *uart_obj, const char *str) { |
| 204 | #if 0 |
| 205 | HAL_UART_Transmit(&uart_obj->uart, (uint8_t*)str, strlen(str), 100000); |
| 206 | #endif |
| 207 | } |
| 208 | |
| 209 | void uart_tx_strn(pyb_uart_obj_t *uart_obj, const char *str, uint len) { |
| 210 | #if 0 |
| 211 | HAL_UART_Transmit(&uart_obj->uart, (uint8_t*)str, len, 100000); |
| 212 | #endif |
| 213 | } |
| 214 | |
| 215 | void uart_tx_strn_cooked(pyb_uart_obj_t *uart_obj, const char *str, uint len) { |
| 216 | for (const char *top = str + len; str < top; str++) { |
| 217 | if (*str == '\n') { |
| 218 | uart_tx_char(uart_obj, '\r'); |
| 219 | } |
| 220 | uart_tx_char(uart_obj, *str); |
| 221 | } |
| 222 | } |
| 223 | |
| 224 | /******************************************************************************/ |
| 225 | /* Micro Python bindings */ |
| 226 | |
| 227 | STATIC void pyb_uart_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { |
| 228 | pyb_uart_obj_t *self = self_in; |
| 229 | if (!self->is_enabled) { |
| 230 | print(env, "UART(%lu)", self->uart_id); |
| 231 | } else { |
| 232 | #if 0 |
| 233 | print(env, "UART(%lu, baudrate=%u, bits=%u, stop=%u", |
| 234 | self->uart_id, self->uart.Init.BaudRate, |
| 235 | self->uart.Init.WordLength == UART_WORDLENGTH_8B ? 8 : 9, |
| 236 | self->uart.Init.StopBits == UART_STOPBITS_1 ? 1 : 2); |
| 237 | if (self->uart.Init.Parity == UART_PARITY_NONE) { |
| 238 | print(env, ", parity=None)"); |
| 239 | } else { |
| 240 | print(env, ", parity=%u)", self->uart.Init.Parity == UART_PARITY_EVEN ? 0 : 1); |
| 241 | } |
| 242 | #endif |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | /// \method init(baudrate, *, bits=8, stop=1, parity=None) |
| 247 | /// |
| 248 | /// Initialise the SPI bus with the given parameters: |
| 249 | /// |
| 250 | /// - `baudrate` is the clock rate. |
| 251 | /// - `bits` is the number of bits per byte, 8 or 9. |
| 252 | /// - `stop` is the number of stop bits, 1 or 2. |
| 253 | /// - `parity` is the parity, `None`, 0 (even) or 1 (odd). |
| 254 | STATIC const mp_arg_t pyb_uart_init_args[] = { |
| 255 | { MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} }, |
| 256 | { MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, |
| 257 | { MP_QSTR_stop, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, |
| 258 | { MP_QSTR_parity, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, |
| 259 | }; |
Dave Hylands | 4d9dd26 | 2014-07-14 22:19:27 -0700 | [diff] [blame] | 260 | #define PYB_UART_INIT_NUM_ARGS MP_ARRAY_SIZE(pyb_uart_init_args) |
Dave Hylands | 4f1b7fe | 2014-06-15 22:33:14 -0700 | [diff] [blame] | 261 | |
| 262 | STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, uint n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| 263 | // parse args |
| 264 | mp_arg_val_t vals[PYB_UART_INIT_NUM_ARGS]; |
| 265 | mp_arg_parse_all(n_args, args, kw_args, PYB_UART_INIT_NUM_ARGS, pyb_uart_init_args, vals); |
| 266 | #if 0 |
| 267 | // set the UART configuration values |
| 268 | memset(&self->uart, 0, sizeof(self->uart)); |
| 269 | UART_InitTypeDef *init = &self->uart.Init; |
| 270 | init->BaudRate = vals[0].u_int; |
| 271 | init->WordLength = vals[1].u_int == 8 ? UART_WORDLENGTH_8B : UART_WORDLENGTH_9B; |
| 272 | switch (vals[2].u_int) { |
| 273 | case 1: init->StopBits = UART_STOPBITS_1; break; |
| 274 | default: init->StopBits = UART_STOPBITS_2; break; |
| 275 | } |
| 276 | if (vals[3].u_obj == mp_const_none) { |
| 277 | init->Parity = UART_PARITY_NONE; |
| 278 | } else { |
Damien George | 40f3c02 | 2014-07-03 13:25:24 +0100 | [diff] [blame] | 279 | mp_int_t parity = mp_obj_get_int(vals[3].u_obj); |
Dave Hylands | 4f1b7fe | 2014-06-15 22:33:14 -0700 | [diff] [blame] | 280 | init->Parity = (parity & 1) ? UART_PARITY_ODD : UART_PARITY_EVEN; |
| 281 | } |
| 282 | init->Mode = UART_MODE_TX_RX; |
| 283 | init->HwFlowCtl = UART_HWCONTROL_NONE; |
| 284 | init->OverSampling = UART_OVERSAMPLING_16; |
| 285 | |
| 286 | // init UART (if it fails, it's because the port doesn't exist) |
| 287 | if (!uart_init2(self)) { |
| 288 | nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART port %d does not exist", self->uart_id)); |
| 289 | } |
| 290 | #endif |
| 291 | |
| 292 | return mp_const_none; |
| 293 | } |
| 294 | |
| 295 | /// \classmethod \constructor(bus, ...) |
| 296 | /// |
| 297 | /// Construct a UART object on the given bus. `bus` can be 1-6, or 'XA', 'XB', 'YA', or 'YB'. |
| 298 | /// With no additional parameters, the UART object is created but not |
| 299 | /// initialised (it has the settings from the last initialisation of |
| 300 | /// the bus, if any). If extra arguments are given, the bus is initialised. |
| 301 | /// See `init` for parameters of initialisation. |
| 302 | /// |
| 303 | /// The physical pins of the UART busses are: |
| 304 | /// |
| 305 | /// - `UART(4)` is on `XA`: `(TX, RX) = (X1, X2) = (PA0, PA1)` |
| 306 | /// - `UART(1)` is on `XB`: `(TX, RX) = (X9, X10) = (PB6, PB7)` |
| 307 | /// - `UART(6)` is on `YA`: `(TX, RX) = (Y1, Y2) = (PC6, PC7)` |
| 308 | /// - `UART(3)` is on `YB`: `(TX, RX) = (Y9, Y10) = (PB10, PB11)` |
| 309 | /// - `UART(2)` is on: `(TX, RX) = (X3, X4) = (PA2, PA3)` |
| 310 | STATIC mp_obj_t pyb_uart_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) { |
| 311 | // check arguments |
| 312 | mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); |
| 313 | |
| 314 | // create object |
| 315 | pyb_uart_obj_t *o = m_new_obj(pyb_uart_obj_t); |
| 316 | o->base.type = &pyb_uart_type; |
| 317 | |
| 318 | // work out port |
| 319 | o->uart_id = 0; |
| 320 | #if 0 |
| 321 | if (MP_OBJ_IS_STR(args[0])) { |
| 322 | const char *port = mp_obj_str_get_str(args[0]); |
| 323 | if (0) { |
| 324 | #if defined(PYBV10) |
| 325 | } else if (strcmp(port, "XA") == 0) { |
| 326 | o->uart_id = PYB_UART_XA; |
| 327 | } else if (strcmp(port, "XB") == 0) { |
| 328 | o->uart_id = PYB_UART_XB; |
| 329 | } else if (strcmp(port, "YA") == 0) { |
| 330 | o->uart_id = PYB_UART_YA; |
| 331 | } else if (strcmp(port, "YB") == 0) { |
| 332 | o->uart_id = PYB_UART_YB; |
| 333 | #endif |
| 334 | } else { |
| 335 | nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART port %s does not exist", port)); |
| 336 | } |
| 337 | } else { |
| 338 | o->uart_id = mp_obj_get_int(args[0]); |
| 339 | } |
| 340 | #endif |
| 341 | |
| 342 | if (n_args > 1 || n_kw > 0) { |
| 343 | // start the peripheral |
| 344 | mp_map_t kw_args; |
| 345 | mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); |
| 346 | pyb_uart_init_helper(o, n_args - 1, args + 1, &kw_args); |
| 347 | } |
| 348 | |
| 349 | return o; |
| 350 | } |
| 351 | |
| 352 | STATIC mp_obj_t pyb_uart_init(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| 353 | return pyb_uart_init_helper(args[0], n_args - 1, args + 1, kw_args); |
| 354 | } |
| 355 | STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_init_obj, 1, pyb_uart_init); |
| 356 | |
| 357 | /// \method deinit() |
| 358 | /// Turn off the UART bus. |
| 359 | STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in) { |
Damien George | 481d714 | 2014-10-11 17:57:10 +0100 | [diff] [blame] | 360 | //pyb_uart_obj_t *self = self_in; |
| 361 | // TODO |
Dave Hylands | 4f1b7fe | 2014-06-15 22:33:14 -0700 | [diff] [blame] | 362 | return mp_const_none; |
| 363 | } |
| 364 | STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_deinit_obj, pyb_uart_deinit); |
| 365 | |
| 366 | /// \method any() |
| 367 | /// Return `True` if any characters waiting, else `False`. |
| 368 | STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) { |
| 369 | pyb_uart_obj_t *self = self_in; |
| 370 | if (uart_rx_any(self)) { |
| 371 | return mp_const_true; |
| 372 | } else { |
| 373 | return mp_const_false; |
| 374 | } |
| 375 | } |
| 376 | STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any); |
| 377 | |
| 378 | /// \method send(send, *, timeout=5000) |
| 379 | /// Send data on the bus: |
| 380 | /// |
| 381 | /// - `send` is the data to send (an integer to send, or a buffer object). |
| 382 | /// - `timeout` is the timeout in milliseconds to wait for the send. |
| 383 | /// |
| 384 | /// Return value: `None`. |
| 385 | STATIC const mp_arg_t pyb_uart_send_args[] = { |
| 386 | { MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, |
| 387 | { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, |
| 388 | }; |
Dave Hylands | 4d9dd26 | 2014-07-14 22:19:27 -0700 | [diff] [blame] | 389 | #define PYB_UART_SEND_NUM_ARGS MP_ARRAY_SIZE(pyb_uart_send_args) |
Dave Hylands | 4f1b7fe | 2014-06-15 22:33:14 -0700 | [diff] [blame] | 390 | |
| 391 | STATIC mp_obj_t pyb_uart_send(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| 392 | // TODO assumes transmission size is 8-bits wide |
| 393 | |
| 394 | pyb_uart_obj_t *self = args[0]; |
| 395 | |
| 396 | // parse args |
| 397 | mp_arg_val_t vals[PYB_UART_SEND_NUM_ARGS]; |
| 398 | mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_UART_SEND_NUM_ARGS, pyb_uart_send_args, vals); |
| 399 | |
| 400 | #if 0 |
| 401 | // get the buffer to send from |
| 402 | mp_buffer_info_t bufinfo; |
| 403 | uint8_t data[1]; |
| 404 | pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data); |
| 405 | |
| 406 | // send the data |
| 407 | HAL_StatusTypeDef status = HAL_UART_Transmit(&self->uart, bufinfo.buf, bufinfo.len, vals[1].u_int); |
| 408 | |
| 409 | if (status != HAL_OK) { |
| 410 | // TODO really need a HardwareError object, or something |
| 411 | nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_UART_Transmit failed with code %d", status)); |
| 412 | } |
| 413 | #else |
| 414 | (void)self; |
| 415 | #endif |
| 416 | |
| 417 | return mp_const_none; |
| 418 | } |
| 419 | STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_send_obj, 1, pyb_uart_send); |
| 420 | |
| 421 | /// \method recv(recv, *, timeout=5000) |
| 422 | /// |
| 423 | /// Receive data on the bus: |
| 424 | /// |
| 425 | /// - `recv` can be an integer, which is the number of bytes to receive, |
| 426 | /// or a mutable buffer, which will be filled with received bytes. |
| 427 | /// - `timeout` is the timeout in milliseconds to wait for the receive. |
| 428 | /// |
| 429 | /// Return value: if `recv` is an integer then a new buffer of the bytes received, |
| 430 | /// otherwise the same buffer that was passed in to `recv`. |
| 431 | STATIC const mp_arg_t pyb_uart_recv_args[] = { |
| 432 | { MP_QSTR_recv, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, |
| 433 | { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, |
| 434 | }; |
Dave Hylands | 4d9dd26 | 2014-07-14 22:19:27 -0700 | [diff] [blame] | 435 | #define PYB_UART_RECV_NUM_ARGS MP_ARRAY_SIZE(pyb_uart_recv_args) |
Dave Hylands | 4f1b7fe | 2014-06-15 22:33:14 -0700 | [diff] [blame] | 436 | |
| 437 | STATIC mp_obj_t pyb_uart_recv(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| 438 | // TODO assumes transmission size is 8-bits wide |
| 439 | |
| 440 | pyb_uart_obj_t *self = args[0]; |
| 441 | |
| 442 | #if 0 |
| 443 | // parse args |
| 444 | mp_arg_val_t vals[PYB_UART_RECV_NUM_ARGS]; |
| 445 | mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_UART_RECV_NUM_ARGS, pyb_uart_recv_args, vals); |
| 446 | |
| 447 | // get the buffer to receive into |
| 448 | mp_buffer_info_t bufinfo; |
| 449 | mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &bufinfo); |
| 450 | |
| 451 | // receive the data |
| 452 | HAL_StatusTypeDef status = HAL_UART_Receive(&self->uart, bufinfo.buf, bufinfo.len, vals[1].u_int); |
| 453 | |
| 454 | if (status != HAL_OK) { |
| 455 | // TODO really need a HardwareError object, or something |
| 456 | nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_UART_Receive failed with code %d", status)); |
| 457 | } |
| 458 | |
| 459 | // return the received data |
| 460 | if (o_ret == MP_OBJ_NULL) { |
| 461 | return vals[0].u_obj; |
| 462 | } else { |
| 463 | return mp_obj_str_builder_end(o_ret); |
| 464 | } |
| 465 | #else |
| 466 | (void)self; |
| 467 | return mp_const_none; |
| 468 | #endif |
| 469 | } |
| 470 | STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_recv_obj, 1, pyb_uart_recv); |
| 471 | |
| 472 | STATIC const mp_map_elem_t pyb_uart_locals_dict_table[] = { |
| 473 | // instance methods |
| 474 | { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_uart_init_obj }, |
| 475 | { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_uart_deinit_obj }, |
| 476 | { MP_OBJ_NEW_QSTR(MP_QSTR_any), (mp_obj_t)&pyb_uart_any_obj }, |
| 477 | { MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_uart_send_obj }, |
| 478 | { MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_uart_recv_obj }, |
| 479 | }; |
| 480 | |
| 481 | STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table); |
| 482 | |
| 483 | const mp_obj_type_t pyb_uart_type = { |
| 484 | { &mp_type_type }, |
| 485 | .name = MP_QSTR_UART, |
| 486 | .print = pyb_uart_print, |
| 487 | .make_new = pyb_uart_make_new, |
| 488 | .locals_dict = (mp_obj_t)&pyb_uart_locals_dict, |
| 489 | }; |