| /* |
| * This file is part of the MicroPython project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013-2017 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "py/builtin.h" |
| #include "py/runtime.h" |
| |
| #if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH |
| |
| #include <math.h> |
| |
| // M_PI is not part of the math.h standard and may not be defined |
| // And by defining our own we can ensure it uses the correct const format. |
| #define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846) |
| |
| STATIC NORETURN void math_error(void) { |
| mp_raise_ValueError("math domain error"); |
| } |
| |
| STATIC mp_obj_t math_generic_1(mp_obj_t x_obj, mp_float_t (*f)(mp_float_t)) { |
| mp_float_t x = mp_obj_get_float(x_obj); |
| mp_float_t ans = f(x); |
| if ((isnan(ans) && !isnan(x)) || (isinf(ans) && !isinf(x))) { |
| math_error(); |
| } |
| return mp_obj_new_float(ans); |
| } |
| |
| STATIC mp_obj_t math_generic_2(mp_obj_t x_obj, mp_obj_t y_obj, mp_float_t (*f)(mp_float_t, mp_float_t)) { |
| mp_float_t x = mp_obj_get_float(x_obj); |
| mp_float_t y = mp_obj_get_float(y_obj); |
| mp_float_t ans = f(x, y); |
| if ((isnan(ans) && !isnan(x) && !isnan(y)) || (isinf(ans) && !isinf(x))) { |
| math_error(); |
| } |
| return mp_obj_new_float(ans); |
| } |
| |
| #define MATH_FUN_1(py_name, c_name) \ |
| STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { \ |
| return math_generic_1(x_obj, MICROPY_FLOAT_C_FUN(c_name)); \ |
| } \ |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name); |
| |
| #define MATH_FUN_1_TO_BOOL(py_name, c_name) \ |
| STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_bool(c_name(mp_obj_get_float(x_obj))); } \ |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name); |
| |
| #define MATH_FUN_1_TO_INT(py_name, c_name) \ |
| STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_int_from_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \ |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name); |
| |
| #define MATH_FUN_2(py_name, c_name) \ |
| STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj, mp_obj_t y_obj) { \ |
| return math_generic_2(x_obj, y_obj, MICROPY_FLOAT_C_FUN(c_name)); \ |
| } \ |
| STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_## py_name ## _obj, mp_math_ ## py_name); |
| |
| #define MATH_FUN_2_FLT_INT(py_name, c_name) \ |
| STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj, mp_obj_t y_obj) { \ |
| return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj), mp_obj_get_int(y_obj))); \ |
| } \ |
| STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_## py_name ## _obj, mp_math_ ## py_name); |
| |
| #if MP_NEED_LOG2 |
| #undef log2 |
| #undef log2f |
| // 1.442695040888963407354163704 is 1/_M_LN2 |
| mp_float_t MICROPY_FLOAT_C_FUN(log2)(mp_float_t x) { |
| return MICROPY_FLOAT_C_FUN(log)(x) * MICROPY_FLOAT_CONST(1.442695040888963407354163704); |
| } |
| #endif |
| |
| // sqrt(x): returns the square root of x |
| MATH_FUN_1(sqrt, sqrt) |
| // pow(x, y): returns x to the power of y |
| MATH_FUN_2(pow, pow) |
| // exp(x) |
| MATH_FUN_1(exp, exp) |
| #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS |
| // expm1(x) |
| MATH_FUN_1(expm1, expm1) |
| // log2(x) |
| MATH_FUN_1(log2, log2) |
| // log10(x) |
| MATH_FUN_1(log10, log10) |
| // cosh(x) |
| MATH_FUN_1(cosh, cosh) |
| // sinh(x) |
| MATH_FUN_1(sinh, sinh) |
| // tanh(x) |
| MATH_FUN_1(tanh, tanh) |
| // acosh(x) |
| MATH_FUN_1(acosh, acosh) |
| // asinh(x) |
| MATH_FUN_1(asinh, asinh) |
| // atanh(x) |
| MATH_FUN_1(atanh, atanh) |
| #endif |
| // cos(x) |
| MATH_FUN_1(cos, cos) |
| // sin(x) |
| MATH_FUN_1(sin, sin) |
| // tan(x) |
| MATH_FUN_1(tan, tan) |
| // acos(x) |
| MATH_FUN_1(acos, acos) |
| // asin(x) |
| MATH_FUN_1(asin, asin) |
| // atan(x) |
| MATH_FUN_1(atan, atan) |
| // atan2(y, x) |
| MATH_FUN_2(atan2, atan2) |
| // ceil(x) |
| MATH_FUN_1_TO_INT(ceil, ceil) |
| // copysign(x, y) |
| STATIC mp_float_t MICROPY_FLOAT_C_FUN(copysign_func)(mp_float_t x, mp_float_t y) { |
| return MICROPY_FLOAT_C_FUN(copysign)(x, y); |
| } |
| MATH_FUN_2(copysign, copysign_func) |
| // fabs(x) |
| STATIC mp_float_t MICROPY_FLOAT_C_FUN(fabs_func)(mp_float_t x) { |
| return MICROPY_FLOAT_C_FUN(fabs)(x); |
| } |
| MATH_FUN_1(fabs, fabs_func) |
| // floor(x) |
| MATH_FUN_1_TO_INT(floor, floor) //TODO: delegate to x.__floor__() if x is not a float |
| // fmod(x, y) |
| MATH_FUN_2(fmod, fmod) |
| // isfinite(x) |
| MATH_FUN_1_TO_BOOL(isfinite, isfinite) |
| // isinf(x) |
| MATH_FUN_1_TO_BOOL(isinf, isinf) |
| // isnan(x) |
| MATH_FUN_1_TO_BOOL(isnan, isnan) |
| // trunc(x) |
| MATH_FUN_1_TO_INT(trunc, trunc) |
| // ldexp(x, exp) |
| MATH_FUN_2_FLT_INT(ldexp, ldexp) |
| #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS |
| // erf(x): return the error function of x |
| MATH_FUN_1(erf, erf) |
| // erfc(x): return the complementary error function of x |
| MATH_FUN_1(erfc, erfc) |
| // gamma(x): return the gamma function of x |
| MATH_FUN_1(gamma, tgamma) |
| // lgamma(x): return the natural logarithm of the gamma function of x |
| MATH_FUN_1(lgamma, lgamma) |
| #endif |
| //TODO: fsum |
| |
| #if MICROPY_PY_MATH_ISCLOSE |
| STATIC mp_obj_t mp_math_isclose(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { |
| enum { ARG_a, ARG_b, ARG_rel_tol, ARG_abs_tol }; |
| static const mp_arg_t allowed_args[] = { |
| {MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ}, |
| {MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ}, |
| {MP_QSTR_rel_tol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL}}, |
| {MP_QSTR_abs_tol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NEW_SMALL_INT(0)}}, |
| }; |
| mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; |
| mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); |
| const mp_float_t a = mp_obj_get_float(args[ARG_a].u_obj); |
| const mp_float_t b = mp_obj_get_float(args[ARG_b].u_obj); |
| const mp_float_t rel_tol = args[ARG_rel_tol].u_obj == MP_OBJ_NULL |
| ? (mp_float_t)1e-9 : mp_obj_get_float(args[ARG_rel_tol].u_obj); |
| const mp_float_t abs_tol = mp_obj_get_float(args[ARG_abs_tol].u_obj); |
| if (rel_tol < (mp_float_t)0.0 || abs_tol < (mp_float_t)0.0) { |
| math_error(); |
| } |
| if (a == b) { |
| return mp_const_true; |
| } |
| const mp_float_t difference = MICROPY_FLOAT_C_FUN(fabs)(a - b); |
| if (isinf(difference)) { // Either a or b is inf |
| return mp_const_false; |
| } |
| if ((difference <= abs_tol) || |
| (difference <= MICROPY_FLOAT_C_FUN(fabs)(rel_tol * a)) || |
| (difference <= MICROPY_FLOAT_C_FUN(fabs)(rel_tol * b))) { |
| return mp_const_true; |
| } |
| return mp_const_false; |
| } |
| MP_DEFINE_CONST_FUN_OBJ_KW(mp_math_isclose_obj, 2, mp_math_isclose); |
| #endif |
| |
| // Function that takes a variable number of arguments |
| |
| // log(x[, base]) |
| STATIC mp_obj_t mp_math_log(size_t n_args, const mp_obj_t *args) { |
| mp_float_t x = mp_obj_get_float(args[0]); |
| if (x <= (mp_float_t)0.0) { |
| math_error(); |
| } |
| mp_float_t l = MICROPY_FLOAT_C_FUN(log)(x); |
| if (n_args == 1) { |
| return mp_obj_new_float(l); |
| } else { |
| mp_float_t base = mp_obj_get_float(args[1]); |
| if (base <= (mp_float_t)0.0) { |
| math_error(); |
| } else if (base == (mp_float_t)1.0) { |
| mp_raise_msg(&mp_type_ZeroDivisionError, "divide by zero"); |
| } |
| return mp_obj_new_float(l / MICROPY_FLOAT_C_FUN(log)(base)); |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_math_log_obj, 1, 2, mp_math_log); |
| |
| // Functions that return a tuple |
| |
| // frexp(x): converts a floating-point number to fractional and integral components |
| STATIC mp_obj_t mp_math_frexp(mp_obj_t x_obj) { |
| int int_exponent = 0; |
| mp_float_t significand = MICROPY_FLOAT_C_FUN(frexp)(mp_obj_get_float(x_obj), &int_exponent); |
| mp_obj_t tuple[2]; |
| tuple[0] = mp_obj_new_float(significand); |
| tuple[1] = mp_obj_new_int(int_exponent); |
| return mp_obj_new_tuple(2, tuple); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_frexp_obj, mp_math_frexp); |
| |
| // modf(x) |
| STATIC mp_obj_t mp_math_modf(mp_obj_t x_obj) { |
| mp_float_t int_part = 0.0; |
| mp_float_t fractional_part = MICROPY_FLOAT_C_FUN(modf)(mp_obj_get_float(x_obj), &int_part); |
| mp_obj_t tuple[2]; |
| tuple[0] = mp_obj_new_float(fractional_part); |
| tuple[1] = mp_obj_new_float(int_part); |
| return mp_obj_new_tuple(2, tuple); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_modf_obj, mp_math_modf); |
| |
| // Angular conversions |
| |
| // radians(x) |
| STATIC mp_obj_t mp_math_radians(mp_obj_t x_obj) { |
| return mp_obj_new_float(mp_obj_get_float(x_obj) * (MP_PI / MICROPY_FLOAT_CONST(180.0))); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_radians_obj, mp_math_radians); |
| |
| // degrees(x) |
| STATIC mp_obj_t mp_math_degrees(mp_obj_t x_obj) { |
| return mp_obj_new_float(mp_obj_get_float(x_obj) * (MICROPY_FLOAT_CONST(180.0) / MP_PI)); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_degrees_obj, mp_math_degrees); |
| |
| #if MICROPY_PY_MATH_FACTORIAL |
| |
| #if MICROPY_OPT_MATH_FACTORIAL |
| |
| // factorial(x): slightly efficient recursive implementation |
| STATIC mp_obj_t mp_math_factorial_inner(mp_uint_t start, mp_uint_t end) { |
| if (start == end) { |
| return mp_obj_new_int(start); |
| } else if (end - start == 1) { |
| return mp_binary_op(MP_BINARY_OP_MULTIPLY, MP_OBJ_NEW_SMALL_INT(start), MP_OBJ_NEW_SMALL_INT(end)); |
| } else if (end - start == 2) { |
| mp_obj_t left = MP_OBJ_NEW_SMALL_INT(start); |
| mp_obj_t middle = MP_OBJ_NEW_SMALL_INT(start + 1); |
| mp_obj_t right = MP_OBJ_NEW_SMALL_INT(end); |
| mp_obj_t tmp = mp_binary_op(MP_BINARY_OP_MULTIPLY, left, middle); |
| return mp_binary_op(MP_BINARY_OP_MULTIPLY, tmp, right); |
| } else { |
| mp_uint_t middle = start + ((end - start) >> 1); |
| mp_obj_t left = mp_math_factorial_inner(start, middle); |
| mp_obj_t right = mp_math_factorial_inner(middle + 1, end); |
| return mp_binary_op(MP_BINARY_OP_MULTIPLY, left, right); |
| } |
| } |
| STATIC mp_obj_t mp_math_factorial(mp_obj_t x_obj) { |
| mp_int_t max = mp_obj_get_int(x_obj); |
| if (max < 0) { |
| mp_raise_msg(&mp_type_ValueError, "negative factorial"); |
| } else if (max == 0) { |
| return MP_OBJ_NEW_SMALL_INT(1); |
| } |
| return mp_math_factorial_inner(1, max); |
| } |
| |
| #else |
| |
| // factorial(x): squared difference implementation |
| // based on http://www.luschny.de/math/factorial/index.html |
| STATIC mp_obj_t mp_math_factorial(mp_obj_t x_obj) { |
| mp_int_t max = mp_obj_get_int(x_obj); |
| if (max < 0) { |
| mp_raise_msg(&mp_type_ValueError, "negative factorial"); |
| } else if (max <= 1) { |
| return MP_OBJ_NEW_SMALL_INT(1); |
| } |
| mp_int_t h = max >> 1; |
| mp_int_t q = h * h; |
| mp_int_t r = q << 1; |
| if (max & 1) { |
| r *= max; |
| } |
| mp_obj_t prod = MP_OBJ_NEW_SMALL_INT(r); |
| for (mp_int_t num = 1; num < max - 2; num += 2) { |
| q -= num; |
| prod = mp_binary_op(MP_BINARY_OP_MULTIPLY, prod, MP_OBJ_NEW_SMALL_INT(q)); |
| } |
| return prod; |
| } |
| |
| #endif |
| |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_factorial_obj, mp_math_factorial); |
| |
| #endif |
| |
| STATIC const mp_rom_map_elem_t mp_module_math_globals_table[] = { |
| { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_math) }, |
| { MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e }, |
| { MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi }, |
| { MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_math_sqrt_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_pow), MP_ROM_PTR(&mp_math_pow_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_math_exp_obj) }, |
| #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS |
| { MP_ROM_QSTR(MP_QSTR_expm1), MP_ROM_PTR(&mp_math_expm1_obj) }, |
| #endif |
| { MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_math_log_obj) }, |
| #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS |
| { MP_ROM_QSTR(MP_QSTR_log2), MP_ROM_PTR(&mp_math_log2_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_math_log10_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_math_cosh_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_math_sinh_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_math_tanh_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_math_acosh_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_math_asinh_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_math_atanh_obj) }, |
| #endif |
| { MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_math_cos_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_math_sin_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_math_tan_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_math_acos_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_math_asin_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_math_atan_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_atan2), MP_ROM_PTR(&mp_math_atan2_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_ceil), MP_ROM_PTR(&mp_math_ceil_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_copysign), MP_ROM_PTR(&mp_math_copysign_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_fabs), MP_ROM_PTR(&mp_math_fabs_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_floor), MP_ROM_PTR(&mp_math_floor_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_fmod), MP_ROM_PTR(&mp_math_fmod_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_frexp), MP_ROM_PTR(&mp_math_frexp_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_ldexp), MP_ROM_PTR(&mp_math_ldexp_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_modf), MP_ROM_PTR(&mp_math_modf_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_math_isfinite_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_math_isinf_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_math_isnan_obj) }, |
| #if MICROPY_PY_MATH_ISCLOSE |
| { MP_ROM_QSTR(MP_QSTR_isclose), MP_ROM_PTR(&mp_math_isclose_obj) }, |
| #endif |
| { MP_ROM_QSTR(MP_QSTR_trunc), MP_ROM_PTR(&mp_math_trunc_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_radians), MP_ROM_PTR(&mp_math_radians_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_degrees), MP_ROM_PTR(&mp_math_degrees_obj) }, |
| #if MICROPY_PY_MATH_FACTORIAL |
| { MP_ROM_QSTR(MP_QSTR_factorial), MP_ROM_PTR(&mp_math_factorial_obj) }, |
| #endif |
| #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS |
| { MP_ROM_QSTR(MP_QSTR_erf), MP_ROM_PTR(&mp_math_erf_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_erfc), MP_ROM_PTR(&mp_math_erfc_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_gamma), MP_ROM_PTR(&mp_math_gamma_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_lgamma), MP_ROM_PTR(&mp_math_lgamma_obj) }, |
| #endif |
| }; |
| |
| STATIC MP_DEFINE_CONST_DICT(mp_module_math_globals, mp_module_math_globals_table); |
| |
| const mp_obj_module_t mp_module_math = { |
| .base = { &mp_type_module }, |
| .globals = (mp_obj_dict_t*)&mp_module_math_globals, |
| }; |
| |
| #endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH |