| #include <stdlib.h> |
| #include <assert.h> |
| |
| #include "nlr.h" |
| #include "misc.h" |
| #include "mpconfig.h" |
| #include "qstr.h" |
| #include "obj.h" |
| #include "parsenum.h" |
| #include "runtime0.h" |
| |
| #if MICROPY_ENABLE_FLOAT |
| |
| #include <math.h> |
| |
| #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT |
| #include "formatfloat.h" |
| #endif |
| |
| typedef struct _mp_obj_complex_t { |
| mp_obj_base_t base; |
| mp_float_t real; |
| mp_float_t imag; |
| } mp_obj_complex_t; |
| |
| mp_obj_t mp_obj_new_complex(mp_float_t real, mp_float_t imag); |
| |
| STATIC void complex_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t o_in, mp_print_kind_t kind) { |
| mp_obj_complex_t *o = o_in; |
| #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT |
| char buf[32]; |
| if (o->real == 0) { |
| format_float(o->imag, buf, sizeof(buf), 'g', 6, '\0'); |
| print(env, "%sj", buf); |
| } else { |
| format_float(o->real, buf, sizeof(buf), 'g', 6, '\0'); |
| print(env, "(%s+", buf); |
| format_float(o->imag, buf, sizeof(buf), 'g', 6, '\0'); |
| print(env, "%sj)", buf); |
| } |
| #else |
| if (o->real == 0) { |
| print(env, "%.8gj", (double) o->imag); |
| } else { |
| print(env, "(%.8g+%.8gj)", (double) o->real, (double) o->imag); |
| } |
| #endif |
| } |
| |
| STATIC mp_obj_t complex_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) { |
| // TODO check n_kw == 0 |
| |
| switch (n_args) { |
| case 0: |
| return mp_obj_new_complex(0, 0); |
| |
| case 1: |
| if (MP_OBJ_IS_STR(args[0])) { |
| // a string, parse it |
| uint l; |
| const char *s = mp_obj_str_get_data(args[0], &l); |
| return mp_parse_num_decimal(s, l, true, true); |
| } else if (MP_OBJ_IS_TYPE(args[0], &mp_type_complex)) { |
| // a complex, just return it |
| return args[0]; |
| } else { |
| // something else, try to cast it to a complex |
| return mp_obj_new_complex(mp_obj_get_float(args[0]), 0); |
| } |
| |
| case 2: { |
| mp_float_t real, imag; |
| if (MP_OBJ_IS_TYPE(args[0], &mp_type_complex)) { |
| mp_obj_complex_get(args[0], &real, &imag); |
| } else { |
| real = mp_obj_get_float(args[0]); |
| imag = 0; |
| } |
| if (MP_OBJ_IS_TYPE(args[1], &mp_type_complex)) { |
| mp_float_t real2, imag2; |
| mp_obj_complex_get(args[1], &real2, &imag2); |
| real -= imag2; |
| imag += real2; |
| } else { |
| imag += mp_obj_get_float(args[1]); |
| } |
| return mp_obj_new_complex(real, imag); |
| } |
| |
| default: |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "complex takes at most 2 arguments, %d given", n_args)); |
| } |
| } |
| |
| STATIC mp_obj_t complex_unary_op(int op, mp_obj_t o_in) { |
| mp_obj_complex_t *o = o_in; |
| switch (op) { |
| case MP_UNARY_OP_BOOL: return MP_BOOL(o->real != 0 || o->imag != 0); |
| case MP_UNARY_OP_POSITIVE: return o_in; |
| case MP_UNARY_OP_NEGATIVE: return mp_obj_new_complex(-o->real, -o->imag); |
| default: return MP_OBJ_NOT_SUPPORTED; |
| } |
| } |
| |
| STATIC mp_obj_t complex_binary_op(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) { |
| mp_obj_complex_t *lhs = lhs_in; |
| return mp_obj_complex_binary_op(op, lhs->real, lhs->imag, rhs_in); |
| } |
| |
| const mp_obj_type_t mp_type_complex = { |
| { &mp_type_type }, |
| .name = MP_QSTR_complex, |
| .print = complex_print, |
| .make_new = complex_make_new, |
| .unary_op = complex_unary_op, |
| .binary_op = complex_binary_op, |
| }; |
| |
| mp_obj_t mp_obj_new_complex(mp_float_t real, mp_float_t imag) { |
| mp_obj_complex_t *o = m_new_obj(mp_obj_complex_t); |
| o->base.type = &mp_type_complex; |
| o->real = real; |
| o->imag = imag; |
| return o; |
| } |
| |
| void mp_obj_complex_get(mp_obj_t self_in, mp_float_t *real, mp_float_t *imag) { |
| assert(MP_OBJ_IS_TYPE(self_in, &mp_type_complex)); |
| mp_obj_complex_t *self = self_in; |
| *real = self->real; |
| *imag = self->imag; |
| } |
| |
| mp_obj_t mp_obj_complex_binary_op(int op, mp_float_t lhs_real, mp_float_t lhs_imag, mp_obj_t rhs_in) { |
| mp_float_t rhs_real, rhs_imag; |
| mp_obj_get_complex(rhs_in, &rhs_real, &rhs_imag); // can be any type, this function will convert to float (if possible) |
| switch (op) { |
| case MP_BINARY_OP_ADD: |
| case MP_BINARY_OP_INPLACE_ADD: |
| lhs_real += rhs_real; |
| lhs_imag += rhs_imag; |
| break; |
| case MP_BINARY_OP_SUBTRACT: |
| case MP_BINARY_OP_INPLACE_SUBTRACT: |
| lhs_real -= rhs_real; |
| lhs_imag -= rhs_imag; |
| break; |
| case MP_BINARY_OP_MULTIPLY: |
| case MP_BINARY_OP_INPLACE_MULTIPLY: { |
| mp_float_t real; |
| multiply: |
| real = lhs_real * rhs_real - lhs_imag * rhs_imag; |
| lhs_imag = lhs_real * rhs_imag + lhs_imag * rhs_real; |
| lhs_real = real; |
| break; |
| } |
| case MP_BINARY_OP_FLOOR_DIVIDE: |
| case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE: |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "can't do truncated division of a complex number")); |
| |
| case MP_BINARY_OP_TRUE_DIVIDE: |
| case MP_BINARY_OP_INPLACE_TRUE_DIVIDE: |
| if (rhs_imag == 0) { |
| if (rhs_real == 0) { |
| nlr_raise(mp_obj_new_exception_msg(&mp_type_ZeroDivisionError, "complex division by zero")); |
| } |
| lhs_real /= rhs_real; |
| lhs_imag /= rhs_real; |
| } else if (rhs_real == 0) { |
| mp_float_t real = lhs_imag / rhs_imag; |
| lhs_imag = -lhs_real / rhs_imag; |
| lhs_real = real; |
| } else { |
| mp_float_t rhs_len_sq = rhs_real*rhs_real + rhs_imag*rhs_imag; |
| rhs_real /= rhs_len_sq; |
| rhs_imag /= -rhs_len_sq; |
| goto multiply; |
| } |
| break; |
| |
| case MP_BINARY_OP_POWER: |
| case MP_BINARY_OP_INPLACE_POWER: { |
| // z1**z2 = exp(z2*ln(z1)) |
| // = exp(z2*(ln(|z1|)+i*arg(z1))) |
| // = exp( (x2*ln1 - y2*arg1) + i*(y2*ln1 + x2*arg1) ) |
| // = exp(x3 + i*y3) |
| // = exp(x3)*(cos(y3) + i*sin(y3)) |
| mp_float_t abs1 = MICROPY_FLOAT_C_FUN(sqrt)(lhs_real*lhs_real + lhs_imag*lhs_imag); |
| if (abs1 == 0) { |
| if (rhs_imag == 0) { |
| lhs_real = 1; |
| rhs_real = 0; |
| } else { |
| nlr_raise(mp_obj_new_exception_msg(&mp_type_ZeroDivisionError, "0.0 to a complex power")); |
| } |
| } else { |
| mp_float_t ln1 = MICROPY_FLOAT_C_FUN(log)(abs1); |
| mp_float_t arg1 = MICROPY_FLOAT_C_FUN(atan2)(lhs_imag, lhs_real); |
| mp_float_t x3 = rhs_real * ln1 - rhs_imag * arg1; |
| mp_float_t y3 = rhs_imag * ln1 + rhs_real * arg1; |
| mp_float_t exp_x3 = MICROPY_FLOAT_C_FUN(exp)(x3); |
| lhs_real = exp_x3 * MICROPY_FLOAT_C_FUN(cos)(y3); |
| lhs_imag = exp_x3 * MICROPY_FLOAT_C_FUN(sin)(y3); |
| } |
| break; |
| } |
| |
| case MP_BINARY_OP_EQUAL: return MP_BOOL(lhs_real == rhs_real && lhs_imag == rhs_imag); |
| |
| default: |
| return MP_OBJ_NOT_SUPPORTED; |
| } |
| return mp_obj_new_complex(lhs_real, lhs_imag); |
| } |
| |
| #endif |