| #include <stdint.h> |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <assert.h> |
| |
| #include "nlr.h" |
| #include "misc.h" |
| #include "mpconfig.h" |
| #include "qstr.h" |
| #include "obj.h" |
| #include "runtime.h" |
| #include "bc0.h" |
| #include "bc.h" |
| |
| // Value stack grows up (this makes it incompatible with native C stack, but |
| // makes sure that arguments to functions are in natural order arg1..argN |
| // (Python semantics mandates left-to-right evaluation order, including for |
| // function arguments). Stack pointer is pre-incremented and points at the |
| // top element. |
| // Exception stack also grows up, top element is also pointed at. |
| |
| // Exception stack entry |
| typedef struct _mp_exc_stack { |
| const byte *handler; |
| // bit 0 is saved currently_in_except_block value |
| machine_uint_t val_sp; |
| // We might only have 2 interesting cases here: SETUP_EXCEPT & SETUP_FINALLY, |
| // consider storing it in bit 1 of val_sp. TODO: SETUP_WITH? |
| byte opcode; |
| } mp_exc_stack; |
| |
| // Exception stack unwind reasons (WHY_* in CPython-speak) |
| // TODO perhaps compress this to RETURN=0, JUMP>0, with number of unwinds |
| // left to do encoded in the JUMP number |
| typedef enum { |
| UNWIND_RETURN = 1, |
| UNWIND_JUMP, |
| } mp_unwind_reason_t; |
| |
| #define DECODE_UINT { \ |
| unum = 0; \ |
| do { \ |
| unum = (unum << 7) + (*ip & 0x7f); \ |
| } while ((*ip++ & 0x80) != 0); \ |
| } |
| #define DECODE_ULABEL do { unum = (ip[0] | (ip[1] << 8)); ip += 2; } while (0) |
| #define DECODE_SLABEL do { unum = (ip[0] | (ip[1] << 8)) - 0x8000; ip += 2; } while (0) |
| #define DECODE_QSTR { \ |
| qst = 0; \ |
| do { \ |
| qst = (qst << 7) + (*ip & 0x7f); \ |
| } while ((*ip++ & 0x80) != 0); \ |
| } |
| #define PUSH(val) *++sp = (val) |
| #define POP() (*sp--) |
| #define TOP() (*sp) |
| #define SET_TOP(val) *sp = (val) |
| |
| mp_vm_return_kind_t mp_execute_byte_code(const byte *code, const mp_obj_t *args, uint n_args, const mp_obj_t *args2, uint n_args2, uint n_state, mp_obj_t *ret) { |
| // allocate state for locals and stack |
| mp_obj_t temp_state[10]; |
| mp_obj_t *state = &temp_state[0]; |
| if (n_state > 10) { |
| state = m_new(mp_obj_t, n_state); |
| } |
| mp_obj_t *sp = &state[0] - 1; |
| |
| // init args |
| for (uint i = 0; i < n_args; i++) { |
| state[n_state - 1 - i] = args[i]; |
| } |
| for (uint i = 0; i < n_args2; i++) { |
| state[n_state - 1 - n_args - i] = args2[i]; |
| } |
| |
| const byte *ip = code; |
| |
| // get code info size |
| machine_uint_t code_info_size = ip[0] | (ip[1] << 8) | (ip[2] << 16) | (ip[3] << 24); |
| ip += code_info_size; |
| |
| // execute prelude to make any cells (closed over variables) |
| { |
| for (uint n_local = *ip++; n_local > 0; n_local--) { |
| uint local_num = *ip++; |
| if (local_num < n_args + n_args2) { |
| state[n_state - 1 - local_num] = mp_obj_new_cell(state[n_state - 1 - local_num]); |
| } else { |
| state[n_state - 1 - local_num] = mp_obj_new_cell(MP_OBJ_NULL); |
| } |
| } |
| } |
| |
| // execute the byte code |
| mp_vm_return_kind_t vm_return_kind = mp_execute_byte_code_2(code, &ip, &state[n_state - 1], &sp); |
| |
| switch (vm_return_kind) { |
| case MP_VM_RETURN_NORMAL: |
| *ret = *sp; |
| return MP_VM_RETURN_NORMAL; |
| case MP_VM_RETURN_EXCEPTION: |
| *ret = state[n_state - 1]; |
| return MP_VM_RETURN_EXCEPTION; |
| case MP_VM_RETURN_YIELD: // byte-code shouldn't yield |
| default: |
| assert(0); |
| *ret = mp_const_none; |
| return MP_VM_RETURN_NORMAL; |
| } |
| } |
| |
| // fastn has items in reverse order (fastn[0] is local[0], fastn[-1] is local[1], etc) |
| // sp points to bottom of stack which grows up |
| // returns: |
| // MP_VM_RETURN_NORMAL, sp valid, return value in *sp |
| // MP_VM_RETURN_YIELD, ip, sp valid, yielded value in *sp |
| // MP_VM_RETURN_EXCEPTION, exception in fastn[0] |
| mp_vm_return_kind_t mp_execute_byte_code_2(const byte *code_info, const byte **ip_in_out, mp_obj_t *fastn, mp_obj_t **sp_in_out) { |
| // careful: be sure to declare volatile any variables read in the exception handler (written is ok, I think) |
| |
| const byte *ip = *ip_in_out; |
| mp_obj_t *sp = *sp_in_out; |
| machine_uint_t unum; |
| qstr qst; |
| mp_obj_t obj1, obj2; |
| nlr_buf_t nlr; |
| |
| volatile machine_uint_t currently_in_except_block = 0; // 0 or 1, to detect nested exceptions |
| mp_exc_stack exc_stack[4]; |
| mp_exc_stack *volatile exc_sp = &exc_stack[0] - 1; // stack grows up, exc_sp points to top of stack |
| const byte *volatile save_ip = ip; // this is so we can access ip in the exception handler without making ip volatile (which means the compiler can't keep it in a register in the main loop) |
| |
| // outer exception handling loop |
| for (;;) { |
| if (nlr_push(&nlr) == 0) { |
| // loop to execute byte code |
| for (;;) { |
| dispatch_loop: |
| save_ip = ip; |
| int op = *ip++; |
| switch (op) { |
| case MP_BC_LOAD_CONST_FALSE: |
| PUSH(mp_const_false); |
| break; |
| |
| case MP_BC_LOAD_CONST_NONE: |
| PUSH(mp_const_none); |
| break; |
| |
| case MP_BC_LOAD_CONST_TRUE: |
| PUSH(mp_const_true); |
| break; |
| |
| case MP_BC_LOAD_CONST_ELLIPSIS: |
| PUSH(mp_const_ellipsis); |
| break; |
| |
| case MP_BC_LOAD_CONST_SMALL_INT: { |
| machine_int_t num = 0; |
| if ((ip[0] & 0x40) != 0) { |
| // Number is negative |
| num--; |
| } |
| do { |
| num = (num << 7) | (*ip & 0x7f); |
| } while ((*ip++ & 0x80) != 0); |
| PUSH(MP_OBJ_NEW_SMALL_INT(num)); |
| break; |
| } |
| |
| case MP_BC_LOAD_CONST_INT: |
| DECODE_QSTR; |
| PUSH(mp_obj_new_int_from_long_str(qstr_str(qst))); |
| break; |
| |
| case MP_BC_LOAD_CONST_DEC: |
| DECODE_QSTR; |
| PUSH(rt_load_const_dec(qst)); |
| break; |
| |
| case MP_BC_LOAD_CONST_ID: |
| DECODE_QSTR; |
| PUSH(rt_load_const_str(qst)); // TODO |
| break; |
| |
| case MP_BC_LOAD_CONST_BYTES: |
| DECODE_QSTR; |
| PUSH(rt_load_const_bytes(qst)); |
| break; |
| |
| case MP_BC_LOAD_CONST_STRING: |
| DECODE_QSTR; |
| PUSH(rt_load_const_str(qst)); |
| break; |
| |
| case MP_BC_LOAD_FAST_0: |
| PUSH(fastn[0]); |
| break; |
| |
| case MP_BC_LOAD_FAST_1: |
| PUSH(fastn[-1]); |
| break; |
| |
| case MP_BC_LOAD_FAST_2: |
| PUSH(fastn[-2]); |
| break; |
| |
| case MP_BC_LOAD_FAST_N: |
| DECODE_UINT; |
| PUSH(fastn[-unum]); |
| break; |
| |
| case MP_BC_LOAD_DEREF: |
| DECODE_UINT; |
| PUSH(rt_get_cell(fastn[-unum])); |
| break; |
| |
| case MP_BC_LOAD_NAME: |
| DECODE_QSTR; |
| PUSH(rt_load_name(qst)); |
| break; |
| |
| case MP_BC_LOAD_GLOBAL: |
| DECODE_QSTR; |
| PUSH(rt_load_global(qst)); |
| break; |
| |
| case MP_BC_LOAD_ATTR: |
| DECODE_QSTR; |
| SET_TOP(rt_load_attr(TOP(), qst)); |
| break; |
| |
| case MP_BC_LOAD_METHOD: |
| DECODE_QSTR; |
| rt_load_method(*sp, qst, sp); |
| sp += 1; |
| break; |
| |
| case MP_BC_LOAD_BUILD_CLASS: |
| PUSH(rt_load_build_class()); |
| break; |
| |
| case MP_BC_STORE_FAST_0: |
| fastn[0] = POP(); |
| break; |
| |
| case MP_BC_STORE_FAST_1: |
| fastn[-1] = POP(); |
| break; |
| |
| case MP_BC_STORE_FAST_2: |
| fastn[-2] = POP(); |
| break; |
| |
| case MP_BC_STORE_FAST_N: |
| DECODE_UINT; |
| fastn[-unum] = POP(); |
| break; |
| |
| case MP_BC_STORE_DEREF: |
| DECODE_UINT; |
| rt_set_cell(fastn[-unum], POP()); |
| break; |
| |
| case MP_BC_STORE_NAME: |
| DECODE_QSTR; |
| rt_store_name(qst, POP()); |
| break; |
| |
| case MP_BC_STORE_GLOBAL: |
| DECODE_QSTR; |
| rt_store_global(qst, POP()); |
| break; |
| |
| case MP_BC_STORE_ATTR: |
| DECODE_QSTR; |
| rt_store_attr(sp[0], qst, sp[-1]); |
| sp -= 2; |
| break; |
| |
| case MP_BC_STORE_SUBSCR: |
| rt_store_subscr(sp[-1], sp[0], sp[-2]); |
| sp -= 3; |
| break; |
| |
| case MP_BC_DUP_TOP: |
| obj1 = TOP(); |
| PUSH(obj1); |
| break; |
| |
| case MP_BC_DUP_TOP_TWO: |
| sp += 2; |
| sp[0] = sp[-2]; |
| sp[-1] = sp[-3]; |
| break; |
| |
| case MP_BC_POP_TOP: |
| sp -= 1; |
| break; |
| |
| case MP_BC_ROT_TWO: |
| obj1 = sp[0]; |
| sp[0] = sp[-1]; |
| sp[-1] = obj1; |
| break; |
| |
| case MP_BC_ROT_THREE: |
| obj1 = sp[0]; |
| sp[0] = sp[-1]; |
| sp[-1] = sp[-2]; |
| sp[-2] = obj1; |
| break; |
| |
| case MP_BC_JUMP: |
| DECODE_SLABEL; |
| ip += unum; |
| break; |
| |
| case MP_BC_POP_JUMP_IF_TRUE: |
| DECODE_SLABEL; |
| if (rt_is_true(POP())) { |
| ip += unum; |
| } |
| break; |
| |
| case MP_BC_POP_JUMP_IF_FALSE: |
| DECODE_SLABEL; |
| if (!rt_is_true(POP())) { |
| ip += unum; |
| } |
| break; |
| |
| case MP_BC_JUMP_IF_TRUE_OR_POP: |
| DECODE_SLABEL; |
| if (rt_is_true(TOP())) { |
| ip += unum; |
| } else { |
| sp--; |
| } |
| break; |
| |
| case MP_BC_JUMP_IF_FALSE_OR_POP: |
| DECODE_SLABEL; |
| if (rt_is_true(TOP())) { |
| sp--; |
| } else { |
| ip += unum; |
| } |
| break; |
| |
| /* we are trying to get away without using this opcode |
| case MP_BC_SETUP_LOOP: |
| DECODE_UINT; |
| // push_block(MP_BC_SETUP_LOOP, ip + unum, sp) |
| break; |
| */ |
| |
| case MP_BC_UNWIND_JUMP: |
| DECODE_SLABEL; |
| PUSH((void*)(ip + unum)); // push destination ip for jump |
| PUSH((void*)(machine_uint_t)(*ip)); // push number of exception handlers to unwind |
| unwind_jump: |
| unum = (machine_uint_t)POP(); // get number of exception handlers to unwind |
| while (unum > 0) { |
| unum -= 1; |
| assert(exc_sp >= exc_stack); |
| if (exc_sp->opcode == MP_BC_SETUP_FINALLY) { |
| // We're going to run "finally" code as a coroutine |
| // (not calling it recursively). Set up a sentinel |
| // on a stack so it can return back to us when it is |
| // done (when END_FINALLY reached). |
| PUSH((void*)unum); // push number of exception handlers left to unwind |
| PUSH(MP_OBJ_NEW_SMALL_INT(UNWIND_JUMP)); // push sentinel |
| ip = exc_sp->handler; // get exception handler byte code address |
| exc_sp--; // pop exception handler |
| goto dispatch_loop; // run the exception handler |
| } |
| exc_sp--; |
| } |
| ip = (const byte*)POP(); // pop destination ip for jump |
| break; |
| |
| // matched against: POP_BLOCK or POP_EXCEPT (anything else?) |
| case MP_BC_SETUP_EXCEPT: |
| case MP_BC_SETUP_FINALLY: |
| DECODE_ULABEL; // except labels are always forward |
| ++exc_sp; |
| exc_sp->opcode = op; |
| exc_sp->handler = ip + unum; |
| exc_sp->val_sp = (((machine_uint_t)sp) | currently_in_except_block); |
| currently_in_except_block = 0; // in a try block now |
| break; |
| |
| case MP_BC_END_FINALLY: |
| // not fully implemented |
| // if TOS is an exception, reraises the exception (3 values on TOS) |
| // if TOS is None, just pops it and continues |
| // if TOS is an integer, does something else |
| // else error |
| if (mp_obj_is_exception_instance(TOP())) { |
| nlr_jump(TOP()); |
| } |
| if (TOP() == mp_const_none) { |
| sp--; |
| } else if (MP_OBJ_IS_SMALL_INT(TOP())) { |
| // We finished "finally" coroutine and now dispatch back |
| // to our caller, based on TOS value |
| mp_unwind_reason_t reason = MP_OBJ_SMALL_INT_VALUE(POP()); |
| switch (reason) { |
| case UNWIND_RETURN: |
| goto unwind_return; |
| case UNWIND_JUMP: |
| goto unwind_jump; |
| } |
| assert(0); |
| } else { |
| assert(0); |
| } |
| break; |
| |
| case MP_BC_GET_ITER: |
| SET_TOP(rt_getiter(TOP())); |
| break; |
| |
| case MP_BC_FOR_ITER: |
| DECODE_ULABEL; // the jump offset if iteration finishes; for labels are always forward |
| obj1 = rt_iternext(TOP()); |
| if (obj1 == mp_const_stop_iteration) { |
| --sp; // pop the exhausted iterator |
| ip += unum; // jump to after for-block |
| } else { |
| PUSH(obj1); // push the next iteration value |
| } |
| break; |
| |
| // matched against: SETUP_EXCEPT, SETUP_FINALLY, SETUP_WITH |
| case MP_BC_POP_BLOCK: |
| // we are exiting an exception handler, so pop the last one of the exception-stack |
| assert(exc_sp >= &exc_stack[0]); |
| currently_in_except_block = (exc_sp->val_sp & 1); // restore previous state |
| exc_sp--; // pop back to previous exception handler |
| break; |
| |
| // matched against: SETUP_EXCEPT |
| case MP_BC_POP_EXCEPT: |
| // TODO need to work out how blocks work etc |
| // pops block, checks it's an exception block, and restores the stack, saving the 3 exception values to local threadstate |
| assert(exc_sp >= &exc_stack[0]); |
| assert(currently_in_except_block); |
| //sp = (mp_obj_t*)(*exc_sp--); |
| //exc_sp--; // discard ip |
| currently_in_except_block = (exc_sp->val_sp & 1); // restore previous state |
| exc_sp--; // pop back to previous exception handler |
| //sp -= 3; // pop 3 exception values |
| break; |
| |
| case MP_BC_NOT: |
| if (TOP() == mp_const_true) { |
| SET_TOP(mp_const_false); |
| } else { |
| SET_TOP(mp_const_true); |
| } |
| break; |
| |
| case MP_BC_UNARY_OP: |
| unum = *ip++; |
| SET_TOP(rt_unary_op(unum, TOP())); |
| break; |
| |
| case MP_BC_BINARY_OP: |
| unum = *ip++; |
| obj2 = POP(); |
| obj1 = TOP(); |
| SET_TOP(rt_binary_op(unum, obj1, obj2)); |
| break; |
| |
| case MP_BC_BUILD_TUPLE: |
| DECODE_UINT; |
| sp -= unum - 1; |
| SET_TOP(rt_build_tuple(unum, sp)); |
| break; |
| |
| case MP_BC_BUILD_LIST: |
| DECODE_UINT; |
| sp -= unum - 1; |
| SET_TOP(rt_build_list(unum, sp)); |
| break; |
| |
| case MP_BC_LIST_APPEND: |
| DECODE_UINT; |
| // I think it's guaranteed by the compiler that sp[unum] is a list |
| rt_list_append(sp[-unum], sp[0]); |
| sp--; |
| break; |
| |
| case MP_BC_BUILD_MAP: |
| DECODE_UINT; |
| PUSH(rt_build_map(unum)); |
| break; |
| |
| case MP_BC_STORE_MAP: |
| sp -= 2; |
| rt_store_map(sp[0], sp[2], sp[1]); |
| break; |
| |
| case MP_BC_MAP_ADD: |
| DECODE_UINT; |
| // I think it's guaranteed by the compiler that sp[-unum - 1] is a map |
| rt_store_map(sp[-unum - 1], sp[0], sp[-1]); |
| sp -= 2; |
| break; |
| |
| case MP_BC_BUILD_SET: |
| DECODE_UINT; |
| sp -= unum - 1; |
| SET_TOP(rt_build_set(unum, sp)); |
| break; |
| |
| case MP_BC_SET_ADD: |
| DECODE_UINT; |
| // I think it's guaranteed by the compiler that sp[-unum] is a set |
| rt_store_set(sp[-unum], sp[0]); |
| sp--; |
| break; |
| |
| #if MICROPY_ENABLE_SLICE |
| case MP_BC_BUILD_SLICE: |
| DECODE_UINT; |
| if (unum == 2) { |
| obj2 = POP(); |
| obj1 = TOP(); |
| SET_TOP(mp_obj_new_slice(obj1, obj2, NULL)); |
| } else { |
| printf("3-argument slice is not supported\n"); |
| assert(0); |
| } |
| break; |
| #endif |
| |
| case MP_BC_UNPACK_SEQUENCE: |
| DECODE_UINT; |
| rt_unpack_sequence(sp[0], unum, sp); |
| sp += unum - 1; |
| break; |
| |
| case MP_BC_MAKE_FUNCTION: |
| DECODE_UINT; |
| PUSH(rt_make_function_from_id(unum, MP_OBJ_NULL)); |
| break; |
| |
| case MP_BC_MAKE_FUNCTION_DEFARGS: |
| DECODE_UINT; |
| SET_TOP(rt_make_function_from_id(unum, TOP())); |
| break; |
| |
| case MP_BC_MAKE_CLOSURE: |
| DECODE_UINT; |
| SET_TOP(rt_make_closure_from_id(unum, TOP())); |
| break; |
| |
| case MP_BC_CALL_FUNCTION: |
| DECODE_UINT; |
| // unum & 0xff == n_positional |
| // (unum >> 8) & 0xff == n_keyword |
| sp -= (unum & 0xff) + ((unum >> 7) & 0x1fe); |
| SET_TOP(rt_call_function_n_kw(*sp, unum & 0xff, (unum >> 8) & 0xff, sp + 1)); |
| break; |
| |
| case MP_BC_CALL_METHOD: |
| DECODE_UINT; |
| // unum & 0xff == n_positional |
| // (unum >> 8) & 0xff == n_keyword |
| sp -= (unum & 0xff) + ((unum >> 7) & 0x1fe) + 1; |
| SET_TOP(rt_call_method_n_kw(unum & 0xff, (unum >> 8) & 0xff, sp)); |
| break; |
| |
| case MP_BC_RETURN_VALUE: |
| unwind_return: |
| while (exc_sp >= exc_stack) { |
| if (exc_sp->opcode == MP_BC_SETUP_FINALLY) { |
| // We're going to run "finally" code as a coroutine |
| // (not calling it recursively). Set up a sentinel |
| // on a stack so it can return back to us when it is |
| // done (when END_FINALLY reached). |
| PUSH(MP_OBJ_NEW_SMALL_INT(UNWIND_RETURN)); |
| ip = exc_sp->handler; |
| // We don't need to do anything with sp, finally is just |
| // syntactic sugar for sequential execution?? |
| // sp = |
| exc_sp--; |
| goto dispatch_loop; |
| } |
| exc_sp--; |
| } |
| nlr_pop(); |
| *sp_in_out = sp; |
| assert(exc_sp == &exc_stack[0] - 1); |
| return MP_VM_RETURN_NORMAL; |
| |
| case MP_BC_RAISE_VARARGS: |
| unum = *ip++; |
| assert(unum == 1); |
| obj1 = POP(); |
| nlr_jump(rt_make_raise_obj(obj1)); |
| |
| case MP_BC_YIELD_VALUE: |
| nlr_pop(); |
| *ip_in_out = ip; |
| *sp_in_out = sp; |
| return MP_VM_RETURN_YIELD; |
| |
| case MP_BC_IMPORT_NAME: |
| DECODE_QSTR; |
| obj1 = POP(); |
| SET_TOP(rt_import_name(qst, obj1, TOP())); |
| break; |
| |
| case MP_BC_IMPORT_FROM: |
| DECODE_QSTR; |
| obj1 = rt_import_from(TOP(), qst); |
| PUSH(obj1); |
| break; |
| |
| case MP_BC_IMPORT_STAR: |
| rt_import_all(POP()); |
| break; |
| |
| default: |
| printf("code %p, byte code 0x%02x not implemented\n", ip, op); |
| assert(0); |
| nlr_pop(); |
| return MP_VM_RETURN_NORMAL; |
| } |
| } |
| |
| } else { |
| // exception occurred |
| |
| // set file and line number that the exception occurred at |
| // TODO: don't set traceback for exceptions re-raised by END_FINALLY. |
| // But consider how to handle nested exceptions. |
| if (mp_obj_is_exception_instance(nlr.ret_val)) { |
| machine_uint_t code_info_size = code_info[0] | (code_info[1] << 8) | (code_info[2] << 16) | (code_info[3] << 24); |
| qstr source_file = code_info[4] | (code_info[5] << 8) | (code_info[6] << 16) | (code_info[7] << 24); |
| qstr block_name = code_info[8] | (code_info[9] << 8) | (code_info[10] << 16) | (code_info[11] << 24); |
| machine_uint_t source_line = 1; |
| machine_uint_t bc = save_ip - code_info - code_info_size; |
| //printf("find %lu %d %d\n", bc, code_info[12], code_info[13]); |
| for (const byte* ci = code_info + 12; *ci && bc >= ((*ci) & 31); ci++) { |
| bc -= *ci & 31; |
| source_line += *ci >> 5; |
| } |
| mp_obj_exception_add_traceback(nlr.ret_val, source_file, source_line, block_name); |
| } |
| |
| while (currently_in_except_block) { |
| // nested exception |
| |
| assert(exc_sp >= &exc_stack[0]); |
| |
| // TODO make a proper message for nested exception |
| // at the moment we are just raising the very last exception (the one that caused the nested exception) |
| |
| // move up to previous exception handler |
| currently_in_except_block = (exc_sp->val_sp & 1); // restore previous state |
| exc_sp--; // pop back to previous exception handler |
| } |
| |
| if (exc_sp >= &exc_stack[0]) { |
| // set flag to indicate that we are now handling an exception |
| currently_in_except_block = 1; |
| |
| // catch exception and pass to byte code |
| sp = (mp_obj_t*)(exc_sp->val_sp & (~((machine_uint_t)1))); |
| ip = exc_sp->handler; |
| // push(traceback, exc-val, exc-type) |
| PUSH(mp_const_none); |
| PUSH(nlr.ret_val); |
| PUSH(nlr.ret_val); // TODO should be type(nlr.ret_val), I think... |
| |
| } else { |
| // propagate exception to higher level |
| // TODO what to do about ip and sp? they don't really make sense at this point |
| fastn[0] = nlr.ret_val; // must put exception here because sp is invalid |
| return MP_VM_RETURN_EXCEPTION; |
| } |
| } |
| } |
| } |