| #include <stdlib.h> |
| #include <stdint.h> |
| #include <string.h> |
| #include <assert.h> |
| |
| #include "nlr.h" |
| #include "misc.h" |
| #include "mpconfig.h" |
| #include "qstr.h" |
| #include "obj.h" |
| #include "objtuple.h" |
| #include "map.h" |
| #include "runtime0.h" |
| #include "runtime.h" |
| #include "bc.h" |
| |
| #if 0 // print debugging info |
| #define DEBUG_PRINT (1) |
| #else // don't print debugging info |
| #define DEBUG_printf(...) (void)0 |
| #endif |
| |
| /******************************************************************************/ |
| /* native functions */ |
| |
| // mp_obj_fun_native_t defined in obj.h |
| |
| STATIC void check_nargs(mp_obj_fun_native_t *self, int n_args, int n_kw) { |
| rt_check_nargs(n_args, self->n_args_min, self->n_args_max, n_kw, self->is_kw); |
| } |
| |
| void rt_check_nargs(int n_args, machine_uint_t n_args_min, machine_uint_t n_args_max, int n_kw, bool is_kw) { |
| if (n_kw && !is_kw) { |
| nlr_jump(mp_obj_new_exception_msg(&mp_type_TypeError, |
| "function does not take keyword arguments")); |
| } |
| |
| if (n_args_min == n_args_max) { |
| if (n_args != n_args_min) { |
| nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, |
| "function takes %d positional arguments but %d were given", |
| n_args_min, n_args)); |
| } |
| } else { |
| if (n_args < n_args_min) { |
| nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, |
| "<fun name>() missing %d required positional arguments: <list of names of params>", |
| n_args_min - n_args)); |
| } else if (n_args > n_args_max) { |
| nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, |
| "<fun name> expected at most %d arguments, got %d", |
| n_args_max, n_args)); |
| } |
| } |
| } |
| |
| STATIC mp_obj_t fun_native_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) { |
| assert(MP_OBJ_IS_TYPE(self_in, &fun_native_type)); |
| mp_obj_fun_native_t *self = self_in; |
| |
| // check number of arguments |
| check_nargs(self, n_args, n_kw); |
| |
| if (self->is_kw) { |
| // function allows keywords |
| |
| // we create a map directly from the given args array |
| mp_map_t kw_args; |
| mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); |
| |
| return ((mp_fun_kw_t)self->fun)(n_args, args, &kw_args); |
| |
| } else if (self->n_args_min <= 3 && self->n_args_min == self->n_args_max) { |
| // function requires a fixed number of arguments |
| |
| // dispatch function call |
| switch (self->n_args_min) { |
| case 0: |
| return ((mp_fun_0_t)self->fun)(); |
| |
| case 1: |
| return ((mp_fun_1_t)self->fun)(args[0]); |
| |
| case 2: |
| return ((mp_fun_2_t)self->fun)(args[0], args[1]); |
| |
| case 3: |
| return ((mp_fun_3_t)self->fun)(args[0], args[1], args[2]); |
| |
| default: |
| assert(0); |
| return mp_const_none; |
| } |
| |
| } else { |
| // function takes a variable number of arguments, but no keywords |
| |
| return ((mp_fun_var_t)self->fun)(n_args, args); |
| } |
| } |
| |
| const mp_obj_type_t fun_native_type = { |
| { &mp_type_type }, |
| .name = MP_QSTR_function, |
| .call = fun_native_call, |
| }; |
| |
| // fun must have the correct signature for n_args fixed arguments |
| mp_obj_t rt_make_function_n(int n_args, void *fun) { |
| mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t); |
| o->base.type = &fun_native_type; |
| o->is_kw = false; |
| o->n_args_min = n_args; |
| o->n_args_max = n_args; |
| o->fun = fun; |
| return o; |
| } |
| |
| mp_obj_t rt_make_function_var(int n_args_min, mp_fun_var_t fun) { |
| mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t); |
| o->base.type = &fun_native_type; |
| o->is_kw = false; |
| o->n_args_min = n_args_min; |
| o->n_args_max = MP_OBJ_FUN_ARGS_MAX; |
| o->fun = fun; |
| return o; |
| } |
| |
| // min and max are inclusive |
| mp_obj_t rt_make_function_var_between(int n_args_min, int n_args_max, mp_fun_var_t fun) { |
| mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t); |
| o->base.type = &fun_native_type; |
| o->is_kw = false; |
| o->n_args_min = n_args_min; |
| o->n_args_max = n_args_max; |
| o->fun = fun; |
| return o; |
| } |
| |
| /******************************************************************************/ |
| /* byte code functions */ |
| |
| typedef struct _mp_obj_fun_bc_t { |
| mp_obj_base_t base; |
| mp_map_t *globals; // the context within which this function was defined |
| machine_uint_t n_args : 15; // number of arguments this function takes |
| machine_uint_t n_def_args : 15; // number of default arguments |
| machine_uint_t takes_var_args : 1; // set if this function takes variable args |
| machine_uint_t takes_kw_args : 1; // set if this function takes keyword args |
| uint n_state; // total state size for the executing function (incl args, locals, stack) |
| const byte *bytecode; // bytecode for the function |
| qstr *args; // argument names (needed to resolve positional args passed as keywords) |
| mp_obj_t extra_args[]; // values of default args (if any), plus a slot at the end for var args and/or kw args (if it takes them) |
| } mp_obj_fun_bc_t; |
| |
| void dump_args(const mp_obj_t *a, int sz) { |
| #if DEBUG_PRINT |
| DEBUG_printf("%p: ", a); |
| for (int i = 0; i < sz; i++) { |
| DEBUG_printf("%p ", a[i]); |
| } |
| DEBUG_printf("\n"); |
| #endif |
| } |
| |
| STATIC mp_obj_t fun_bc_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) { |
| DEBUG_printf("Input: "); |
| dump_args(args, n_args); |
| mp_obj_fun_bc_t *self = self_in; |
| |
| const mp_obj_t *kwargs = args + n_args; |
| mp_obj_t *extra_args = self->extra_args + self->n_def_args; |
| uint n_extra_args = 0; |
| |
| |
| // check positional arguments |
| |
| if (n_args > self->n_args) { |
| // given more than enough arguments |
| if (!self->takes_var_args) { |
| goto arg_error; |
| } |
| // put extra arguments in varargs tuple |
| *extra_args = mp_obj_new_tuple(n_args - self->n_args, args + self->n_args); |
| n_extra_args = 1; |
| n_args = self->n_args; |
| } else { |
| if (self->takes_var_args) { |
| DEBUG_printf("passing empty tuple as *args\n"); |
| *extra_args = mp_const_empty_tuple; |
| n_extra_args = 1; |
| } |
| // Apply processing and check below only if we don't have kwargs, |
| // otherwise, kw handling code below has own extensive checks. |
| if (n_kw == 0) { |
| if (n_args >= self->n_args - self->n_def_args) { |
| // given enough arguments, but may need to use some default arguments |
| extra_args -= self->n_args - n_args; |
| n_extra_args += self->n_args - n_args; |
| } else { |
| goto arg_error; |
| } |
| } |
| } |
| |
| // check keyword arguments |
| |
| if (n_kw != 0) { |
| // We cannot use dynamically-sized array here, because GCC indeed |
| // deallocates it on leaving defining scope (unlike most static stack allocs). |
| // So, we have 2 choices: allocate it unconditionally at the top of function |
| // (wastes stack), or use alloca which is guaranteed to dealloc on func exit. |
| //mp_obj_t flat_args[self->n_args]; |
| mp_obj_t *flat_args = alloca(self->n_args * sizeof(mp_obj_t)); |
| for (int i = self->n_args - 1; i >= 0; i--) { |
| flat_args[i] = MP_OBJ_NULL; |
| } |
| memcpy(flat_args, args, sizeof(*args) * n_args); |
| DEBUG_printf("Initial args: "); |
| dump_args(flat_args, self->n_args); |
| |
| mp_obj_t dict = MP_OBJ_NULL; |
| if (self->takes_kw_args) { |
| dict = mp_obj_new_dict(n_kw); // TODO: better go conservative with 0? |
| } |
| for (uint i = 0; i < n_kw; i++) { |
| qstr arg_name = MP_OBJ_QSTR_VALUE(kwargs[2 * i]); |
| for (uint j = 0; j < self->n_args; j++) { |
| if (arg_name == self->args[j]) { |
| if (flat_args[j] != MP_OBJ_NULL) { |
| nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, |
| "function got multiple values for argument '%s'", qstr_str(arg_name))); |
| } |
| flat_args[j] = kwargs[2 * i + 1]; |
| goto continue2; |
| } |
| } |
| // Didn't find name match with positional args |
| if (!self->takes_kw_args) { |
| nlr_jump(mp_obj_new_exception_msg(&mp_type_TypeError, "function does not take keyword arguments")); |
| } |
| mp_obj_dict_store(dict, kwargs[2 * i], kwargs[2 * i + 1]); |
| continue2:; |
| } |
| DEBUG_printf("Args with kws flattened: "); |
| dump_args(flat_args, self->n_args); |
| |
| // Now fill in defaults |
| mp_obj_t *d = &flat_args[self->n_args - 1]; |
| mp_obj_t *s = &self->extra_args[self->n_def_args - 1]; |
| for (int i = self->n_def_args; i > 0; i--) { |
| if (*d != MP_OBJ_NULL) { |
| *d-- = *s--; |
| } |
| } |
| DEBUG_printf("Args after filling defaults: "); |
| dump_args(flat_args, self->n_args); |
| |
| // Now check that all mandatory args specified |
| while (d >= flat_args) { |
| if (*d-- == MP_OBJ_NULL) { |
| nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, |
| "function missing required positional argument #%d", d - flat_args)); |
| } |
| } |
| |
| args = flat_args; |
| n_args = self->n_args; |
| |
| if (self->takes_kw_args) { |
| extra_args[n_extra_args] = dict; |
| n_extra_args += 1; |
| } |
| } else { |
| // no keyword arguments given |
| if (self->takes_kw_args) { |
| extra_args[n_extra_args] = mp_obj_new_dict(0); |
| n_extra_args += 1; |
| } |
| } |
| |
| mp_map_t *old_globals = rt_globals_get(); |
| rt_globals_set(self->globals); |
| mp_obj_t result; |
| DEBUG_printf("Calling: args=%p, n_args=%d, extra_args=%p, n_extra_args=%d\n", args, n_args, extra_args, n_extra_args); |
| dump_args(args, n_args); |
| dump_args(extra_args, n_extra_args); |
| mp_vm_return_kind_t vm_return_kind = mp_execute_byte_code(self->bytecode, args, n_args, extra_args, n_extra_args, self->n_state, &result); |
| rt_globals_set(old_globals); |
| |
| if (vm_return_kind == MP_VM_RETURN_NORMAL) { |
| return result; |
| } else { // MP_VM_RETURN_EXCEPTION |
| nlr_jump(result); |
| } |
| |
| arg_error: |
| nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function takes %d positional arguments but %d were given", self->n_args, n_args)); |
| } |
| |
| const mp_obj_type_t fun_bc_type = { |
| { &mp_type_type }, |
| .name = MP_QSTR_function, |
| .call = fun_bc_call, |
| }; |
| |
| mp_obj_t mp_obj_new_fun_bc(uint scope_flags, qstr *args, uint n_args, mp_obj_t def_args_in, uint n_state, const byte *code) { |
| uint n_def_args = 0; |
| uint n_extra_args = 0; |
| mp_obj_tuple_t *def_args = def_args_in; |
| if (def_args != MP_OBJ_NULL) { |
| n_def_args = def_args->len; |
| n_extra_args = def_args->len; |
| } |
| if ((scope_flags & MP_SCOPE_FLAG_VARARGS) != 0) { |
| n_extra_args += 1; |
| } |
| if ((scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) { |
| n_extra_args += 1; |
| } |
| mp_obj_fun_bc_t *o = m_new_obj_var(mp_obj_fun_bc_t, mp_obj_t, n_extra_args); |
| o->base.type = &fun_bc_type; |
| o->globals = rt_globals_get(); |
| o->args = args; |
| o->n_args = n_args; |
| o->n_def_args = n_def_args; |
| o->takes_var_args = (scope_flags & MP_SCOPE_FLAG_VARARGS) != 0; |
| o->takes_kw_args = (scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0; |
| o->n_state = n_state; |
| o->bytecode = code; |
| if (def_args != MP_OBJ_NULL) { |
| memcpy(o->extra_args, def_args->items, n_def_args * sizeof(mp_obj_t)); |
| } |
| return o; |
| } |
| |
| void mp_obj_fun_bc_get(mp_obj_t self_in, int *n_args, uint *n_state, const byte **code) { |
| assert(MP_OBJ_IS_TYPE(self_in, &fun_bc_type)); |
| mp_obj_fun_bc_t *self = self_in; |
| *n_args = self->n_args; |
| *n_state = self->n_state; |
| *code = self->bytecode; |
| } |
| |
| /******************************************************************************/ |
| /* inline assembler functions */ |
| |
| typedef struct _mp_obj_fun_asm_t { |
| mp_obj_base_t base; |
| int n_args; |
| void *fun; |
| } mp_obj_fun_asm_t; |
| |
| typedef machine_uint_t (*inline_asm_fun_0_t)(); |
| typedef machine_uint_t (*inline_asm_fun_1_t)(machine_uint_t); |
| typedef machine_uint_t (*inline_asm_fun_2_t)(machine_uint_t, machine_uint_t); |
| typedef machine_uint_t (*inline_asm_fun_3_t)(machine_uint_t, machine_uint_t, machine_uint_t); |
| |
| // convert a Micro Python object to a sensible value for inline asm |
| STATIC machine_uint_t convert_obj_for_inline_asm(mp_obj_t obj) { |
| // TODO for byte_array, pass pointer to the array |
| if (MP_OBJ_IS_SMALL_INT(obj)) { |
| return MP_OBJ_SMALL_INT_VALUE(obj); |
| } else if (obj == mp_const_none) { |
| return 0; |
| } else if (obj == mp_const_false) { |
| return 0; |
| } else if (obj == mp_const_true) { |
| return 1; |
| } else if (MP_OBJ_IS_STR(obj)) { |
| // pointer to the string (it's probably constant though!) |
| uint l; |
| return (machine_uint_t)mp_obj_str_get_data(obj, &l); |
| #if MICROPY_ENABLE_FLOAT |
| } else if (MP_OBJ_IS_TYPE(obj, &float_type)) { |
| // convert float to int (could also pass in float registers) |
| return (machine_int_t)mp_obj_float_get(obj); |
| #endif |
| } else if (MP_OBJ_IS_TYPE(obj, &tuple_type)) { |
| // pointer to start of tuple (could pass length, but then could use len(x) for that) |
| uint len; |
| mp_obj_t *items; |
| mp_obj_tuple_get(obj, &len, &items); |
| return (machine_uint_t)items; |
| } else if (MP_OBJ_IS_TYPE(obj, &list_type)) { |
| // pointer to start of list (could pass length, but then could use len(x) for that) |
| uint len; |
| mp_obj_t *items; |
| mp_obj_list_get(obj, &len, &items); |
| return (machine_uint_t)items; |
| } else { |
| // just pass along a pointer to the object |
| return (machine_uint_t)obj; |
| } |
| } |
| |
| // convert a return value from inline asm to a sensible Micro Python object |
| STATIC mp_obj_t convert_val_from_inline_asm(machine_uint_t val) { |
| return MP_OBJ_NEW_SMALL_INT(val); |
| } |
| |
| STATIC mp_obj_t fun_asm_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) { |
| mp_obj_fun_asm_t *self = self_in; |
| |
| if (n_args != self->n_args) { |
| nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function takes %d positional arguments but %d were given", self->n_args, n_args)); |
| } |
| if (n_kw != 0) { |
| nlr_jump(mp_obj_new_exception_msg(&mp_type_TypeError, "function does not take keyword arguments")); |
| } |
| |
| machine_uint_t ret; |
| if (n_args == 0) { |
| ret = ((inline_asm_fun_0_t)self->fun)(); |
| } else if (n_args == 1) { |
| ret = ((inline_asm_fun_1_t)self->fun)(convert_obj_for_inline_asm(args[0])); |
| } else if (n_args == 2) { |
| ret = ((inline_asm_fun_2_t)self->fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1])); |
| } else if (n_args == 3) { |
| ret = ((inline_asm_fun_3_t)self->fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[2])); |
| } else { |
| assert(0); |
| ret = 0; |
| } |
| |
| return convert_val_from_inline_asm(ret); |
| } |
| |
| STATIC const mp_obj_type_t fun_asm_type = { |
| { &mp_type_type }, |
| .name = MP_QSTR_function, |
| .call = fun_asm_call, |
| }; |
| |
| mp_obj_t mp_obj_new_fun_asm(uint n_args, void *fun) { |
| mp_obj_fun_asm_t *o = m_new_obj(mp_obj_fun_asm_t); |
| o->base.type = &fun_asm_type; |
| o->n_args = n_args; |
| o->fun = fun; |
| return o; |
| } |