| /* |
| * This file is part of the Micro Python project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| #include "stm32f4xx_hal.h" |
| |
| #include "mpconfig.h" |
| #include "nlr.h" |
| #include "misc.h" |
| #include "qstr.h" |
| #include "obj.h" |
| #include "portmodules.h" |
| #include "rtc.h" |
| |
| /// \module time - time related functions |
| /// |
| /// The `time` module provides functions for getting the current time and date, |
| /// and for sleeping. |
| |
| STATIC const uint16_t days_since_jan1[]= { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }; |
| |
| STATIC bool is_leap_year(mp_uint_t year) { |
| return (year % 4 == 0 && year % 100 != 0) || year % 400 == 0; |
| } |
| |
| // Month is one based |
| STATIC mp_uint_t mod_time_days_in_month(mp_uint_t year, mp_uint_t month) { |
| mp_uint_t mdays = days_since_jan1[month] - days_since_jan1[month - 1]; |
| if (month == 2 && is_leap_year(year)) { |
| mdays++; |
| } |
| return mdays; |
| } |
| |
| // compute the day of the year, between 1 and 366 |
| // month should be between 1 and 12, date should start at 1 |
| STATIC mp_uint_t mod_time_year_day(mp_uint_t year, mp_uint_t month, mp_uint_t date) { |
| mp_uint_t yday = days_since_jan1[month - 1] + date; |
| if (month >= 3 && is_leap_year(year)) { |
| yday += 1; |
| } |
| return yday; |
| } |
| |
| // returns the number of seconds, as an integer, since 2000-01-01 |
| mp_uint_t mod_time_seconds_since_2000(mp_uint_t year, mp_uint_t month, mp_uint_t date, mp_uint_t hour, mp_uint_t minute, mp_uint_t second) { |
| return |
| second |
| + minute * 60 |
| + hour * 3600 |
| + (mod_time_year_day(year, month, date) - 1 |
| + ((year - 2000 + 3) / 4) // add a day each 4 years starting with 2001 |
| - ((year - 2000 + 99) / 100) // subtract a day each 100 years starting with 2001 |
| + ((year - 2000 + 399) / 400) // add a day each 400 years starting with 2001 |
| ) * 86400 |
| + (year - 2000) * 31536000; |
| } |
| |
| // LEAPOCH corresponds to 2000-03-01, which is a mod-400 year, immediately |
| // after Feb 29. We calculate seconds as a signed integer relative to that. |
| // |
| // Our timebase is is relative to 2000-01-01. |
| |
| #define LEAPOCH ((31 + 29) * 86400) |
| |
| #define DAYS_PER_400Y (365*400 + 97) |
| #define DAYS_PER_100Y (365*100 + 24) |
| #define DAYS_PER_4Y (365*4 + 1) |
| |
| typedef struct { |
| uint16_t tm_year; // i.e. 2014 |
| uint8_t tm_mon; // 1..12 |
| uint8_t tm_mday; // 1..31 |
| uint8_t tm_hour; // 0..23 |
| uint8_t tm_min; // 0..59 |
| uint8_t tm_sec; // 0..59 |
| uint8_t tm_wday; // 0..6 0 = Monday |
| uint16_t tm_yday; // 1..366 |
| } mod_struct_time; |
| |
| STATIC void mod_time_seconds_since_2000_to_struct_time(mp_uint_t t, mod_struct_time *tm) { |
| // The following algorithm was adapted from musl's __secs_to_tm and adapted |
| // for differences in Micro Python's timebase. |
| |
| mp_int_t seconds = t - LEAPOCH; |
| |
| mp_int_t days = seconds / 86400; |
| seconds %= 86400; |
| tm->tm_hour = seconds / 3600; |
| tm->tm_min = seconds / 60 % 60; |
| tm->tm_sec = seconds % 60; |
| |
| mp_int_t wday = (days + 2) % 7; // Mar 1, 2000 was a Wednesday (2) |
| if (wday < 0) { |
| wday += 7; |
| } |
| tm->tm_wday = wday; |
| |
| mp_int_t qc_cycles = days / DAYS_PER_400Y; |
| days %= DAYS_PER_400Y; |
| if (days < 0) { |
| days += DAYS_PER_400Y; |
| qc_cycles--; |
| } |
| mp_int_t c_cycles = days / DAYS_PER_100Y; |
| if (c_cycles == 4) { |
| c_cycles--; |
| } |
| days -= (c_cycles * DAYS_PER_100Y); |
| |
| mp_int_t q_cycles = days / DAYS_PER_4Y; |
| if (q_cycles == 25) { |
| q_cycles--; |
| } |
| days -= q_cycles * DAYS_PER_4Y; |
| |
| mp_int_t years = days / 365; |
| if (years == 4) { |
| years--; |
| } |
| days -= (years * 365); |
| |
| /* We will compute tm_yday at the very end |
| mp_int_t leap = !years && (q_cycles || !c_cycles); |
| |
| tm->tm_yday = days + 31 + 28 + leap; |
| if (tm->tm_yday >= 365 + leap) { |
| tm->tm_yday -= 365 + leap; |
| } |
| |
| tm->tm_yday++; // Make one based |
| */ |
| |
| tm->tm_year = 2000 + years + 4 * q_cycles + 100 * c_cycles + 400 * qc_cycles; |
| |
| // Note: days_in_month[0] corresponds to March |
| STATIC const int8_t days_in_month[] = {31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 29}; |
| |
| mp_int_t month; |
| for (month = 0; days_in_month[month] <= days; month++) { |
| days -= days_in_month[month]; |
| } |
| |
| tm->tm_mon = month + 2; |
| if (tm->tm_mon >= 12) { |
| tm->tm_mon -= 12; |
| tm->tm_year++; |
| } |
| tm->tm_mday = days + 1; // Make one based |
| tm->tm_mon++; // Make one based |
| |
| tm->tm_yday = mod_time_year_day(tm->tm_year, tm->tm_mon, tm->tm_mday); |
| } |
| |
| /// \function localtime([secs]) |
| /// Convert a time expressed in seconds since Jan 1, 2000 into an 8-tuple which |
| /// contains: (year, month, mday, hour, minute, second, weekday, yearday) |
| /// If secs is not provided or None, then the current time from the RTC is used. |
| /// year includes the century (for example 2014) |
| /// month is 1-12 |
| /// mday is 1-31 |
| /// hour is 0-23 |
| /// minute is 0-59 |
| /// second is 0-59 |
| /// weekday is 0-6 for Mon-Sun. |
| /// yearday is 1-366 |
| STATIC mp_obj_t time_localtime(mp_uint_t n_args, const mp_obj_t *args) { |
| if (n_args == 0 || args[0] == mp_const_none) { |
| // get current date and time |
| // note: need to call get time then get date to correctly access the registers |
| RTC_DateTypeDef date; |
| RTC_TimeTypeDef time; |
| HAL_RTC_GetTime(&RTCHandle, &time, FORMAT_BIN); |
| HAL_RTC_GetDate(&RTCHandle, &date, FORMAT_BIN); |
| mp_obj_t tuple[8] = { |
| mp_obj_new_int(2000 + date.Year), |
| mp_obj_new_int(date.Month), |
| mp_obj_new_int(date.Date), |
| mp_obj_new_int(time.Hours), |
| mp_obj_new_int(time.Minutes), |
| mp_obj_new_int(time.Seconds), |
| mp_obj_new_int(date.WeekDay - 1), |
| mp_obj_new_int(mod_time_year_day(2000 + date.Year, date.Month, date.Date)), |
| }; |
| return mp_obj_new_tuple(8, tuple); |
| } else { |
| mp_int_t seconds = mp_obj_get_int(args[0]); |
| mod_struct_time tm; |
| mod_time_seconds_since_2000_to_struct_time(seconds, &tm); |
| mp_obj_t tuple[8] = { |
| tuple[0] = mp_obj_new_int(tm.tm_year), |
| tuple[1] = mp_obj_new_int(tm.tm_mon), |
| tuple[2] = mp_obj_new_int(tm.tm_mday), |
| tuple[3] = mp_obj_new_int(tm.tm_hour), |
| tuple[4] = mp_obj_new_int(tm.tm_min), |
| tuple[5] = mp_obj_new_int(tm.tm_sec), |
| tuple[6] = mp_obj_new_int(tm.tm_wday), |
| tuple[7] = mp_obj_new_int(tm.tm_yday), |
| }; |
| return mp_obj_new_tuple(8, tuple); |
| } |
| } |
| MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(time_localtime_obj, 0, 1, time_localtime); |
| |
| |
| /// \function mktime() |
| /// This is inverse function of localtime. It's argument is a full 8-tuple |
| /// which expresses a time as per localtime. It returns an integer which is |
| /// the number of seconds since Jan 1, 2000. |
| STATIC mp_obj_t time_mktime(mp_obj_t tuple) { |
| |
| mp_uint_t len; |
| mp_obj_t *elem; |
| |
| mp_obj_get_array(tuple, &len, &elem); |
| |
| // localtime generates a tuple of len 8. CPython uses 9, so we accept both. |
| if (len < 8 || len > 9) { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "mktime needs a tuple of length 8 or 9 (%d given)", len)); |
| } |
| |
| mp_int_t year = mp_obj_get_int(elem[0]); |
| mp_int_t month = mp_obj_get_int(elem[1]); |
| mp_int_t mday = mp_obj_get_int(elem[2]); |
| mp_int_t hours = mp_obj_get_int(elem[3]); |
| mp_int_t minutes = mp_obj_get_int(elem[4]); |
| mp_int_t seconds = mp_obj_get_int(elem[5]); |
| |
| // Normalise the tuple. This allows things like: |
| // |
| // tm_tomorrow = list(time.localtime()) |
| // tm_tomorrow[2] += 1 # Adds 1 to mday |
| // tomorrow = time.mktime(tm_tommorrow) |
| // |
| // And not have to worry about all the weird overflows. |
| // |
| // You can subtract dates/times this way as well. |
| |
| minutes += seconds / 60; |
| if ((seconds = seconds % 60) < 0) { |
| seconds += 60; |
| minutes--; |
| } |
| |
| hours += minutes / 60; |
| if ((minutes = minutes % 60) < 0) { |
| minutes += 60; |
| hours--; |
| } |
| |
| mday += hours / 24; |
| if ((hours = hours % 24) < 0) { |
| hours += 24; |
| mday--; |
| } |
| |
| month--; // make month zero based |
| year += month / 12; |
| if ((month = month % 12) < 0) { |
| month += 12; |
| year--; |
| } |
| month++; // back to one based |
| |
| while (mday < 1) { |
| if (--month == 0) { |
| month = 12; |
| year--; |
| } |
| mday += mod_time_days_in_month(year, month); |
| } |
| while (mday > mod_time_days_in_month(year, month)) { |
| mday -= mod_time_days_in_month(year, month); |
| if (++month == 13) { |
| month = 1; |
| year++; |
| } |
| } |
| return mp_obj_new_int_from_uint(mod_time_seconds_since_2000(year, month, mday, hours, minutes, seconds)); |
| } |
| MP_DEFINE_CONST_FUN_OBJ_1(time_mktime_obj, time_mktime); |
| |
| |
| /// \function sleep(seconds) |
| /// Sleep for the given number of seconds. Seconds can be a floating-point number to |
| /// sleep for a fractional number of seconds. |
| STATIC mp_obj_t time_sleep(mp_obj_t seconds_o) { |
| #if MICROPY_PY_BUILTINS_FLOAT |
| if (MP_OBJ_IS_INT(seconds_o)) { |
| #endif |
| HAL_Delay(1000 * mp_obj_get_int(seconds_o)); |
| #if MICROPY_PY_BUILTINS_FLOAT |
| } else { |
| HAL_Delay((uint32_t)(1000 * mp_obj_get_float(seconds_o))); |
| } |
| #endif |
| return mp_const_none; |
| } |
| MP_DEFINE_CONST_FUN_OBJ_1(time_sleep_obj, time_sleep); |
| |
| /// \function time() |
| /// Returns the number of seconds, as an integer, since 1/1/2000. |
| STATIC mp_obj_t time_time(void) { |
| // get date and time |
| // note: need to call get time then get date to correctly access the registers |
| RTC_DateTypeDef date; |
| RTC_TimeTypeDef time; |
| HAL_RTC_GetTime(&RTCHandle, &time, FORMAT_BIN); |
| HAL_RTC_GetDate(&RTCHandle, &date, FORMAT_BIN); |
| return mp_obj_new_int(mod_time_seconds_since_2000(2000 + date.Year, date.Month, date.Date, time.Hours, time.Minutes, time.Seconds)); |
| } |
| MP_DEFINE_CONST_FUN_OBJ_0(time_time_obj, time_time); |
| |
| STATIC const mp_map_elem_t time_module_globals_table[] = { |
| { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_utime) }, |
| |
| { MP_OBJ_NEW_QSTR(MP_QSTR_localtime), (mp_obj_t)&time_localtime_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_mktime), (mp_obj_t)&time_mktime_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_sleep), (mp_obj_t)&time_sleep_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_time), (mp_obj_t)&time_time_obj }, |
| }; |
| |
| STATIC const mp_obj_dict_t time_module_globals = { |
| .base = {&mp_type_dict}, |
| .map = { |
| .all_keys_are_qstrs = 1, |
| .table_is_fixed_array = 1, |
| .used = MP_ARRAY_SIZE(time_module_globals_table), |
| .alloc = MP_ARRAY_SIZE(time_module_globals_table), |
| .table = (mp_map_elem_t*)time_module_globals_table, |
| }, |
| }; |
| |
| const mp_obj_module_t mp_module_utime = { |
| .base = { &mp_type_module }, |
| .name = MP_QSTR_utime, |
| .globals = (mp_obj_dict_t*)&time_module_globals, |
| }; |