| /* |
| * This file is part of the Micro Python project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2015 Josef Gajdusek |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include "py/nlr.h" |
| #include "py/obj.h" |
| #include "py/runtime.h" |
| #include "lib/timeutils/timeutils.h" |
| #include "user_interface.h" |
| #include "modmachine.h" |
| |
| typedef struct _pyb_rtc_obj_t { |
| mp_obj_base_t base; |
| } pyb_rtc_obj_t; |
| |
| #define MEM_MAGIC 0x75507921 |
| #define MEM_DELTA_ADDR 64 |
| #define MEM_CAL_ADDR (MEM_DELTA_ADDR + 2) |
| #define MEM_USER_MAGIC_ADDR (MEM_CAL_ADDR + 1) |
| #define MEM_USER_LEN_ADDR (MEM_USER_MAGIC_ADDR + 1) |
| #define MEM_USER_DATA_ADDR (MEM_USER_LEN_ADDR + 1) |
| #define MEM_USER_MAXLEN (512 - (MEM_USER_DATA_ADDR - MEM_DELTA_ADDR) * 4) |
| |
| // singleton RTC object |
| STATIC const pyb_rtc_obj_t pyb_rtc_obj = {{&pyb_rtc_type}}; |
| |
| // ALARM0 state |
| uint32_t pyb_rtc_alarm0_wake; // see MACHINE_WAKE_xxx constants |
| uint64_t pyb_rtc_alarm0_expiry; // in microseconds |
| |
| // RTC overflow checking |
| STATIC uint32_t rtc_last_ticks; |
| |
| void mp_hal_rtc_init(void) { |
| uint32_t magic; |
| |
| system_rtc_mem_read(MEM_USER_MAGIC_ADDR, &magic, sizeof(magic)); |
| if (magic != MEM_MAGIC) { |
| magic = MEM_MAGIC; |
| system_rtc_mem_write(MEM_USER_MAGIC_ADDR, &magic, sizeof(magic)); |
| uint32_t cal = system_rtc_clock_cali_proc(); |
| int64_t delta = 0; |
| system_rtc_mem_write(MEM_CAL_ADDR, &cal, sizeof(cal)); |
| system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta)); |
| uint32_t len = 0; |
| system_rtc_mem_write(MEM_USER_LEN_ADDR, &len, sizeof(len)); |
| } |
| // system_get_rtc_time() is always 0 after reset/deepsleep |
| rtc_last_ticks = system_get_rtc_time(); |
| |
| // reset ALARM0 state |
| pyb_rtc_alarm0_wake = 0; |
| pyb_rtc_alarm0_expiry = 0; |
| } |
| |
| STATIC mp_obj_t pyb_rtc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
| // check arguments |
| mp_arg_check_num(n_args, n_kw, 0, 0, false); |
| |
| // return constant object |
| return (mp_obj_t)&pyb_rtc_obj; |
| } |
| |
| void pyb_rtc_set_us_since_2000(uint64_t nowus) { |
| uint32_t cal = system_rtc_clock_cali_proc(); |
| // Save RTC ticks for overflow detection. |
| rtc_last_ticks = system_get_rtc_time(); |
| int64_t delta = nowus - (((uint64_t)rtc_last_ticks * cal) >> 12); |
| |
| // As the calibration value jitters quite a bit, to make the |
| // clock at least somewhat practically usable, we need to store it |
| system_rtc_mem_write(MEM_CAL_ADDR, &cal, sizeof(cal)); |
| system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta)); |
| }; |
| |
| uint64_t pyb_rtc_get_us_since_2000() { |
| uint32_t cal; |
| int64_t delta; |
| uint32_t rtc_ticks; |
| |
| system_rtc_mem_read(MEM_CAL_ADDR, &cal, sizeof(cal)); |
| system_rtc_mem_read(MEM_DELTA_ADDR, &delta, sizeof(delta)); |
| |
| // ESP-SDK system_get_rtc_time() only returns uint32 and therefore |
| // overflow about every 7:45h. Thus, we have to check for |
| // overflow and handle it. |
| rtc_ticks = system_get_rtc_time(); |
| if (rtc_ticks < rtc_last_ticks) { |
| // Adjust delta because of RTC overflow. |
| delta += (uint64_t)cal << 20; |
| system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta)); |
| } |
| rtc_last_ticks = rtc_ticks; |
| |
| return (((uint64_t)rtc_ticks * cal) >> 12) + delta; |
| }; |
| |
| void rtc_prepare_deepsleep(uint64_t sleep_us) { |
| // RTC time will reset at wake up. Let's be preared for this. |
| int64_t delta = pyb_rtc_get_us_since_2000() + sleep_us; |
| system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta)); |
| } |
| |
| STATIC mp_obj_t pyb_rtc_datetime(mp_uint_t n_args, const mp_obj_t *args) { |
| if (n_args == 1) { |
| // Get time |
| uint64_t msecs = pyb_rtc_get_us_since_2000() / 1000; |
| |
| timeutils_struct_time_t tm; |
| timeutils_seconds_since_2000_to_struct_time(msecs / 1000, &tm); |
| |
| mp_obj_t tuple[8] = { |
| mp_obj_new_int(tm.tm_year), |
| mp_obj_new_int(tm.tm_mon), |
| mp_obj_new_int(tm.tm_mday), |
| mp_obj_new_int(tm.tm_wday), |
| mp_obj_new_int(tm.tm_hour), |
| mp_obj_new_int(tm.tm_min), |
| mp_obj_new_int(tm.tm_sec), |
| mp_obj_new_int(msecs % 1000) |
| }; |
| |
| return mp_obj_new_tuple(8, tuple); |
| } else { |
| // Set time |
| mp_obj_t *items; |
| mp_obj_get_array_fixed_n(args[1], 8, &items); |
| |
| pyb_rtc_set_us_since_2000( |
| ((uint64_t)timeutils_seconds_since_2000( |
| mp_obj_get_int(items[0]), |
| mp_obj_get_int(items[1]), |
| mp_obj_get_int(items[2]), |
| mp_obj_get_int(items[4]), |
| mp_obj_get_int(items[5]), |
| mp_obj_get_int(items[6])) * 1000 + mp_obj_get_int(items[7])) * 1000); |
| |
| return mp_const_none; |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_datetime_obj, 1, 2, pyb_rtc_datetime); |
| |
| STATIC mp_obj_t pyb_rtc_memory(mp_uint_t n_args, const mp_obj_t *args) { |
| uint8_t rtcram[MEM_USER_MAXLEN]; |
| uint32_t len; |
| |
| if (n_args == 1) { |
| // read RTC memory |
| |
| system_rtc_mem_read(MEM_USER_LEN_ADDR, &len, sizeof(len)); |
| system_rtc_mem_read(MEM_USER_DATA_ADDR, rtcram, (len + 3) & ~3); |
| |
| return mp_obj_new_bytes(rtcram, len); |
| } else { |
| // write RTC memory |
| |
| mp_buffer_info_t bufinfo; |
| mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_READ); |
| |
| if (bufinfo.len > MEM_USER_MAXLEN) { |
| nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, |
| "buffer too long")); |
| } |
| |
| len = bufinfo.len; |
| system_rtc_mem_write(MEM_USER_LEN_ADDR, &len, sizeof(len)); |
| |
| int i = 0; |
| for (; i < bufinfo.len; i++) { |
| rtcram[i] = ((uint8_t *)bufinfo.buf)[i]; |
| } |
| |
| system_rtc_mem_write(MEM_USER_DATA_ADDR, rtcram, (len + 3) & ~3); |
| |
| return mp_const_none; |
| } |
| |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_memory_obj, 1, 2, pyb_rtc_memory); |
| |
| STATIC mp_obj_t pyb_rtc_alarm(mp_obj_t self_in, mp_obj_t alarm_id, mp_obj_t time_in) { |
| (void)self_in; // unused |
| |
| // check we want alarm0 |
| if (mp_obj_get_int(alarm_id) != 0) { |
| nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "invalid alarm")); |
| } |
| |
| // set expiry time (in microseconds) |
| pyb_rtc_alarm0_expiry = pyb_rtc_get_us_since_2000() + (uint64_t)mp_obj_get_int(time_in) * 1000; |
| |
| return mp_const_none; |
| |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_rtc_alarm_obj, pyb_rtc_alarm); |
| |
| STATIC mp_obj_t pyb_rtc_alarm_left(size_t n_args, const mp_obj_t *args) { |
| // check we want alarm0 |
| if (n_args > 1 && mp_obj_get_int(args[1]) != 0) { |
| mp_raise_ValueError("invalid alarm"); |
| } |
| |
| uint64_t now = pyb_rtc_get_us_since_2000(); |
| if (pyb_rtc_alarm0_expiry <= now) { |
| return MP_OBJ_NEW_SMALL_INT(0); |
| } else { |
| return mp_obj_new_int((pyb_rtc_alarm0_expiry - now) / 1000); |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_alarm_left_obj, 1, 2, pyb_rtc_alarm_left); |
| |
| STATIC mp_obj_t pyb_rtc_irq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { |
| enum { ARG_trigger, ARG_wake }; |
| static const mp_arg_t allowed_args[] = { |
| { MP_QSTR_trigger, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, |
| { MP_QSTR_wake, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, |
| }; |
| mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; |
| mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); |
| |
| // check we want alarm0 |
| if (args[ARG_trigger].u_int != 0) { |
| nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "invalid alarm")); |
| } |
| |
| // set the wake value |
| pyb_rtc_alarm0_wake = args[ARG_wake].u_int; |
| |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_rtc_irq_obj, 1, pyb_rtc_irq); |
| |
| STATIC const mp_map_elem_t pyb_rtc_locals_dict_table[] = { |
| { MP_OBJ_NEW_QSTR(MP_QSTR_datetime), (mp_obj_t)&pyb_rtc_datetime_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_memory), (mp_obj_t)&pyb_rtc_memory_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_alarm), (mp_obj_t)&pyb_rtc_alarm_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_alarm_left), (mp_obj_t)&pyb_rtc_alarm_left_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_irq), (mp_obj_t)&pyb_rtc_irq_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_ALARM0), MP_OBJ_NEW_SMALL_INT(0) }, |
| }; |
| STATIC MP_DEFINE_CONST_DICT(pyb_rtc_locals_dict, pyb_rtc_locals_dict_table); |
| |
| const mp_obj_type_t pyb_rtc_type = { |
| { &mp_type_type }, |
| .name = MP_QSTR_RTC, |
| .make_new = pyb_rtc_make_new, |
| .locals_dict = (mp_obj_t)&pyb_rtc_locals_dict, |
| }; |