| /* |
| * This file is part of the Micro Python project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include <stm32f4xx_hal.h> |
| #include "usbd_cdc_msc_hid.h" |
| #include "usbd_cdc_interface.h" |
| |
| #include "nlr.h" |
| #include "misc.h" |
| #include "mpconfig.h" |
| #include "qstr.h" |
| #include "gc.h" |
| #include "obj.h" |
| #include "runtime.h" |
| #include "timer.h" |
| #include "servo.h" |
| #include "pin.h" |
| |
| /// \moduleref pyb |
| /// \class Timer - periodically call a function |
| /// |
| /// Timers can be used for a great variety of tasks. At the moment, only |
| /// the simplest case is implemented: that of calling a function periodically. |
| /// |
| /// Each timer consists of a counter that counts up at a certain rate. The rate |
| /// at which it counts is the peripheral clock frequency (in Hz) divided by the |
| /// timer prescaler. When the counter reaches the timer period it triggers an |
| /// event, and the counter resets back to zero. By using the callback method, |
| /// the timer event can call a Python function. |
| /// |
| /// Example usage to toggle an LED at a fixed frequency: |
| /// |
| /// tim = pyb.Timer(4) # create a timer object using timer 4 |
| /// tim.init(freq=2) # trigger at 2Hz |
| /// tim.callback(lambda t:pyb.LED(1).toggle()) |
| /// |
| /// Further examples: |
| /// |
| /// tim = pyb.Timer(4, freq=100) # freq in Hz |
| /// tim = pyb.Timer(4, prescaler=0, period=99) |
| /// tim.counter() # get counter (can also set) |
| /// tim.prescaler(2) # set prescaler (can also get) |
| /// tim.period(199) # set period (can also get) |
| /// tim.callback(lambda t: ...) # set callback for update interrupt (t=tim instance) |
| /// tim.callback(None) # clear callback |
| /// |
| /// *Note:* Timer 3 is reserved for internal use. Timer 5 controls |
| /// the servo driver, and Timer 6 is used for timed ADC/DAC reading/writing. |
| /// It is recommended to use the other timers in your programs. |
| |
| // The timers can be used by multiple drivers, and need a common point for |
| // the interrupts to be dispatched, so they are all collected here. |
| // |
| // TIM3: |
| // - flash storage controller, to flush the cache |
| // - USB CDC interface, interval, to check for new data |
| // - LED 4, PWM to set the LED intensity |
| // |
| // TIM5: |
| // - servo controller, PWM |
| // |
| // TIM6: |
| // - ADC, DAC for read_timed and write_timed |
| |
| typedef enum { |
| CHANNEL_MODE_PWM_NORMAL, |
| CHANNEL_MODE_PWM_INVERTED, |
| CHANNEL_MODE_OC_TIMING, |
| CHANNEL_MODE_OC_ACTIVE, |
| CHANNEL_MODE_OC_INACTIVE, |
| CHANNEL_MODE_OC_TOGGLE, |
| CHANNEL_MODE_OC_FORCED_ACTIVE, |
| CHANNEL_MODE_OC_FORCED_INACTIVE, |
| CHANNEL_MODE_IC, |
| } pyb_channel_mode; |
| |
| STATIC const struct { |
| qstr name; |
| uint32_t oc_mode; |
| } channel_mode_info[] = { |
| { MP_QSTR_PWM, TIM_OCMODE_PWM1 }, |
| { MP_QSTR_PWM_INVERTED, TIM_OCMODE_PWM2 }, |
| { MP_QSTR_OC_TIMING, TIM_OCMODE_TIMING }, |
| { MP_QSTR_OC_ACTIVE, TIM_OCMODE_ACTIVE }, |
| { MP_QSTR_OC_INACTIVE, TIM_OCMODE_INACTIVE }, |
| { MP_QSTR_OC_TOGGLE, TIM_OCMODE_TOGGLE }, |
| { MP_QSTR_OC_FORCED_ACTIVE, TIM_OCMODE_FORCED_ACTIVE }, |
| { MP_QSTR_OC_FORCED_INACTIVE, TIM_OCMODE_FORCED_INACTIVE }, |
| { MP_QSTR_IC, 0 }, |
| }; |
| |
| typedef struct _pyb_timer_channel_obj_t { |
| mp_obj_base_t base; |
| struct _pyb_timer_obj_t *timer; |
| uint8_t channel; |
| uint8_t mode; |
| mp_obj_t callback; |
| struct _pyb_timer_channel_obj_t *next; |
| } pyb_timer_channel_obj_t; |
| |
| typedef struct _pyb_timer_obj_t { |
| mp_obj_base_t base; |
| uint8_t tim_id; |
| uint8_t is_32bit; |
| mp_obj_t callback; |
| TIM_HandleTypeDef tim; |
| IRQn_Type irqn; |
| pyb_timer_channel_obj_t *channel; |
| } pyb_timer_obj_t; |
| |
| // The following yields TIM_IT_UPDATE when channel is zero and |
| // TIM_IT_CC1..TIM_IT_CC4 when channel is 1..4 |
| #define TIMER_IRQ_MASK(channel) (1 << (channel)) |
| #define TIMER_CNT_MASK(self) ((self)->is_32bit ? 0xffffffff : 0xffff) |
| #define TIMER_CHANNEL(self) ((((self)->channel) - 1) << 2) |
| |
| TIM_HandleTypeDef TIM3_Handle; |
| TIM_HandleTypeDef TIM5_Handle; |
| TIM_HandleTypeDef TIM6_Handle; |
| |
| // Used to divide down TIM3 and periodically call the flash storage IRQ |
| STATIC uint32_t tim3_counter = 0; |
| |
| // Used to do callbacks to Python code on interrupt |
| STATIC pyb_timer_obj_t *pyb_timer_obj_all[14]; |
| #define PYB_TIMER_OBJ_ALL_NUM MP_ARRAY_SIZE(pyb_timer_obj_all) |
| |
| STATIC uint32_t timer_get_source_freq(uint32_t tim_id); |
| STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in); |
| STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback); |
| STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback); |
| |
| void timer_init0(void) { |
| tim3_counter = 0; |
| for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) { |
| pyb_timer_obj_all[i] = NULL; |
| } |
| } |
| |
| // unregister all interrupt sources |
| void timer_deinit(void) { |
| for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) { |
| pyb_timer_obj_t *tim = pyb_timer_obj_all[i]; |
| if (tim != NULL) { |
| pyb_timer_deinit(tim); |
| } |
| } |
| } |
| |
| // TIM3 is set-up for the USB CDC interface |
| void timer_tim3_init(void) { |
| // set up the timer for USBD CDC |
| __TIM3_CLK_ENABLE(); |
| |
| TIM3_Handle.Instance = TIM3; |
| TIM3_Handle.Init.Period = (USBD_CDC_POLLING_INTERVAL*1000) - 1; // TIM3 fires every USBD_CDC_POLLING_INTERVAL ms |
| TIM3_Handle.Init.Prescaler = timer_get_source_freq(3) / 1000000 - 1; // TIM3 runs at 1MHz |
| TIM3_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; |
| TIM3_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; |
| HAL_TIM_Base_Init(&TIM3_Handle); |
| |
| HAL_NVIC_SetPriority(TIM3_IRQn, 6, 0); |
| HAL_NVIC_EnableIRQ(TIM3_IRQn); |
| |
| if (HAL_TIM_Base_Start(&TIM3_Handle) != HAL_OK) { |
| /* Starting Error */ |
| } |
| } |
| |
| /* unused |
| void timer_tim3_deinit(void) { |
| // reset TIM3 timer |
| __TIM3_FORCE_RESET(); |
| __TIM3_RELEASE_RESET(); |
| } |
| */ |
| |
| // TIM5 is set-up for the servo controller |
| // This function inits but does not start the timer |
| void timer_tim5_init(void) { |
| // TIM5 clock enable |
| __TIM5_CLK_ENABLE(); |
| |
| // set up and enable interrupt |
| HAL_NVIC_SetPriority(TIM5_IRQn, 6, 0); |
| HAL_NVIC_EnableIRQ(TIM5_IRQn); |
| |
| // PWM clock configuration |
| TIM5_Handle.Instance = TIM5; |
| TIM5_Handle.Init.Period = 2000 - 1; // timer cycles at 50Hz |
| TIM5_Handle.Init.Prescaler = (timer_get_source_freq(5) / 100000) - 1; // timer runs at 100kHz |
| TIM5_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; |
| TIM5_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; |
| |
| HAL_TIM_PWM_Init(&TIM5_Handle); |
| } |
| |
| // Init TIM6 with a counter-overflow at the given frequency (given in Hz) |
| // TIM6 is used by the DAC and ADC for auto sampling at a given frequency |
| // This function inits but does not start the timer |
| void timer_tim6_init(uint freq) { |
| // TIM6 clock enable |
| __TIM6_CLK_ENABLE(); |
| |
| // Timer runs at SystemCoreClock / 2 |
| // Compute the prescaler value so TIM6 triggers at freq-Hz |
| uint32_t period = MAX(1, timer_get_source_freq(6) / freq); |
| uint32_t prescaler = 1; |
| while (period > 0xffff) { |
| period >>= 1; |
| prescaler <<= 1; |
| } |
| |
| // Time base clock configuration |
| TIM6_Handle.Instance = TIM6; |
| TIM6_Handle.Init.Period = period - 1; |
| TIM6_Handle.Init.Prescaler = prescaler - 1; |
| TIM6_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // unused for TIM6 |
| TIM6_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; // unused for TIM6 |
| HAL_TIM_Base_Init(&TIM6_Handle); |
| } |
| |
| // Interrupt dispatch |
| void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { |
| if (htim == &TIM3_Handle) { |
| USBD_CDC_HAL_TIM_PeriodElapsedCallback(); |
| |
| // Periodically raise a flash IRQ for the flash storage controller |
| if (tim3_counter++ >= 500 / USBD_CDC_POLLING_INTERVAL) { |
| tim3_counter = 0; |
| NVIC->STIR = FLASH_IRQn; |
| } |
| |
| } else if (htim == &TIM5_Handle) { |
| servo_timer_irq_callback(); |
| } |
| } |
| |
| // Get the frequency (in Hz) of the source clock for the given timer. |
| // On STM32F405/407/415/417 there are 2 cases for how the clock freq is set. |
| // If the APB prescaler is 1, then the timer clock is equal to its respective |
| // APB clock. Otherwise (APB prescaler > 1) the timer clock is twice its |
| // respective APB clock. See DM00031020 Rev 4, page 115. |
| STATIC uint32_t timer_get_source_freq(uint32_t tim_id) { |
| uint32_t source; |
| if (tim_id == 1 || (8 <= tim_id && tim_id <= 11)) { |
| // TIM{1,8,9,10,11} are on APB2 |
| source = HAL_RCC_GetPCLK2Freq(); |
| if ((uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3) != RCC_HCLK_DIV1) { |
| source *= 2; |
| } |
| } else { |
| // TIM{2,3,4,5,6,7,12,13,14} are on APB1 |
| source = HAL_RCC_GetPCLK1Freq(); |
| if ((uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1) != RCC_HCLK_DIV1) { |
| source *= 2; |
| } |
| } |
| return source; |
| } |
| |
| /******************************************************************************/ |
| /* Micro Python bindings */ |
| |
| STATIC const mp_obj_type_t pyb_timer_channel_type; |
| |
| // This is the largest value that we can multiply by 100 and have the result |
| // fit in a uint32_t. |
| #define MAX_PERIOD_DIV_100 42949672 |
| |
| // computes prescaler and period so TIM triggers at freq-Hz |
| STATIC uint32_t compute_prescaler_period_from_freq(pyb_timer_obj_t *self, mp_obj_t freq_in, uint32_t *period_out) { |
| uint32_t source_freq = timer_get_source_freq(self->tim_id); |
| uint32_t prescaler = 1; |
| uint32_t period; |
| if (0) { |
| #if MICROPY_PY_BUILTINS_FLOAT |
| } else if (MP_OBJ_IS_TYPE(freq_in, &mp_type_float)) { |
| float freq = mp_obj_get_float(freq_in); |
| if (freq <= 0) { |
| goto bad_freq; |
| } |
| while (freq < 1 && prescaler < 6553) { |
| prescaler *= 10; |
| freq *= 10; |
| } |
| period = (float)source_freq / freq; |
| #endif |
| } else { |
| mp_int_t freq = mp_obj_get_int(freq_in); |
| if (freq <= 0) { |
| goto bad_freq; |
| bad_freq: |
| nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "must have positive freq")); |
| } |
| period = source_freq / freq; |
| } |
| period = MAX(1, period); |
| while (period > TIMER_CNT_MASK(self)) { |
| // if we can divide exactly, do that first |
| if (period % 5 == 0) { |
| prescaler *= 5; |
| period /= 5; |
| } else if (period % 3 == 0) { |
| prescaler *= 3; |
| period /= 3; |
| } else { |
| // may not divide exactly, but loses minimal precision |
| prescaler <<= 1; |
| period >>= 1; |
| } |
| } |
| *period_out = (period - 1) & TIMER_CNT_MASK(self); |
| return (prescaler - 1) & 0xffff; |
| } |
| |
| // Helper function for determining the period used for calculating percent |
| STATIC uint32_t compute_period(pyb_timer_obj_t *self) { |
| // In center mode, compare == period corresponds to 100% |
| // In edge mode, compare == (period + 1) corresponds to 100% |
| uint32_t period = (__HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self)); |
| if (period != 0xffffffff) { |
| if (self->tim.Init.CounterMode == TIM_COUNTERMODE_UP || |
| self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN) { |
| // Edge mode |
| period++; |
| } |
| } |
| return period; |
| } |
| |
| // Helper function to compute PWM value from timer period and percent value. |
| // 'percent_in' can be an int or a float between 0 and 100 (out of range |
| // values are clamped). |
| STATIC uint32_t compute_pwm_value_from_percent(uint32_t period, mp_obj_t percent_in) { |
| uint32_t cmp; |
| if (0) { |
| #if MICROPY_PY_BUILTINS_FLOAT |
| } else if (MP_OBJ_IS_TYPE(percent_in, &mp_type_float)) { |
| float percent = mp_obj_get_float(percent_in); |
| if (percent <= 0.0) { |
| cmp = 0; |
| } else if (percent >= 100.0) { |
| cmp = period; |
| } else { |
| cmp = percent / 100.0 * ((float)period); |
| } |
| #endif |
| } else { |
| // For integer arithmetic, if period is large and 100*period will |
| // overflow, then divide period before multiplying by cmp. Otherwise |
| // do it the other way round to retain precision. |
| mp_int_t percent = mp_obj_get_int(percent_in); |
| if (percent <= 0) { |
| cmp = 0; |
| } else if (percent >= 100) { |
| cmp = period; |
| } else if (period > MAX_PERIOD_DIV_100) { |
| cmp = (uint32_t)percent * (period / 100); |
| } else { |
| cmp = ((uint32_t)percent * period) / 100; |
| } |
| } |
| return cmp; |
| } |
| |
| // Helper function to compute percentage from timer perion and PWM value. |
| STATIC mp_obj_t compute_percent_from_pwm_value(uint32_t period, uint32_t cmp) { |
| #if MICROPY_PY_BUILTINS_FLOAT |
| float percent; |
| if (cmp >= period) { |
| percent = 100.0; |
| } else { |
| percent = (float)cmp * 100.0 / ((float)period); |
| } |
| return mp_obj_new_float(percent); |
| #else |
| mp_int_t percent; |
| if (cmp >= period) { |
| percent = 100; |
| } else if (cmp > MAX_PERIOD_DIV_100) { |
| percent = cmp / (period / 100); |
| } else { |
| percent = cmp * 100 / period; |
| } |
| return mp_obj_new_int(percent); |
| #endif |
| } |
| |
| // Computes the 8-bit value for the DTG field in the BDTR register. |
| // |
| // 1 tick = 1 count of the timer's clock (source_freq) divided by div. |
| // 0-128 ticks in inrements of 1 |
| // 128-256 ticks in increments of 2 |
| // 256-512 ticks in increments of 8 |
| // 512-1008 ticks in increments of 16 |
| STATIC uint32_t compute_dtg_from_ticks(mp_int_t ticks) { |
| if (ticks <= 0) { |
| return 0; |
| } |
| if (ticks < 128) { |
| return ticks; |
| } |
| if (ticks < 256) { |
| return 0x80 | ((ticks - 128) / 2); |
| } |
| if (ticks < 512) { |
| return 0xC0 | ((ticks - 256) / 8); |
| } |
| if (ticks < 1008) { |
| return 0xE0 | ((ticks - 512) / 16); |
| } |
| return 0xFF; |
| } |
| |
| // Given the 8-bit value stored in the DTG field of the BDTR register, compute |
| // the number of ticks. |
| STATIC mp_int_t compute_ticks_from_dtg(uint32_t dtg) { |
| if ((dtg & 0x80) == 0) { |
| return dtg & 0x7F; |
| } |
| if ((dtg & 0xC0) == 0x80) { |
| return 128 + ((dtg & 0x3F) * 2); |
| } |
| if ((dtg & 0xE0) == 0xC0) { |
| return 256 + ((dtg & 0x1F) * 8); |
| } |
| return 512 + ((dtg & 0x1F) * 16); |
| } |
| |
| STATIC void config_deadtime(pyb_timer_obj_t *self, mp_int_t ticks) { |
| TIM_BreakDeadTimeConfigTypeDef deadTimeConfig; |
| deadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE; |
| deadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE; |
| deadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF; |
| deadTimeConfig.DeadTime = compute_dtg_from_ticks(ticks); |
| deadTimeConfig.BreakState = TIM_BREAK_DISABLE; |
| deadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_LOW; |
| deadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE; |
| HAL_TIMEx_ConfigBreakDeadTime(&self->tim, &deadTimeConfig); |
| } |
| |
| STATIC void pyb_timer_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { |
| pyb_timer_obj_t *self = self_in; |
| |
| if (self->tim.State == HAL_TIM_STATE_RESET) { |
| print(env, "Timer(%u)", self->tim_id); |
| } else { |
| uint32_t prescaler = self->tim.Instance->PSC & 0xffff; |
| uint32_t period = __HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self); |
| // for efficiency, we compute and print freq as an int (not a float) |
| uint32_t freq = timer_get_source_freq(self->tim_id) / ((prescaler + 1) * (period + 1)); |
| print(env, "Timer(%u, freq=%u, prescaler=%u, period=%u, mode=%s, div=%u", |
| self->tim_id, |
| freq, |
| prescaler, |
| period, |
| self->tim.Init.CounterMode == TIM_COUNTERMODE_UP ? "UP" : |
| self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN ? "DOWN" : "CENTER", |
| self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV4 ? 4 : |
| self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV2 ? 2 : 1); |
| if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance)) { |
| print(env, ", deadtime=%u", compute_ticks_from_dtg(self->tim.Instance->BDTR & TIM_BDTR_DTG)); |
| } |
| print(env, ")"); |
| } |
| } |
| |
| /// \method init(*, freq, prescaler, period) |
| /// Initialise the timer. Initialisation must be either by frequency (in Hz) |
| /// or by prescaler and period: |
| /// |
| /// tim.init(freq=100) # set the timer to trigger at 100Hz |
| /// tim.init(prescaler=83, period=999) # set the prescaler and period directly |
| /// |
| /// Keyword arguments: |
| /// |
| /// - `freq` - specifies the periodic frequency of the timer. You migh also |
| /// view this as the frequency with which the timer goes through |
| /// one complete cycle. |
| /// |
| /// - `prescaler` [0-0xffff] - specifies the value to be loaded into the |
| /// timer's Prescaler Register (PSC). The timer clock source is divided by |
| /// (`prescaler + 1`) to arrive at the timer clock. Timers 2-7 and 12-14 |
| /// have a clock source of 84 MHz (pyb.freq()[2] * 2), and Timers 1, and 8-11 |
| /// have a clock source of 168 MHz (pyb.freq()[3] * 2). |
| /// |
| /// - `period` [0-0xffff] for timers 1, 3, 4, and 6-15. [0-0x3fffffff] for timers 2 & 5. |
| /// Specifies the value to be loaded into the timer's AutoReload |
| /// Register (ARR). This determines the period of the timer (i.e. when the |
| /// counter cycles). The timer counter will roll-over after `period + 1` |
| /// timer clock cycles. |
| /// |
| /// - `mode` can be one of: |
| /// - `Timer.UP` - configures the timer to count from 0 to ARR (default) |
| /// - `Timer.DOWN` - configures the timer to count from ARR down to 0. |
| /// - `Timer.CENTER` - confgures the timer to count from 0 to ARR and |
| /// then back down to 0. |
| /// |
| /// - `div` can be one of 1, 2, or 4. Divides the timer clock to determine |
| /// the sampling clock used by the digital filters. |
| /// |
| /// - `callback` - as per Timer.callback() |
| /// |
| /// - `deadtime` - specifies the amount of "dead" or inactive time between |
| /// transitions on complimentary channels (both channels will be inactive) |
| /// for this time). `deadtime` may be an integer between 0 and 1008, with |
| /// the following restrictions: 0-128 in steps of 1. 128-256 in steps of |
| /// 2, 256-512 in steps of 8, and 512-1008 in steps of 16. `deadime` |
| /// measures ticks of `source_freq` divided by `div` clock ticks. |
| /// `deadtime` is only available on timers 1 and 8. |
| /// |
| /// You must either specify freq or both of period and prescaler. |
| STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { |
| static const mp_arg_t allowed_args[] = { |
| { MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, |
| { MP_QSTR_prescaler, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, |
| { MP_QSTR_period, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, |
| { MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIM_COUNTERMODE_UP} }, |
| { MP_QSTR_div, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, |
| { MP_QSTR_callback, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, |
| { MP_QSTR_deadtime, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, |
| }; |
| |
| // parse args |
| mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; |
| mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); |
| |
| // set the TIM configuration values |
| TIM_Base_InitTypeDef *init = &self->tim.Init; |
| |
| if (args[0].u_obj != mp_const_none) { |
| // set prescaler and period from desired frequency |
| init->Prescaler = compute_prescaler_period_from_freq(self, args[0].u_obj, &init->Period); |
| } else if (args[1].u_int != 0xffffffff && args[2].u_int != 0xffffffff) { |
| // set prescaler and period directly |
| init->Prescaler = args[1].u_int; |
| init->Period = args[2].u_int; |
| } else { |
| nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "must specify either freq, or prescaler and period")); |
| } |
| |
| init->CounterMode = args[3].u_int; |
| if (!IS_TIM_COUNTER_MODE(init->CounterMode)) { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid mode (%d)", init->CounterMode)); |
| } |
| |
| init->ClockDivision = args[4].u_int == 2 ? TIM_CLOCKDIVISION_DIV2 : |
| args[4].u_int == 4 ? TIM_CLOCKDIVISION_DIV4 : |
| TIM_CLOCKDIVISION_DIV1; |
| |
| init->RepetitionCounter = 0; |
| |
| // enable TIM clock |
| switch (self->tim_id) { |
| case 1: __TIM1_CLK_ENABLE(); break; |
| case 2: __TIM2_CLK_ENABLE(); break; |
| case 3: __TIM3_CLK_ENABLE(); break; |
| case 4: __TIM4_CLK_ENABLE(); break; |
| case 5: __TIM5_CLK_ENABLE(); break; |
| case 6: __TIM6_CLK_ENABLE(); break; |
| case 7: __TIM7_CLK_ENABLE(); break; |
| case 8: __TIM8_CLK_ENABLE(); break; |
| case 9: __TIM9_CLK_ENABLE(); break; |
| case 10: __TIM10_CLK_ENABLE(); break; |
| case 11: __TIM11_CLK_ENABLE(); break; |
| case 12: __TIM12_CLK_ENABLE(); break; |
| case 13: __TIM13_CLK_ENABLE(); break; |
| case 14: __TIM14_CLK_ENABLE(); break; |
| } |
| |
| // set IRQ priority (if not a special timer) |
| if (self->tim_id != 3 && self->tim_id != 5) { |
| HAL_NVIC_SetPriority(self->irqn, 0xe, 0xe); // next-to lowest priority |
| } |
| |
| // init TIM |
| HAL_TIM_Base_Init(&self->tim); |
| if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance)) { |
| config_deadtime(self, args[6].u_int); |
| } |
| if (args[5].u_obj == mp_const_none) { |
| HAL_TIM_Base_Start(&self->tim); |
| } else { |
| pyb_timer_callback(self, args[5].u_obj); |
| } |
| |
| return mp_const_none; |
| } |
| |
| /// \classmethod \constructor(id, ...) |
| /// Construct a new timer object of the given id. If additional |
| /// arguments are given, then the timer is initialised by `init(...)`. |
| /// `id` can be 1 to 14, excluding 3. |
| STATIC mp_obj_t pyb_timer_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { |
| // check arguments |
| mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); |
| |
| // create new Timer object |
| pyb_timer_obj_t *tim = m_new_obj(pyb_timer_obj_t); |
| memset(tim, 0, sizeof(*tim)); |
| |
| tim->base.type = &pyb_timer_type; |
| tim->callback = mp_const_none; |
| tim->channel = NULL; |
| |
| // get TIM number |
| tim->tim_id = mp_obj_get_int(args[0]); |
| tim->is_32bit = false; |
| |
| switch (tim->tim_id) { |
| case 1: tim->tim.Instance = TIM1; tim->irqn = TIM1_UP_TIM10_IRQn; break; |
| case 2: tim->tim.Instance = TIM2; tim->irqn = TIM2_IRQn; tim->is_32bit = true; break; |
| case 3: nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "Timer 3 is for internal use only")); // TIM3 used for low-level stuff; go via regs if necessary |
| case 4: tim->tim.Instance = TIM4; tim->irqn = TIM4_IRQn; break; |
| case 5: tim->tim.Instance = TIM5; tim->irqn = TIM5_IRQn; tim->is_32bit = true; break; |
| case 6: tim->tim.Instance = TIM6; tim->irqn = TIM6_DAC_IRQn; break; |
| case 7: tim->tim.Instance = TIM7; tim->irqn = TIM7_IRQn; break; |
| case 8: tim->tim.Instance = TIM8; tim->irqn = TIM8_UP_TIM13_IRQn; break; |
| case 9: tim->tim.Instance = TIM9; tim->irqn = TIM1_BRK_TIM9_IRQn; break; |
| case 10: tim->tim.Instance = TIM10; tim->irqn = TIM1_UP_TIM10_IRQn; break; |
| case 11: tim->tim.Instance = TIM11; tim->irqn = TIM1_TRG_COM_TIM11_IRQn; break; |
| case 12: tim->tim.Instance = TIM12; tim->irqn = TIM8_BRK_TIM12_IRQn; break; |
| case 13: tim->tim.Instance = TIM13; tim->irqn = TIM8_UP_TIM13_IRQn; break; |
| case 14: tim->tim.Instance = TIM14; tim->irqn = TIM8_TRG_COM_TIM14_IRQn; break; |
| default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Timer %d does not exist", tim->tim_id)); |
| } |
| |
| if (n_args > 1 || n_kw > 0) { |
| // start the peripheral |
| mp_map_t kw_args; |
| mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); |
| pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args); |
| } |
| |
| // set the global variable for interrupt callbacks |
| if (tim->tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) { |
| pyb_timer_obj_all[tim->tim_id - 1] = tim; |
| } |
| |
| return (mp_obj_t)tim; |
| } |
| |
| STATIC mp_obj_t pyb_timer_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| return pyb_timer_init_helper(args[0], n_args - 1, args + 1, kw_args); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init); |
| |
| /// \method deinit() |
| /// Deinitialises the timer. |
| /// |
| /// Disables the callback (and the associated irq). |
| /// Disables any channel callbacks (and the associated irq). |
| /// Stops the timer, and disables the timer peripheral. |
| STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) { |
| pyb_timer_obj_t *self = self_in; |
| |
| // Disable the base interrupt |
| pyb_timer_callback(self_in, mp_const_none); |
| |
| pyb_timer_channel_obj_t *chan = self->channel; |
| self->channel = NULL; |
| |
| // Disable the channel interrupts |
| while (chan != NULL) { |
| pyb_timer_channel_callback(chan, mp_const_none); |
| pyb_timer_channel_obj_t *prev_chan = chan; |
| chan = chan->next; |
| prev_chan->next = NULL; |
| } |
| |
| HAL_TIM_Base_DeInit(&self->tim); |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit); |
| |
| /// \method channel(channel, mode, ...) |
| /// |
| /// If only a channel number is passed, then a previously initialized channel |
| /// object is returned (or `None` if there is no previous channel). |
| /// |
| /// Othwerwise, a TimerChannel object is initialized and returned. |
| /// |
| /// Each channel can be configured to perform pwm, output compare, or |
| /// input capture. All channels share the same underlying timer, which means |
| /// that they share the same timer clock. |
| /// |
| /// Keyword arguments: |
| /// |
| /// - `mode` can be one of: |
| /// - `Timer.PWM` - configure the timer in PWM mode (active high). |
| /// - `Timer.PWM_INVERTED` - configure the timer in PWM mode (active low). |
| /// - `Timer.OC_TIMING` - indicates that no pin is driven. |
| /// - `Timer.OC_ACTIVE` - the pin will be made active when a compare |
| /// match occurs (active is determined by polarity) |
| /// - `Timer.OC_INACTIVE` - the pin will be made inactive when a compare |
| /// match occurs. |
| /// - `Timer.OC_TOGGLE` - the pin will be toggled when an compare match occurs. |
| /// - `Timer.OC_FORCED_ACTIVE` - the pin is forced active (compare match is ignored). |
| /// - `Timer.OC_FORCED_INACTIVE` - the pin is forced inactive (compare match is ignored). |
| /// - `Timer.IC` - configure the timer in Input Capture mode. |
| /// |
| /// - `callback` - as per TimerChannel.callback() |
| /// |
| /// - `pin` None (the default) or a Pin object. If specified (and not None) |
| /// this will cause the alternate function of the the indicated pin |
| /// to be configured for this timer channel. An error will be raised if |
| /// the pin doesn't support any alternate functions for this timer channel. |
| /// |
| /// Keyword arguments for Timer.PWM modes: |
| /// |
| /// - `pulse_width` - determines the initial pulse width value to use. |
| /// - `pulse_width_percent` - determines the initial pulse width percentage to use. |
| /// |
| /// Keyword arguments for Timer.OC modes: |
| /// |
| /// - `compare` - determines the initial value of the compare register. |
| /// |
| /// - `polarity` can be one of: |
| /// - `Timer.HIGH` - output is active high |
| /// - `Timer.LOW` - output is acive low |
| /// |
| /// Optional keyword arguments for Timer.IC modes: |
| /// |
| /// - `polarity` can be one of: |
| /// - `Timer.RISING` - captures on rising edge. |
| /// - `Timer.FALLING` - captures on falling edge. |
| /// - `Timer.BOTH` - captures on both edges. |
| /// |
| /// Note that capture only works on the primary channel, and not on the |
| /// complimentary channels. |
| /// |
| /// PWM Example: |
| /// |
| /// timer = pyb.Timer(2, freq=1000) |
| /// ch2 = timer.channel(2, pyb.Timer.PWM, pin=pyb.Pin.board.X2, pulse_width=210000) |
| /// ch3 = timer.channel(3, pyb.Timer.PWM, pin=pyb.Pin.board.X3, pulse_width=420000) |
| STATIC mp_obj_t pyb_timer_channel(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { |
| static const mp_arg_t allowed_args[] = { |
| { MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, |
| { MP_QSTR_callback, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, |
| { MP_QSTR_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, |
| { MP_QSTR_pulse_width, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, |
| { MP_QSTR_pulse_width_percent, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, |
| { MP_QSTR_compare, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, |
| { MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, |
| }; |
| |
| pyb_timer_obj_t *self = pos_args[0]; |
| mp_int_t channel = mp_obj_get_int(pos_args[1]); |
| |
| if (channel < 1 || channel > 4) { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid channel (%d)", channel)); |
| } |
| |
| pyb_timer_channel_obj_t *chan = self->channel; |
| pyb_timer_channel_obj_t *prev_chan = NULL; |
| |
| while (chan != NULL) { |
| if (chan->channel == channel) { |
| break; |
| } |
| prev_chan = chan; |
| chan = chan->next; |
| } |
| |
| // If only the channel number is given return the previously allocated |
| // channel (or None if no previous channel). |
| if (n_args == 2 && kw_args->used == 0) { |
| if (chan) { |
| return chan; |
| } |
| return mp_const_none; |
| } |
| |
| // If there was already a channel, then remove it from the list. Note that |
| // the order we do things here is important so as to appear atomic to |
| // the IRQ handler. |
| if (chan) { |
| // Turn off any IRQ associated with the channel. |
| pyb_timer_channel_callback(chan, mp_const_none); |
| |
| // Unlink the channel from the list. |
| if (prev_chan) { |
| prev_chan->next = chan->next; |
| } |
| self->channel = chan->next; |
| chan->next = NULL; |
| } |
| |
| // Allocate and initialize a new channel |
| mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; |
| mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); |
| |
| chan = m_new_obj(pyb_timer_channel_obj_t); |
| memset(chan, 0, sizeof(*chan)); |
| chan->base.type = &pyb_timer_channel_type; |
| chan->timer = self; |
| chan->channel = channel; |
| chan->mode = args[0].u_int; |
| chan->callback = args[1].u_obj; |
| |
| mp_obj_t pin_obj = args[2].u_obj; |
| if (pin_obj != mp_const_none) { |
| if (!MP_OBJ_IS_TYPE(pin_obj, &pin_type)) { |
| nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "pin argument needs to be be a Pin type")); |
| } |
| const pin_obj_t *pin = pin_obj; |
| const pin_af_obj_t *af = pin_find_af(pin, AF_FN_TIM, self->tim_id); |
| if (af == NULL) { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %s doesn't have an af for TIM%d", qstr_str(pin->name), self->tim_id)); |
| } |
| // pin.init(mode=AF_PP, af=idx) |
| const mp_obj_t args2[6] = { |
| (mp_obj_t)&pin_init_obj, |
| pin_obj, |
| MP_OBJ_NEW_QSTR(MP_QSTR_mode), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_PP), |
| MP_OBJ_NEW_QSTR(MP_QSTR_af), MP_OBJ_NEW_SMALL_INT(af->idx) |
| }; |
| mp_call_method_n_kw(0, 2, args2); |
| } |
| |
| // Link the channel to the timer before we turn the channel on. |
| // Note that this needs to appear atomic to the IRQ handler (the write |
| // to self->channel is atomic, so we're good, but I thought I'd mention |
| // in case this was ever changed in the future). |
| chan->next = self->channel; |
| self->channel = chan; |
| |
| switch (chan->mode) { |
| |
| case CHANNEL_MODE_PWM_NORMAL: |
| case CHANNEL_MODE_PWM_INVERTED: { |
| TIM_OC_InitTypeDef oc_config; |
| oc_config.OCMode = channel_mode_info[chan->mode].oc_mode; |
| if (args[4].u_obj != mp_const_none) { |
| // pulse width percent given |
| uint32_t period = compute_period(self); |
| oc_config.Pulse = compute_pwm_value_from_percent(period, args[4].u_obj); |
| } else { |
| // use absolute pulse width value (defaults to 0 if nothing given) |
| oc_config.Pulse = args[3].u_int; |
| } |
| oc_config.OCPolarity = TIM_OCPOLARITY_HIGH; |
| oc_config.OCNPolarity = TIM_OCNPOLARITY_HIGH; |
| oc_config.OCFastMode = TIM_OCFAST_DISABLE; |
| oc_config.OCIdleState = TIM_OCIDLESTATE_SET; |
| oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET; |
| |
| HAL_TIM_PWM_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan)); |
| if (chan->callback == mp_const_none) { |
| HAL_TIM_PWM_Start(&self->tim, TIMER_CHANNEL(chan)); |
| } else { |
| HAL_TIM_PWM_Start_IT(&self->tim, TIMER_CHANNEL(chan)); |
| } |
| // Start the complimentary channel too (if its supported) |
| if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) { |
| HAL_TIMEx_PWMN_Start(&self->tim, TIMER_CHANNEL(chan)); |
| } |
| break; |
| } |
| |
| case CHANNEL_MODE_OC_TIMING: |
| case CHANNEL_MODE_OC_ACTIVE: |
| case CHANNEL_MODE_OC_INACTIVE: |
| case CHANNEL_MODE_OC_TOGGLE: |
| case CHANNEL_MODE_OC_FORCED_ACTIVE: |
| case CHANNEL_MODE_OC_FORCED_INACTIVE: { |
| TIM_OC_InitTypeDef oc_config; |
| oc_config.OCMode = channel_mode_info[chan->mode].oc_mode; |
| oc_config.Pulse = args[5].u_int; |
| oc_config.OCPolarity = args[6].u_int; |
| if (oc_config.OCPolarity == 0xffffffff) { |
| oc_config.OCPolarity = TIM_OCPOLARITY_HIGH; |
| } |
| if (oc_config.OCPolarity == TIM_OCPOLARITY_HIGH) { |
| oc_config.OCNPolarity = TIM_OCNPOLARITY_HIGH; |
| } else { |
| oc_config.OCNPolarity = TIM_OCNPOLARITY_LOW; |
| } |
| oc_config.OCFastMode = TIM_OCFAST_DISABLE; |
| oc_config.OCIdleState = TIM_OCIDLESTATE_SET; |
| oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET; |
| |
| if (!IS_TIM_OC_POLARITY(oc_config.OCPolarity)) { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", oc_config.OCPolarity)); |
| } |
| HAL_TIM_OC_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan)); |
| if (chan->callback == mp_const_none) { |
| HAL_TIM_OC_Start(&self->tim, TIMER_CHANNEL(chan)); |
| } else { |
| HAL_TIM_OC_Start_IT(&self->tim, TIMER_CHANNEL(chan)); |
| } |
| // Start the complimentary channel too (if its supported) |
| if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) { |
| HAL_TIMEx_OCN_Start(&self->tim, TIMER_CHANNEL(chan)); |
| } |
| break; |
| } |
| |
| case CHANNEL_MODE_IC: { |
| TIM_IC_InitTypeDef ic_config; |
| |
| ic_config.ICPolarity = args[6].u_int; |
| if (ic_config.ICPolarity == 0xffffffff) { |
| ic_config.ICPolarity = TIM_ICPOLARITY_RISING; |
| } |
| ic_config.ICSelection = TIM_ICSELECTION_DIRECTTI; |
| ic_config.ICPrescaler = TIM_ICPSC_DIV1; |
| ic_config.ICFilter = 0; |
| |
| if (!IS_TIM_IC_POLARITY(ic_config.ICPolarity)) { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", ic_config.ICPolarity)); |
| } |
| HAL_TIM_IC_ConfigChannel(&self->tim, &ic_config, TIMER_CHANNEL(chan)); |
| if (chan->callback == mp_const_none) { |
| HAL_TIM_IC_Start(&self->tim, TIMER_CHANNEL(chan)); |
| } else { |
| HAL_TIM_IC_Start_IT(&self->tim, TIMER_CHANNEL(chan)); |
| } |
| break; |
| } |
| |
| default: |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid mode (%d)", chan->mode)); |
| } |
| |
| return chan; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_obj, 2, pyb_timer_channel); |
| |
| /// \method counter([value]) |
| /// Get or set the timer counter. |
| STATIC mp_obj_t pyb_timer_counter(mp_uint_t n_args, const mp_obj_t *args) { |
| pyb_timer_obj_t *self = args[0]; |
| if (n_args == 1) { |
| // get |
| return mp_obj_new_int(self->tim.Instance->CNT); |
| } else { |
| // set |
| __HAL_TIM_SetCounter(&self->tim, mp_obj_get_int(args[1])); |
| return mp_const_none; |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_counter_obj, 1, 2, pyb_timer_counter); |
| |
| /// \method source_freq() |
| /// Get the frequency of the source of the timer. |
| STATIC mp_obj_t pyb_timer_source_freq(mp_obj_t self_in) { |
| pyb_timer_obj_t *self = self_in; |
| uint32_t source_freq = timer_get_source_freq(self->tim_id); |
| return mp_obj_new_int(source_freq); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_source_freq_obj, pyb_timer_source_freq); |
| |
| /// \method freq([value]) |
| /// Get or set the frequency for the timer (changes prescaler and period if set). |
| STATIC mp_obj_t pyb_timer_freq(mp_uint_t n_args, const mp_obj_t *args) { |
| pyb_timer_obj_t *self = args[0]; |
| if (n_args == 1) { |
| // get |
| uint32_t prescaler = self->tim.Instance->PSC & 0xffff; |
| uint32_t period = __HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self); |
| uint32_t source_freq = timer_get_source_freq(self->tim_id); |
| uint32_t divide = ((prescaler + 1) * (period + 1)); |
| if (source_freq % divide == 0) { |
| return mp_obj_new_int(source_freq / divide); |
| } else { |
| return mp_obj_new_float((float)source_freq / (float)divide); |
| } |
| } else { |
| // set |
| uint32_t period; |
| uint32_t prescaler = compute_prescaler_period_from_freq(self, args[1], &period); |
| self->tim.Instance->PSC = prescaler; |
| __HAL_TIM_SetAutoreload(&self->tim, period); |
| return mp_const_none; |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_freq_obj, 1, 2, pyb_timer_freq); |
| |
| /// \method prescaler([value]) |
| /// Get or set the prescaler for the timer. |
| STATIC mp_obj_t pyb_timer_prescaler(mp_uint_t n_args, const mp_obj_t *args) { |
| pyb_timer_obj_t *self = args[0]; |
| if (n_args == 1) { |
| // get |
| return mp_obj_new_int(self->tim.Instance->PSC & 0xffff); |
| } else { |
| // set |
| self->tim.Instance->PSC = mp_obj_get_int(args[1]) & 0xffff; |
| return mp_const_none; |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_prescaler_obj, 1, 2, pyb_timer_prescaler); |
| |
| /// \method period([value]) |
| /// Get or set the period of the timer. |
| STATIC mp_obj_t pyb_timer_period(mp_uint_t n_args, const mp_obj_t *args) { |
| pyb_timer_obj_t *self = args[0]; |
| if (n_args == 1) { |
| // get |
| return mp_obj_new_int(__HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self)); |
| } else { |
| // set |
| __HAL_TIM_SetAutoreload(&self->tim, mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self)); |
| return mp_const_none; |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_period_obj, 1, 2, pyb_timer_period); |
| |
| /// \method callback(fun) |
| /// Set the function to be called when the timer triggers. |
| /// `fun` is passed 1 argument, the timer object. |
| /// If `fun` is `None` then the callback will be disabled. |
| STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback) { |
| pyb_timer_obj_t *self = self_in; |
| if (callback == mp_const_none) { |
| // stop interrupt (but not timer) |
| __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE); |
| self->callback = mp_const_none; |
| } else if (mp_obj_is_callable(callback)) { |
| self->callback = callback; |
| HAL_NVIC_EnableIRQ(self->irqn); |
| // start timer, so that it interrupts on overflow |
| HAL_TIM_Base_Start_IT(&self->tim); |
| } else { |
| nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "callback must be None or a callable object")); |
| } |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_callback_obj, pyb_timer_callback); |
| |
| STATIC const mp_map_elem_t pyb_timer_locals_dict_table[] = { |
| // instance methods |
| { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_timer_init_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_timer_deinit_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_channel), (mp_obj_t)&pyb_timer_channel_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_counter), (mp_obj_t)&pyb_timer_counter_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_source_freq), (mp_obj_t)&pyb_timer_source_freq_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_timer_freq_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_prescaler), (mp_obj_t)&pyb_timer_prescaler_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_period), (mp_obj_t)&pyb_timer_period_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_timer_callback_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_UP), MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_UP) }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_DOWN), MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_DOWN) }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_CENTER), MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_CENTERALIGNED1) }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_PWM), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_PWM_NORMAL) }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_PWM_INVERTED), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_PWM_INVERTED) }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_OC_TIMING), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_TIMING) }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_OC_ACTIVE), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_ACTIVE) }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_OC_INACTIVE), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_INACTIVE) }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_OC_TOGGLE), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_TOGGLE) }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_OC_FORCED_ACTIVE), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_FORCED_ACTIVE) }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_OC_FORCED_INACTIVE), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_FORCED_INACTIVE) }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_IC), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_IC) }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_HIGH), MP_OBJ_NEW_SMALL_INT(TIM_OCPOLARITY_HIGH) }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_LOW), MP_OBJ_NEW_SMALL_INT(TIM_OCPOLARITY_LOW) }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_RISING), MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_RISING) }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_FALLING), MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_FALLING) }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_BOTH), MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_BOTHEDGE) }, |
| }; |
| STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table); |
| |
| const mp_obj_type_t pyb_timer_type = { |
| { &mp_type_type }, |
| .name = MP_QSTR_Timer, |
| .print = pyb_timer_print, |
| .make_new = pyb_timer_make_new, |
| .locals_dict = (mp_obj_t)&pyb_timer_locals_dict, |
| }; |
| |
| /// \moduleref pyb |
| /// \class TimerChannel - setup a channel for a timer. |
| /// |
| /// Timer channels are used to generate/capture a signal using a timer. |
| /// |
| /// TimerChannel objects are created using the Timer.channel() method. |
| STATIC void pyb_timer_channel_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { |
| pyb_timer_channel_obj_t *self = self_in; |
| |
| print(env, "TimerChannel(timer=%u, channel=%u, mode=%s)", |
| self->timer->tim_id, |
| self->channel, |
| qstr_str(channel_mode_info[self->mode].name)); |
| } |
| |
| /// \method capture([value]) |
| /// Get or set the capture value associated with a channel. |
| /// capture, compare, and pulse_width are all aliases for the same function. |
| /// capture is the logical name to use when the channel is in input capture mode. |
| |
| /// \method compare([value]) |
| /// Get or set the compare value associated with a channel. |
| /// capture, compare, and pulse_width are all aliases for the same function. |
| /// compare is the logical name to use when the channel is in output compare mode. |
| |
| /// \method pulse_width([value]) |
| /// Get or set the pulse width value associated with a channel. |
| /// capture, compare, and pulse_width are all aliases for the same function. |
| /// pulse_width is the logical name to use when the channel is in PWM mode. |
| /// |
| /// In edge aligned mode, a pulse_width of `period + 1` corresponds to a duty cycle of 100% |
| /// In center aligned mode, a pulse width of `period` corresponds to a duty cycle of 100% |
| STATIC mp_obj_t pyb_timer_channel_capture_compare(mp_uint_t n_args, const mp_obj_t *args) { |
| pyb_timer_channel_obj_t *self = args[0]; |
| if (n_args == 1) { |
| // get |
| return mp_obj_new_int(__HAL_TIM_GetCompare(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer)); |
| } else { |
| // set |
| __HAL_TIM_SetCompare(&self->timer->tim, TIMER_CHANNEL(self), mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self->timer)); |
| return mp_const_none; |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_capture_compare_obj, 1, 2, pyb_timer_channel_capture_compare); |
| |
| /// \method pulse_width_percent([value]) |
| /// Get or set the pulse width percentage associated with a channel. The value |
| /// is a number between 0 and 100 and sets the percentage of the timer period |
| /// for which the pulse is active. The value can be an integer or |
| /// floating-point number for more accuracy. For example, a value of 25 gives |
| /// a duty cycle of 25%. |
| STATIC mp_obj_t pyb_timer_channel_pulse_width_percent(mp_uint_t n_args, const mp_obj_t *args) { |
| pyb_timer_channel_obj_t *self = args[0]; |
| uint32_t period = compute_period(self->timer); |
| if (n_args == 1) { |
| // get |
| uint32_t cmp = __HAL_TIM_GetCompare(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer); |
| return compute_percent_from_pwm_value(period, cmp); |
| } else { |
| // set |
| uint32_t cmp = compute_pwm_value_from_percent(period, args[1]); |
| __HAL_TIM_SetCompare(&self->timer->tim, TIMER_CHANNEL(self), cmp & TIMER_CNT_MASK(self->timer)); |
| return mp_const_none; |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_pulse_width_percent_obj, 1, 2, pyb_timer_channel_pulse_width_percent); |
| |
| /// \method callback(fun) |
| /// Set the function to be called when the timer channel triggers. |
| /// `fun` is passed 1 argument, the timer object. |
| /// If `fun` is `None` then the callback will be disabled. |
| STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback) { |
| pyb_timer_channel_obj_t *self = self_in; |
| if (callback == mp_const_none) { |
| // stop interrupt (but not timer) |
| __HAL_TIM_DISABLE_IT(&self->timer->tim, TIMER_IRQ_MASK(self->channel)); |
| self->callback = mp_const_none; |
| } else if (mp_obj_is_callable(callback)) { |
| self->callback = callback; |
| HAL_NVIC_EnableIRQ(self->timer->irqn); |
| // start timer, so that it interrupts on overflow |
| switch (self->mode) { |
| case CHANNEL_MODE_PWM_NORMAL: |
| case CHANNEL_MODE_PWM_INVERTED: |
| HAL_TIM_PWM_Start_IT(&self->timer->tim, TIMER_CHANNEL(self)); |
| break; |
| case CHANNEL_MODE_OC_TIMING: |
| case CHANNEL_MODE_OC_ACTIVE: |
| case CHANNEL_MODE_OC_INACTIVE: |
| case CHANNEL_MODE_OC_TOGGLE: |
| case CHANNEL_MODE_OC_FORCED_ACTIVE: |
| case CHANNEL_MODE_OC_FORCED_INACTIVE: |
| HAL_TIM_OC_Start_IT(&self->timer->tim, TIMER_CHANNEL(self)); |
| break; |
| case CHANNEL_MODE_IC: |
| HAL_TIM_IC_Start_IT(&self->timer->tim, TIMER_CHANNEL(self)); |
| break; |
| } |
| } else { |
| nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "callback must be None or a callable object")); |
| } |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_channel_callback_obj, pyb_timer_channel_callback); |
| |
| STATIC const mp_map_elem_t pyb_timer_channel_locals_dict_table[] = { |
| // instance methods |
| { MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_timer_channel_callback_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_pulse_width), (mp_obj_t)&pyb_timer_channel_capture_compare_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_pulse_width_percent), (mp_obj_t)&pyb_timer_channel_pulse_width_percent_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_capture), (mp_obj_t)&pyb_timer_channel_capture_compare_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_compare), (mp_obj_t)&pyb_timer_channel_capture_compare_obj }, |
| }; |
| STATIC MP_DEFINE_CONST_DICT(pyb_timer_channel_locals_dict, pyb_timer_channel_locals_dict_table); |
| |
| STATIC const mp_obj_type_t pyb_timer_channel_type = { |
| { &mp_type_type }, |
| .name = MP_QSTR_TimerChannel, |
| .print = pyb_timer_channel_print, |
| .locals_dict = (mp_obj_t)&pyb_timer_channel_locals_dict, |
| }; |
| |
| STATIC void timer_handle_irq_channel(pyb_timer_obj_t *tim, uint8_t channel, mp_obj_t callback) { |
| uint32_t irq_mask = TIMER_IRQ_MASK(channel); |
| |
| if (__HAL_TIM_GET_FLAG(&tim->tim, irq_mask) != RESET) { |
| if (__HAL_TIM_GET_ITSTATUS(&tim->tim, irq_mask) != RESET) { |
| // clear the interrupt |
| __HAL_TIM_CLEAR_IT(&tim->tim, irq_mask); |
| |
| // execute callback if it's set |
| if (callback != mp_const_none) { |
| // When executing code within a handler we must lock the GC to prevent |
| // any memory allocations. We must also catch any exceptions. |
| gc_lock(); |
| nlr_buf_t nlr; |
| if (nlr_push(&nlr) == 0) { |
| mp_call_function_1(callback, tim); |
| nlr_pop(); |
| } else { |
| // Uncaught exception; disable the callback so it doesn't run again. |
| tim->callback = mp_const_none; |
| __HAL_TIM_DISABLE_IT(&tim->tim, irq_mask); |
| if (channel == 0) { |
| printf("uncaught exception in Timer(%u) interrupt handler\n", tim->tim_id); |
| } else { |
| printf("uncaught exception in Timer(%u) channel %u interrupt handler\n", tim->tim_id, channel); |
| } |
| mp_obj_print_exception((mp_obj_t)nlr.ret_val); |
| } |
| gc_unlock(); |
| } |
| } |
| } |
| } |
| |
| void timer_irq_handler(uint tim_id) { |
| if (tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) { |
| // get the timer object |
| pyb_timer_obj_t *tim = pyb_timer_obj_all[tim_id - 1]; |
| |
| if (tim == NULL) { |
| // Timer object has not been set, so we can't do anything. |
| // This can happen under normal circumstances for timers like |
| // 1 & 10 which use the same IRQ. |
| return; |
| } |
| |
| // Check for timer (versus timer channel) interrupt. |
| timer_handle_irq_channel(tim, 0, tim->callback); |
| uint32_t handled = TIMER_IRQ_MASK(0); |
| |
| // Check to see if a timer channel interrupt was pending |
| pyb_timer_channel_obj_t *chan = tim->channel; |
| while (chan != NULL) { |
| timer_handle_irq_channel(tim, chan->channel, chan->callback); |
| handled |= TIMER_IRQ_MASK(chan->channel); |
| chan = chan->next; |
| } |
| |
| // Finally, clear any remaining interrupt sources. Otherwise we'll |
| // just get called continuously. |
| uint32_t unhandled = __HAL_TIM_GET_ITSTATUS(&tim->tim, 0xff & ~handled); |
| if (unhandled != 0) { |
| __HAL_TIM_CLEAR_IT(&tim->tim, unhandled); |
| printf("Unhandled interrupt SR=0x%02lx (now disabled)\n", unhandled); |
| } |
| } |
| } |