| /* |
| * This file is part of the MicroPython project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdbool.h> |
| #include <stdlib.h> |
| |
| #include "py/runtime.h" |
| #include "py/parsenumbase.h" |
| #include "py/parsenum.h" |
| #include "py/smallint.h" |
| |
| #if MICROPY_PY_BUILTINS_FLOAT |
| #include <math.h> |
| #endif |
| |
| static NORETURN void raise_exc(mp_obj_t exc, mp_lexer_t *lex) { |
| // if lex!=NULL then the parser called us and we need to convert the |
| // exception's type from ValueError to SyntaxError and add traceback info |
| if (lex != NULL) { |
| ((mp_obj_base_t *)MP_OBJ_TO_PTR(exc))->type = &mp_type_SyntaxError; |
| mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTRnull); |
| } |
| nlr_raise(exc); |
| } |
| |
| mp_obj_t mp_parse_num_integer(const char *restrict str_, size_t len, int base, mp_lexer_t *lex) { |
| const byte *restrict str = (const byte *)str_; |
| const byte *restrict top = str + len; |
| bool neg = false; |
| mp_obj_t ret_val; |
| |
| // check radix base |
| if ((base != 0 && base < 2) || base > 36) { |
| // this won't be reached if lex!=NULL |
| mp_raise_ValueError(MP_ERROR_TEXT("int() arg 2 must be >= 2 and <= 36")); |
| } |
| |
| // skip leading space |
| for (; str < top && unichar_isspace(*str); str++) { |
| } |
| |
| // parse optional sign |
| if (str < top) { |
| if (*str == '+') { |
| str++; |
| } else if (*str == '-') { |
| str++; |
| neg = true; |
| } |
| } |
| |
| // parse optional base prefix |
| str += mp_parse_num_base((const char *)str, top - str, &base); |
| |
| // string should be an integer number |
| mp_int_t int_val = 0; |
| const byte *restrict str_val_start = str; |
| for (; str < top; str++) { |
| // get next digit as a value |
| mp_uint_t dig = *str; |
| if ('0' <= dig && dig <= '9') { |
| dig -= '0'; |
| } else if (dig == '_') { |
| continue; |
| } else { |
| dig |= 0x20; // make digit lower-case |
| if ('a' <= dig && dig <= 'z') { |
| dig -= 'a' - 10; |
| } else { |
| // unknown character |
| break; |
| } |
| } |
| if (dig >= (mp_uint_t)base) { |
| break; |
| } |
| |
| // add next digi and check for overflow |
| if (mp_small_int_mul_overflow(int_val, base)) { |
| goto overflow; |
| } |
| int_val = int_val * base + dig; |
| if (!MP_SMALL_INT_FITS(int_val)) { |
| goto overflow; |
| } |
| } |
| |
| // negate value if needed |
| if (neg) { |
| int_val = -int_val; |
| } |
| |
| // create the small int |
| ret_val = MP_OBJ_NEW_SMALL_INT(int_val); |
| |
| have_ret_val: |
| // check we parsed something |
| if (str == str_val_start) { |
| goto value_error; |
| } |
| |
| // skip trailing space |
| for (; str < top && unichar_isspace(*str); str++) { |
| } |
| |
| // check we reached the end of the string |
| if (str != top) { |
| goto value_error; |
| } |
| |
| // return the object |
| return ret_val; |
| |
| overflow: |
| // reparse using long int |
| { |
| const char *s2 = (const char *)str_val_start; |
| ret_val = mp_obj_new_int_from_str_len(&s2, top - str_val_start, neg, base); |
| str = (const byte *)s2; |
| goto have_ret_val; |
| } |
| |
| value_error: |
| { |
| #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE |
| mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_ValueError, |
| MP_ERROR_TEXT("invalid syntax for integer")); |
| raise_exc(exc, lex); |
| #elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NORMAL |
| mp_obj_t exc = mp_obj_new_exception_msg_varg(&mp_type_ValueError, |
| MP_ERROR_TEXT("invalid syntax for integer with base %d"), base); |
| raise_exc(exc, lex); |
| #else |
| vstr_t vstr; |
| mp_print_t print; |
| vstr_init_print(&vstr, 50, &print); |
| mp_printf(&print, "invalid syntax for integer with base %d: ", base); |
| mp_str_print_quoted(&print, str_val_start, top - str_val_start, true); |
| mp_obj_t exc = mp_obj_new_exception_arg1(&mp_type_ValueError, |
| mp_obj_new_str_from_utf8_vstr(&vstr)); |
| raise_exc(exc, lex); |
| #endif |
| } |
| } |
| |
| enum { |
| REAL_IMAG_STATE_START = 0, |
| REAL_IMAG_STATE_HAVE_REAL = 1, |
| REAL_IMAG_STATE_HAVE_IMAG = 2, |
| }; |
| |
| typedef enum { |
| PARSE_DEC_IN_INTG, |
| PARSE_DEC_IN_FRAC, |
| PARSE_DEC_IN_EXP, |
| } parse_dec_in_t; |
| |
| #if MICROPY_PY_BUILTINS_FLOAT |
| // DEC_VAL_MAX only needs to be rough and is used to retain precision while not overflowing |
| // SMALL_NORMAL_VAL is the smallest power of 10 that is still a normal float |
| // EXACT_POWER_OF_10 is the largest value of x so that 10^x can be stored exactly in a float |
| // Note: EXACT_POWER_OF_10 is at least floor(log_5(2^mantissa_length)). Indeed, 10^n = 2^n * 5^n |
| // so we only have to store the 5^n part in the mantissa (the 2^n part will go into the float's |
| // exponent). |
| #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT |
| #define DEC_VAL_MAX 1e20F |
| #define SMALL_NORMAL_VAL (1e-37F) |
| #define SMALL_NORMAL_EXP (-37) |
| #define EXACT_POWER_OF_10 (9) |
| #elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE |
| #define DEC_VAL_MAX 1e200 |
| #define SMALL_NORMAL_VAL (1e-307) |
| #define SMALL_NORMAL_EXP (-307) |
| #define EXACT_POWER_OF_10 (22) |
| #endif |
| |
| // Break out inner digit accumulation routine to ease trailing zero deferral. |
| static void accept_digit(mp_float_t *p_dec_val, int dig, int *p_exp_extra, int in) { |
| // Core routine to ingest an additional digit. |
| if (*p_dec_val < DEC_VAL_MAX) { |
| // dec_val won't overflow so keep accumulating |
| *p_dec_val = 10 * *p_dec_val + dig; |
| if (in == PARSE_DEC_IN_FRAC) { |
| --(*p_exp_extra); |
| } |
| } else { |
| // dec_val might overflow and we anyway can't represent more digits |
| // of precision, so ignore the digit and just adjust the exponent |
| if (in == PARSE_DEC_IN_INTG) { |
| ++(*p_exp_extra); |
| } |
| } |
| } |
| #endif // MICROPY_PY_BUILTINS_FLOAT |
| |
| #if MICROPY_PY_BUILTINS_COMPLEX |
| mp_obj_t mp_parse_num_decimal(const char *str, size_t len, bool allow_imag, bool force_complex, mp_lexer_t *lex) |
| #else |
| mp_obj_t mp_parse_num_float(const char *str, size_t len, bool allow_imag, mp_lexer_t *lex) |
| #endif |
| { |
| #if MICROPY_PY_BUILTINS_FLOAT |
| |
| const char *top = str + len; |
| mp_float_t dec_val = 0; |
| bool dec_neg = false; |
| |
| #if MICROPY_PY_BUILTINS_COMPLEX |
| unsigned int real_imag_state = REAL_IMAG_STATE_START; |
| mp_float_t dec_real = 0; |
| parse_start: |
| #endif |
| |
| // skip leading space |
| for (; str < top && unichar_isspace(*str); str++) { |
| } |
| |
| // parse optional sign |
| if (str < top) { |
| if (*str == '+') { |
| str++; |
| } else if (*str == '-') { |
| str++; |
| dec_neg = true; |
| } |
| } |
| |
| const char *str_val_start = str; |
| |
| // determine what the string is |
| if (str < top && (str[0] | 0x20) == 'i') { |
| // string starts with 'i', should be 'inf' or 'infinity' (case insensitive) |
| if (str + 2 < top && (str[1] | 0x20) == 'n' && (str[2] | 0x20) == 'f') { |
| // inf |
| str += 3; |
| dec_val = (mp_float_t)INFINITY; |
| if (str + 4 < top && (str[0] | 0x20) == 'i' && (str[1] | 0x20) == 'n' && (str[2] | 0x20) == 'i' && (str[3] | 0x20) == 't' && (str[4] | 0x20) == 'y') { |
| // infinity |
| str += 5; |
| } |
| } |
| } else if (str < top && (str[0] | 0x20) == 'n') { |
| // string starts with 'n', should be 'nan' (case insensitive) |
| if (str + 2 < top && (str[1] | 0x20) == 'a' && (str[2] | 0x20) == 'n') { |
| // NaN |
| str += 3; |
| dec_val = MICROPY_FLOAT_C_FUN(nan)(""); |
| } |
| } else { |
| // string should be a decimal number |
| parse_dec_in_t in = PARSE_DEC_IN_INTG; |
| bool exp_neg = false; |
| int exp_val = 0; |
| int exp_extra = 0; |
| int trailing_zeros_intg = 0, trailing_zeros_frac = 0; |
| while (str < top) { |
| unsigned int dig = *str++; |
| if ('0' <= dig && dig <= '9') { |
| dig -= '0'; |
| if (in == PARSE_DEC_IN_EXP) { |
| // don't overflow exp_val when adding next digit, instead just truncate |
| // it and the resulting float will still be correct, either inf or 0.0 |
| // (use INT_MAX/2 to allow adding exp_extra at the end without overflow) |
| if (exp_val < (INT_MAX / 2 - 9) / 10) { |
| exp_val = 10 * exp_val + dig; |
| } |
| } else { |
| if (dig == 0 || dec_val >= DEC_VAL_MAX) { |
| // Defer treatment of zeros in fractional part. If nothing comes afterwards, ignore them. |
| // Also, once we reach DEC_VAL_MAX, treat every additional digit as a trailing zero. |
| if (in == PARSE_DEC_IN_INTG) { |
| ++trailing_zeros_intg; |
| } else { |
| ++trailing_zeros_frac; |
| } |
| } else { |
| // Time to un-defer any trailing zeros. Intg zeros first. |
| while (trailing_zeros_intg) { |
| accept_digit(&dec_val, 0, &exp_extra, PARSE_DEC_IN_INTG); |
| --trailing_zeros_intg; |
| } |
| while (trailing_zeros_frac) { |
| accept_digit(&dec_val, 0, &exp_extra, PARSE_DEC_IN_FRAC); |
| --trailing_zeros_frac; |
| } |
| accept_digit(&dec_val, dig, &exp_extra, in); |
| } |
| } |
| } else if (in == PARSE_DEC_IN_INTG && dig == '.') { |
| in = PARSE_DEC_IN_FRAC; |
| } else if (in != PARSE_DEC_IN_EXP && ((dig | 0x20) == 'e')) { |
| in = PARSE_DEC_IN_EXP; |
| if (str < top) { |
| if (str[0] == '+') { |
| str++; |
| } else if (str[0] == '-') { |
| str++; |
| exp_neg = true; |
| } |
| } |
| if (str == top) { |
| goto value_error; |
| } |
| } else if (dig == '_') { |
| continue; |
| } else { |
| // unknown character |
| str--; |
| break; |
| } |
| } |
| |
| // work out the exponent |
| if (exp_neg) { |
| exp_val = -exp_val; |
| } |
| |
| // apply the exponent, making sure it's not a subnormal value |
| exp_val += exp_extra + trailing_zeros_intg; |
| if (exp_val < SMALL_NORMAL_EXP) { |
| exp_val -= SMALL_NORMAL_EXP; |
| dec_val *= SMALL_NORMAL_VAL; |
| } |
| |
| // At this point, we need to multiply the mantissa by its base 10 exponent. If possible, |
| // we would rather manipulate numbers that have an exact representation in IEEE754. It |
| // turns out small positive powers of 10 do, whereas small negative powers of 10 don't. |
| // So in that case, we'll yield a division of exact values rather than a multiplication |
| // of slightly erroneous values. |
| if (exp_val < 0 && exp_val >= -EXACT_POWER_OF_10) { |
| dec_val /= MICROPY_FLOAT_C_FUN(pow)(10, -exp_val); |
| } else { |
| dec_val *= MICROPY_FLOAT_C_FUN(pow)(10, exp_val); |
| } |
| } |
| |
| if (allow_imag && str < top && (*str | 0x20) == 'j') { |
| #if MICROPY_PY_BUILTINS_COMPLEX |
| if (str == str_val_start) { |
| // Convert "j" to "1j". |
| dec_val = 1; |
| } |
| ++str; |
| real_imag_state |= REAL_IMAG_STATE_HAVE_IMAG; |
| #else |
| raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, MP_ERROR_TEXT("complex values not supported")), lex); |
| #endif |
| } |
| |
| // negate value if needed |
| if (dec_neg) { |
| dec_val = -dec_val; |
| } |
| |
| // check we parsed something |
| if (str == str_val_start) { |
| goto value_error; |
| } |
| |
| // skip trailing space |
| for (; str < top && unichar_isspace(*str); str++) { |
| } |
| |
| // check we reached the end of the string |
| if (str != top) { |
| #if MICROPY_PY_BUILTINS_COMPLEX |
| if (force_complex && real_imag_state == REAL_IMAG_STATE_START) { |
| // If we've only seen a real so far, keep parsing for the imaginary part. |
| dec_real = dec_val; |
| dec_val = 0; |
| real_imag_state |= REAL_IMAG_STATE_HAVE_REAL; |
| goto parse_start; |
| } |
| #endif |
| goto value_error; |
| } |
| |
| #if MICROPY_PY_BUILTINS_COMPLEX |
| if (real_imag_state == REAL_IMAG_STATE_HAVE_REAL) { |
| // We're on the second part, but didn't get the expected imaginary number. |
| goto value_error; |
| } |
| #endif |
| |
| // return the object |
| |
| #if MICROPY_PY_BUILTINS_COMPLEX |
| if (real_imag_state != REAL_IMAG_STATE_START) { |
| return mp_obj_new_complex(dec_real, dec_val); |
| } else if (force_complex) { |
| return mp_obj_new_complex(dec_val, 0); |
| } |
| #endif |
| |
| return mp_obj_new_float(dec_val); |
| |
| value_error: |
| raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, MP_ERROR_TEXT("invalid syntax for number")), lex); |
| |
| #else |
| raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, MP_ERROR_TEXT("decimal numbers not supported")), lex); |
| #endif |
| } |