| /* |
| * This file is part of the MicroPython project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * Copyright (c) 2014 Paul Sokolovsky |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include "py/gc.h" |
| #include "py/runtime.h" |
| |
| #if MICROPY_DEBUG_VALGRIND |
| #include <valgrind/memcheck.h> |
| #endif |
| |
| #if MICROPY_ENABLE_GC |
| |
| #if MICROPY_DEBUG_VERBOSE // print debugging info |
| #define DEBUG_PRINT (1) |
| #define DEBUG_printf DEBUG_printf |
| #else // don't print debugging info |
| #define DEBUG_PRINT (0) |
| #define DEBUG_printf(...) (void)0 |
| #endif |
| |
| // make this 1 to dump the heap each time it changes |
| #define EXTENSIVE_HEAP_PROFILING (0) |
| |
| // make this 1 to zero out swept memory to more eagerly |
| // detect untraced object still in use |
| #define CLEAR_ON_SWEEP (0) |
| |
| #define WORDS_PER_BLOCK ((MICROPY_BYTES_PER_GC_BLOCK) / MP_BYTES_PER_OBJ_WORD) |
| #define BYTES_PER_BLOCK (MICROPY_BYTES_PER_GC_BLOCK) |
| |
| // ATB = allocation table byte |
| // 0b00 = FREE -- free block |
| // 0b01 = HEAD -- head of a chain of blocks |
| // 0b10 = TAIL -- in the tail of a chain of blocks |
| // 0b11 = MARK -- marked head block |
| |
| #define AT_FREE (0) |
| #define AT_HEAD (1) |
| #define AT_TAIL (2) |
| #define AT_MARK (3) |
| |
| #define BLOCKS_PER_ATB (4) |
| #define ATB_MASK_0 (0x03) |
| #define ATB_MASK_1 (0x0c) |
| #define ATB_MASK_2 (0x30) |
| #define ATB_MASK_3 (0xc0) |
| |
| #define ATB_0_IS_FREE(a) (((a) & ATB_MASK_0) == 0) |
| #define ATB_1_IS_FREE(a) (((a) & ATB_MASK_1) == 0) |
| #define ATB_2_IS_FREE(a) (((a) & ATB_MASK_2) == 0) |
| #define ATB_3_IS_FREE(a) (((a) & ATB_MASK_3) == 0) |
| |
| #if MICROPY_GC_SPLIT_HEAP |
| #define NEXT_AREA(area) ((area)->next) |
| #else |
| #define NEXT_AREA(area) (NULL) |
| #endif |
| |
| #define BLOCK_SHIFT(block) (2 * ((block) & (BLOCKS_PER_ATB - 1))) |
| #define ATB_GET_KIND(area, block) (((area)->gc_alloc_table_start[(block) / BLOCKS_PER_ATB] >> BLOCK_SHIFT(block)) & 3) |
| #define ATB_ANY_TO_FREE(area, block) do { area->gc_alloc_table_start[(block) / BLOCKS_PER_ATB] &= (~(AT_MARK << BLOCK_SHIFT(block))); } while (0) |
| #define ATB_FREE_TO_HEAD(area, block) do { area->gc_alloc_table_start[(block) / BLOCKS_PER_ATB] |= (AT_HEAD << BLOCK_SHIFT(block)); } while (0) |
| #define ATB_FREE_TO_TAIL(area, block) do { area->gc_alloc_table_start[(block) / BLOCKS_PER_ATB] |= (AT_TAIL << BLOCK_SHIFT(block)); } while (0) |
| #define ATB_HEAD_TO_MARK(area, block) do { area->gc_alloc_table_start[(block) / BLOCKS_PER_ATB] |= (AT_MARK << BLOCK_SHIFT(block)); } while (0) |
| #define ATB_MARK_TO_HEAD(area, block) do { area->gc_alloc_table_start[(block) / BLOCKS_PER_ATB] &= (~(AT_TAIL << BLOCK_SHIFT(block))); } while (0) |
| |
| #define BLOCK_FROM_PTR(area, ptr) (((byte *)(ptr) - area->gc_pool_start) / BYTES_PER_BLOCK) |
| #define PTR_FROM_BLOCK(area, block) (((block) * BYTES_PER_BLOCK + (uintptr_t)area->gc_pool_start)) |
| |
| // After the ATB, there must be a byte filled with AT_FREE so that gc_mark_tree |
| // cannot erroneously conclude that a block extends past the end of the GC heap |
| // due to bit patterns in the FTB (or first block, if finalizers are disabled) |
| // being interpreted as AT_TAIL. |
| #define ALLOC_TABLE_GAP_BYTE (1) |
| |
| #if MICROPY_ENABLE_FINALISER |
| // FTB = finaliser table byte |
| // if set, then the corresponding block may have a finaliser |
| |
| #define BLOCKS_PER_FTB (8) |
| |
| #define FTB_GET(area, block) ((area->gc_finaliser_table_start[(block) / BLOCKS_PER_FTB] >> ((block) & 7)) & 1) |
| #define FTB_SET(area, block) do { area->gc_finaliser_table_start[(block) / BLOCKS_PER_FTB] |= (1 << ((block) & 7)); } while (0) |
| #define FTB_CLEAR(area, block) do { area->gc_finaliser_table_start[(block) / BLOCKS_PER_FTB] &= (~(1 << ((block) & 7))); } while (0) |
| #endif |
| |
| #if MICROPY_PY_THREAD && !MICROPY_PY_THREAD_GIL |
| #define GC_ENTER() mp_thread_mutex_lock(&MP_STATE_MEM(gc_mutex), 1) |
| #define GC_EXIT() mp_thread_mutex_unlock(&MP_STATE_MEM(gc_mutex)) |
| #else |
| #define GC_ENTER() |
| #define GC_EXIT() |
| #endif |
| |
| // TODO waste less memory; currently requires that all entries in alloc_table have a corresponding block in pool |
| static void gc_setup_area(mp_state_mem_area_t *area, void *start, void *end) { |
| // calculate parameters for GC (T=total, A=alloc table, F=finaliser table, P=pool; all in bytes): |
| // T = A + F + P |
| // F = A * BLOCKS_PER_ATB / BLOCKS_PER_FTB |
| // P = A * BLOCKS_PER_ATB * BYTES_PER_BLOCK |
| // => T = A * (1 + BLOCKS_PER_ATB / BLOCKS_PER_FTB + BLOCKS_PER_ATB * BYTES_PER_BLOCK) |
| size_t total_byte_len = (byte *)end - (byte *)start; |
| #if MICROPY_ENABLE_FINALISER |
| area->gc_alloc_table_byte_len = (total_byte_len - ALLOC_TABLE_GAP_BYTE) |
| * MP_BITS_PER_BYTE |
| / ( |
| MP_BITS_PER_BYTE |
| + MP_BITS_PER_BYTE * BLOCKS_PER_ATB / BLOCKS_PER_FTB |
| + MP_BITS_PER_BYTE * BLOCKS_PER_ATB * BYTES_PER_BLOCK |
| ); |
| #else |
| area->gc_alloc_table_byte_len = (total_byte_len - ALLOC_TABLE_GAP_BYTE) / (1 + MP_BITS_PER_BYTE / 2 * BYTES_PER_BLOCK); |
| #endif |
| |
| area->gc_alloc_table_start = (byte *)start; |
| |
| #if MICROPY_ENABLE_FINALISER |
| size_t gc_finaliser_table_byte_len = (area->gc_alloc_table_byte_len * BLOCKS_PER_ATB + BLOCKS_PER_FTB - 1) / BLOCKS_PER_FTB; |
| area->gc_finaliser_table_start = area->gc_alloc_table_start + area->gc_alloc_table_byte_len + ALLOC_TABLE_GAP_BYTE; |
| #endif |
| |
| size_t gc_pool_block_len = area->gc_alloc_table_byte_len * BLOCKS_PER_ATB; |
| area->gc_pool_start = (byte *)end - gc_pool_block_len * BYTES_PER_BLOCK; |
| area->gc_pool_end = end; |
| |
| #if MICROPY_ENABLE_FINALISER |
| assert(area->gc_pool_start >= area->gc_finaliser_table_start + gc_finaliser_table_byte_len); |
| #endif |
| |
| #if MICROPY_ENABLE_FINALISER |
| // clear ATB's and FTB's |
| memset(area->gc_alloc_table_start, 0, gc_finaliser_table_byte_len + area->gc_alloc_table_byte_len + ALLOC_TABLE_GAP_BYTE); |
| #else |
| // clear ATB's |
| memset(area->gc_alloc_table_start, 0, area->gc_alloc_table_byte_len + ALLOC_TABLE_GAP_BYTE); |
| #endif |
| |
| area->gc_last_free_atb_index = 0; |
| area->gc_last_used_block = 0; |
| |
| #if MICROPY_GC_SPLIT_HEAP |
| area->next = NULL; |
| #endif |
| |
| DEBUG_printf("GC layout:\n"); |
| DEBUG_printf(" alloc table at %p, length " UINT_FMT " bytes, " |
| UINT_FMT " blocks\n", |
| area->gc_alloc_table_start, area->gc_alloc_table_byte_len, |
| area->gc_alloc_table_byte_len * BLOCKS_PER_ATB); |
| #if MICROPY_ENABLE_FINALISER |
| DEBUG_printf(" finaliser table at %p, length " UINT_FMT " bytes, " |
| UINT_FMT " blocks\n", area->gc_finaliser_table_start, |
| gc_finaliser_table_byte_len, |
| gc_finaliser_table_byte_len * BLOCKS_PER_FTB); |
| #endif |
| DEBUG_printf(" pool at %p, length " UINT_FMT " bytes, " |
| UINT_FMT " blocks\n", area->gc_pool_start, |
| gc_pool_block_len * BYTES_PER_BLOCK, gc_pool_block_len); |
| } |
| |
| void gc_init(void *start, void *end) { |
| // align end pointer on block boundary |
| end = (void *)((uintptr_t)end & (~(BYTES_PER_BLOCK - 1))); |
| DEBUG_printf("Initializing GC heap: %p..%p = " UINT_FMT " bytes\n", start, end, (byte *)end - (byte *)start); |
| |
| gc_setup_area(&MP_STATE_MEM(area), start, end); |
| |
| // set last free ATB index to start of heap |
| #if MICROPY_GC_SPLIT_HEAP |
| MP_STATE_MEM(gc_last_free_area) = &MP_STATE_MEM(area); |
| #endif |
| |
| // unlock the GC |
| MP_STATE_THREAD(gc_lock_depth) = 0; |
| |
| // allow auto collection |
| MP_STATE_MEM(gc_auto_collect_enabled) = 1; |
| |
| #if MICROPY_GC_ALLOC_THRESHOLD |
| // by default, maxuint for gc threshold, effectively turning gc-by-threshold off |
| MP_STATE_MEM(gc_alloc_threshold) = (size_t)-1; |
| MP_STATE_MEM(gc_alloc_amount) = 0; |
| #endif |
| |
| #if MICROPY_PY_THREAD && !MICROPY_PY_THREAD_GIL |
| mp_thread_mutex_init(&MP_STATE_MEM(gc_mutex)); |
| #endif |
| } |
| |
| #if MICROPY_GC_SPLIT_HEAP |
| void gc_add(void *start, void *end) { |
| // Place the area struct at the start of the area. |
| mp_state_mem_area_t *area = (mp_state_mem_area_t *)start; |
| start = (void *)((uintptr_t)start + sizeof(mp_state_mem_area_t)); |
| |
| end = (void *)((uintptr_t)end & (~(BYTES_PER_BLOCK - 1))); |
| DEBUG_printf("Adding GC heap: %p..%p = " UINT_FMT " bytes\n", start, end, (byte *)end - (byte *)start); |
| |
| // Init this area |
| gc_setup_area(area, start, end); |
| |
| // Find the last registered area in the linked list |
| mp_state_mem_area_t *prev_area = &MP_STATE_MEM(area); |
| while (prev_area->next != NULL) { |
| prev_area = prev_area->next; |
| } |
| |
| // Add this area to the linked list |
| prev_area->next = area; |
| } |
| |
| #if MICROPY_GC_SPLIT_HEAP_AUTO |
| // Try to automatically add a heap area large enough to fulfill 'failed_alloc'. |
| static bool gc_try_add_heap(size_t failed_alloc) { |
| // 'needed' is the size of a heap large enough to hold failed_alloc, with |
| // the additional metadata overheads as calculated in gc_setup_area(). |
| // |
| // Rather than reproduce all of that logic here, we approximate that adding |
| // (13/512) is enough overhead for sufficiently large heap areas (the |
| // overhead converges to 3/128, but there's some fixed overhead and some |
| // rounding up of partial block sizes). |
| size_t needed = failed_alloc + MAX(2048, failed_alloc * 13 / 512); |
| |
| size_t avail = gc_get_max_new_split(); |
| |
| DEBUG_printf("gc_try_add_heap failed_alloc " UINT_FMT ", " |
| "needed " UINT_FMT ", avail " UINT_FMT " bytes \n", |
| failed_alloc, |
| needed, |
| avail); |
| |
| if (avail < needed) { |
| // Can't fit this allocation, or system heap has nearly run out anyway |
| return false; |
| } |
| |
| // Deciding how much to grow the total heap by each time is tricky: |
| // |
| // - Grow by too small amounts, leads to heap fragmentation issues. |
| // |
| // - Grow by too large amounts, may lead to system heap running out of |
| // space. |
| // |
| // Currently, this implementation is: |
| // |
| // - At minimum, aim to double the total heap size each time we add a new |
| // heap. i.e. without any large single allocations, total size will be |
| // 64KB -> 128KB -> 256KB -> 512KB -> 1MB, etc |
| // |
| // - If the failed allocation is too large to fit in that size, the new |
| // heap is made exactly large enough for that allocation. Future growth |
| // will double the total heap size again. |
| // |
| // - If the new heap won't fit in the available free space, add the largest |
| // new heap that will fit (this may lead to failed system heap allocations |
| // elsewhere, but some allocation will likely fail in this circumstance!) |
| |
| // Compute total number of blocks in the current heap. |
| size_t total_blocks = 0; |
| for (mp_state_mem_area_t *area = &MP_STATE_MEM(area); |
| area != NULL; |
| area = NEXT_AREA(area)) { |
| total_blocks += area->gc_alloc_table_byte_len * BLOCKS_PER_ATB; |
| } |
| |
| // Compute bytes needed to build a heap with total_blocks blocks. |
| size_t total_heap = |
| total_blocks / BLOCKS_PER_ATB |
| #if MICROPY_ENABLE_FINALISER |
| + total_blocks / BLOCKS_PER_FTB |
| #endif |
| + total_blocks * BYTES_PER_BLOCK |
| + ALLOC_TABLE_GAP_BYTE |
| + sizeof(mp_state_mem_area_t); |
| |
| // Round up size to the nearest multiple of BYTES_PER_BLOCK. |
| total_heap = (total_heap + BYTES_PER_BLOCK - 1) & (~(BYTES_PER_BLOCK - 1)); |
| |
| DEBUG_printf("total_heap " UINT_FMT " bytes\n", total_heap); |
| |
| size_t to_alloc = MIN(avail, MAX(total_heap, needed)); |
| |
| mp_state_mem_area_t *new_heap = MP_PLAT_ALLOC_HEAP(to_alloc); |
| |
| DEBUG_printf("MP_PLAT_ALLOC_HEAP " UINT_FMT " = %p\n", |
| to_alloc, new_heap); |
| |
| if (new_heap == NULL) { |
| // This should only fail: |
| // - In a threaded environment if another thread has |
| // allocated while this function ran. |
| // - If there is a bug in gc_get_max_new_split(). |
| return false; |
| } |
| |
| gc_add(new_heap, (void *)new_heap + to_alloc); |
| |
| return true; |
| } |
| #endif |
| |
| #endif |
| |
| void gc_lock(void) { |
| // This does not need to be atomic or have the GC mutex because: |
| // - each thread has its own gc_lock_depth so there are no races between threads; |
| // - a hard interrupt will only change gc_lock_depth during its execution, and |
| // upon return will restore the value of gc_lock_depth. |
| MP_STATE_THREAD(gc_lock_depth)++; |
| } |
| |
| void gc_unlock(void) { |
| // This does not need to be atomic, See comment above in gc_lock. |
| MP_STATE_THREAD(gc_lock_depth)--; |
| } |
| |
| bool gc_is_locked(void) { |
| return MP_STATE_THREAD(gc_lock_depth) != 0; |
| } |
| |
| #if MICROPY_GC_SPLIT_HEAP |
| // Returns the area to which this pointer belongs, or NULL if it isn't |
| // allocated on the GC-managed heap. |
| static inline mp_state_mem_area_t *gc_get_ptr_area(const void *ptr) { |
| if (((uintptr_t)(ptr) & (BYTES_PER_BLOCK - 1)) != 0) { // must be aligned on a block |
| return NULL; |
| } |
| for (mp_state_mem_area_t *area = &MP_STATE_MEM(area); area != NULL; area = NEXT_AREA(area)) { |
| if (ptr >= (void *)area->gc_pool_start // must be above start of pool |
| && ptr < (void *)area->gc_pool_end) { // must be below end of pool |
| return area; |
| } |
| } |
| return NULL; |
| } |
| #endif |
| |
| // ptr should be of type void* |
| #define VERIFY_PTR(ptr) ( \ |
| ((uintptr_t)(ptr) & (BYTES_PER_BLOCK - 1)) == 0 /* must be aligned on a block */ \ |
| && ptr >= (void *)MP_STATE_MEM(area).gc_pool_start /* must be above start of pool */ \ |
| && ptr < (void *)MP_STATE_MEM(area).gc_pool_end /* must be below end of pool */ \ |
| ) |
| |
| #ifndef TRACE_MARK |
| #if DEBUG_PRINT |
| #define TRACE_MARK(block, ptr) DEBUG_printf("gc_mark(%p)\n", ptr) |
| #else |
| #define TRACE_MARK(block, ptr) |
| #endif |
| #endif |
| |
| // Take the given block as the topmost block on the stack. Check all it's |
| // children: mark the unmarked child blocks and put those newly marked |
| // blocks on the stack. When all children have been checked, pop off the |
| // topmost block on the stack and repeat with that one. |
| #if MICROPY_GC_SPLIT_HEAP |
| static void gc_mark_subtree(mp_state_mem_area_t *area, size_t block) |
| #else |
| static void gc_mark_subtree(size_t block) |
| #endif |
| { |
| // Start with the block passed in the argument. |
| size_t sp = 0; |
| for (;;) { |
| #if !MICROPY_GC_SPLIT_HEAP |
| mp_state_mem_area_t *area = &MP_STATE_MEM(area); |
| #endif |
| |
| // work out number of consecutive blocks in the chain starting with this one |
| size_t n_blocks = 0; |
| do { |
| n_blocks += 1; |
| } while (ATB_GET_KIND(area, block + n_blocks) == AT_TAIL); |
| |
| // check that the consecutive blocks didn't overflow past the end of the area |
| assert(area->gc_pool_start + (block + n_blocks) * BYTES_PER_BLOCK <= area->gc_pool_end); |
| |
| // check this block's children |
| void **ptrs = (void **)PTR_FROM_BLOCK(area, block); |
| for (size_t i = n_blocks * BYTES_PER_BLOCK / sizeof(void *); i > 0; i--, ptrs++) { |
| MICROPY_GC_HOOK_LOOP(i); |
| void *ptr = *ptrs; |
| // If this is a heap pointer that hasn't been marked, mark it and push |
| // it's children to the stack. |
| #if MICROPY_GC_SPLIT_HEAP |
| mp_state_mem_area_t *ptr_area = gc_get_ptr_area(ptr); |
| if (!ptr_area) { |
| // Not a heap-allocated pointer (might even be random data). |
| continue; |
| } |
| #else |
| if (!VERIFY_PTR(ptr)) { |
| continue; |
| } |
| mp_state_mem_area_t *ptr_area = area; |
| #endif |
| size_t ptr_block = BLOCK_FROM_PTR(ptr_area, ptr); |
| if (ATB_GET_KIND(ptr_area, ptr_block) != AT_HEAD) { |
| // This block is already marked. |
| continue; |
| } |
| // An unmarked head. Mark it, and push it on gc stack. |
| TRACE_MARK(ptr_block, ptr); |
| ATB_HEAD_TO_MARK(ptr_area, ptr_block); |
| if (sp < MICROPY_ALLOC_GC_STACK_SIZE) { |
| MP_STATE_MEM(gc_block_stack)[sp] = ptr_block; |
| #if MICROPY_GC_SPLIT_HEAP |
| MP_STATE_MEM(gc_area_stack)[sp] = ptr_area; |
| #endif |
| sp += 1; |
| } else { |
| MP_STATE_MEM(gc_stack_overflow) = 1; |
| } |
| } |
| |
| // Are there any blocks on the stack? |
| if (sp == 0) { |
| break; // No, stack is empty, we're done. |
| } |
| |
| // pop the next block off the stack |
| sp -= 1; |
| block = MP_STATE_MEM(gc_block_stack)[sp]; |
| #if MICROPY_GC_SPLIT_HEAP |
| area = MP_STATE_MEM(gc_area_stack)[sp]; |
| #endif |
| } |
| } |
| |
| static void gc_deal_with_stack_overflow(void) { |
| while (MP_STATE_MEM(gc_stack_overflow)) { |
| MP_STATE_MEM(gc_stack_overflow) = 0; |
| |
| // scan entire memory looking for blocks which have been marked but not their children |
| for (mp_state_mem_area_t *area = &MP_STATE_MEM(area); area != NULL; area = NEXT_AREA(area)) { |
| for (size_t block = 0; block < area->gc_alloc_table_byte_len * BLOCKS_PER_ATB; block++) { |
| MICROPY_GC_HOOK_LOOP(block); |
| // trace (again) if mark bit set |
| if (ATB_GET_KIND(area, block) == AT_MARK) { |
| #if MICROPY_GC_SPLIT_HEAP |
| gc_mark_subtree(area, block); |
| #else |
| gc_mark_subtree(block); |
| #endif |
| } |
| } |
| } |
| } |
| } |
| |
| static void gc_sweep(void) { |
| #if MICROPY_PY_GC_COLLECT_RETVAL |
| MP_STATE_MEM(gc_collected) = 0; |
| #endif |
| // free unmarked heads and their tails |
| int free_tail = 0; |
| #if MICROPY_GC_SPLIT_HEAP_AUTO |
| mp_state_mem_area_t *prev_area = NULL; |
| #endif |
| for (mp_state_mem_area_t *area = &MP_STATE_MEM(area); area != NULL; area = NEXT_AREA(area)) { |
| size_t end_block = area->gc_alloc_table_byte_len * BLOCKS_PER_ATB; |
| if (area->gc_last_used_block < end_block) { |
| end_block = area->gc_last_used_block + 1; |
| } |
| |
| size_t last_used_block = 0; |
| |
| for (size_t block = 0; block < end_block; block++) { |
| MICROPY_GC_HOOK_LOOP(block); |
| switch (ATB_GET_KIND(area, block)) { |
| case AT_HEAD: |
| #if MICROPY_ENABLE_FINALISER |
| if (FTB_GET(area, block)) { |
| mp_obj_base_t *obj = (mp_obj_base_t *)PTR_FROM_BLOCK(area, block); |
| if (obj->type != NULL) { |
| // if the object has a type then see if it has a __del__ method |
| mp_obj_t dest[2]; |
| mp_load_method_maybe(MP_OBJ_FROM_PTR(obj), MP_QSTR___del__, dest); |
| if (dest[0] != MP_OBJ_NULL) { |
| // load_method returned a method, execute it in a protected environment |
| #if MICROPY_ENABLE_SCHEDULER |
| mp_sched_lock(); |
| #endif |
| mp_call_function_1_protected(dest[0], dest[1]); |
| #if MICROPY_ENABLE_SCHEDULER |
| mp_sched_unlock(); |
| #endif |
| } |
| } |
| // clear finaliser flag |
| FTB_CLEAR(area, block); |
| } |
| #endif |
| free_tail = 1; |
| DEBUG_printf("gc_sweep(%p)\n", (void *)PTR_FROM_BLOCK(area, block)); |
| #if MICROPY_PY_GC_COLLECT_RETVAL |
| MP_STATE_MEM(gc_collected)++; |
| #endif |
| // fall through to free the head |
| MP_FALLTHROUGH |
| |
| case AT_TAIL: |
| if (free_tail) { |
| ATB_ANY_TO_FREE(area, block); |
| #if CLEAR_ON_SWEEP |
| memset((void *)PTR_FROM_BLOCK(area, block), 0, BYTES_PER_BLOCK); |
| #endif |
| } else { |
| last_used_block = block; |
| } |
| break; |
| |
| case AT_MARK: |
| ATB_MARK_TO_HEAD(area, block); |
| free_tail = 0; |
| last_used_block = block; |
| break; |
| } |
| } |
| |
| area->gc_last_used_block = last_used_block; |
| |
| #if MICROPY_GC_SPLIT_HEAP_AUTO |
| // Free any empty area, aside from the first one |
| if (last_used_block == 0 && prev_area != NULL) { |
| DEBUG_printf("gc_sweep free empty area %p\n", area); |
| NEXT_AREA(prev_area) = NEXT_AREA(area); |
| MP_PLAT_FREE_HEAP(area); |
| area = prev_area; |
| } |
| prev_area = area; |
| #endif |
| } |
| } |
| |
| void gc_collect_start(void) { |
| GC_ENTER(); |
| MP_STATE_THREAD(gc_lock_depth)++; |
| #if MICROPY_GC_ALLOC_THRESHOLD |
| MP_STATE_MEM(gc_alloc_amount) = 0; |
| #endif |
| MP_STATE_MEM(gc_stack_overflow) = 0; |
| |
| // Trace root pointers. This relies on the root pointers being organised |
| // correctly in the mp_state_ctx structure. We scan nlr_top, dict_locals, |
| // dict_globals, then the root pointer section of mp_state_vm. |
| void **ptrs = (void **)(void *)&mp_state_ctx; |
| size_t root_start = offsetof(mp_state_ctx_t, thread.dict_locals); |
| size_t root_end = offsetof(mp_state_ctx_t, vm.qstr_last_chunk); |
| gc_collect_root(ptrs + root_start / sizeof(void *), (root_end - root_start) / sizeof(void *)); |
| |
| #if MICROPY_ENABLE_PYSTACK |
| // Trace root pointers from the Python stack. |
| ptrs = (void **)(void *)MP_STATE_THREAD(pystack_start); |
| gc_collect_root(ptrs, (MP_STATE_THREAD(pystack_cur) - MP_STATE_THREAD(pystack_start)) / sizeof(void *)); |
| #endif |
| } |
| |
| // Address sanitizer needs to know that the access to ptrs[i] must always be |
| // considered OK, even if it's a load from an address that would normally be |
| // prohibited (due to being undefined, in a red zone, etc). |
| #if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)) |
| __attribute__((no_sanitize_address)) |
| #endif |
| static void *gc_get_ptr(void **ptrs, int i) { |
| #if MICROPY_DEBUG_VALGRIND |
| if (!VALGRIND_CHECK_MEM_IS_ADDRESSABLE(&ptrs[i], sizeof(*ptrs))) { |
| return NULL; |
| } |
| #endif |
| return ptrs[i]; |
| } |
| |
| void gc_collect_root(void **ptrs, size_t len) { |
| #if !MICROPY_GC_SPLIT_HEAP |
| mp_state_mem_area_t *area = &MP_STATE_MEM(area); |
| #endif |
| for (size_t i = 0; i < len; i++) { |
| MICROPY_GC_HOOK_LOOP(i); |
| void *ptr = gc_get_ptr(ptrs, i); |
| #if MICROPY_GC_SPLIT_HEAP |
| mp_state_mem_area_t *area = gc_get_ptr_area(ptr); |
| if (!area) { |
| continue; |
| } |
| #else |
| if (!VERIFY_PTR(ptr)) { |
| continue; |
| } |
| #endif |
| size_t block = BLOCK_FROM_PTR(area, ptr); |
| if (ATB_GET_KIND(area, block) == AT_HEAD) { |
| // An unmarked head: mark it, and mark all its children |
| ATB_HEAD_TO_MARK(area, block); |
| #if MICROPY_GC_SPLIT_HEAP |
| gc_mark_subtree(area, block); |
| #else |
| gc_mark_subtree(block); |
| #endif |
| } |
| } |
| } |
| |
| void gc_collect_end(void) { |
| gc_deal_with_stack_overflow(); |
| gc_sweep(); |
| #if MICROPY_GC_SPLIT_HEAP |
| MP_STATE_MEM(gc_last_free_area) = &MP_STATE_MEM(area); |
| #endif |
| for (mp_state_mem_area_t *area = &MP_STATE_MEM(area); area != NULL; area = NEXT_AREA(area)) { |
| area->gc_last_free_atb_index = 0; |
| } |
| MP_STATE_THREAD(gc_lock_depth)--; |
| GC_EXIT(); |
| } |
| |
| void gc_sweep_all(void) { |
| GC_ENTER(); |
| MP_STATE_THREAD(gc_lock_depth)++; |
| MP_STATE_MEM(gc_stack_overflow) = 0; |
| gc_collect_end(); |
| } |
| |
| void gc_info(gc_info_t *info) { |
| GC_ENTER(); |
| info->total = 0; |
| info->used = 0; |
| info->free = 0; |
| info->max_free = 0; |
| info->num_1block = 0; |
| info->num_2block = 0; |
| info->max_block = 0; |
| for (mp_state_mem_area_t *area = &MP_STATE_MEM(area); area != NULL; area = NEXT_AREA(area)) { |
| bool finish = false; |
| info->total += area->gc_pool_end - area->gc_pool_start; |
| for (size_t block = 0, len = 0, len_free = 0; !finish;) { |
| MICROPY_GC_HOOK_LOOP(block); |
| size_t kind = ATB_GET_KIND(area, block); |
| switch (kind) { |
| case AT_FREE: |
| info->free += 1; |
| len_free += 1; |
| len = 0; |
| break; |
| |
| case AT_HEAD: |
| info->used += 1; |
| len = 1; |
| break; |
| |
| case AT_TAIL: |
| info->used += 1; |
| len += 1; |
| break; |
| |
| case AT_MARK: |
| // shouldn't happen |
| break; |
| } |
| |
| block++; |
| finish = (block == area->gc_alloc_table_byte_len * BLOCKS_PER_ATB); |
| // Get next block type if possible |
| if (!finish) { |
| kind = ATB_GET_KIND(area, block); |
| } |
| |
| if (finish || kind == AT_FREE || kind == AT_HEAD) { |
| if (len == 1) { |
| info->num_1block += 1; |
| } else if (len == 2) { |
| info->num_2block += 1; |
| } |
| if (len > info->max_block) { |
| info->max_block = len; |
| } |
| if (finish || kind == AT_HEAD) { |
| if (len_free > info->max_free) { |
| info->max_free = len_free; |
| } |
| len_free = 0; |
| } |
| } |
| } |
| } |
| |
| info->used *= BYTES_PER_BLOCK; |
| info->free *= BYTES_PER_BLOCK; |
| |
| #if MICROPY_GC_SPLIT_HEAP_AUTO |
| info->max_new_split = gc_get_max_new_split(); |
| #endif |
| |
| GC_EXIT(); |
| } |
| |
| void *gc_alloc(size_t n_bytes, unsigned int alloc_flags) { |
| bool has_finaliser = alloc_flags & GC_ALLOC_FLAG_HAS_FINALISER; |
| size_t n_blocks = ((n_bytes + BYTES_PER_BLOCK - 1) & (~(BYTES_PER_BLOCK - 1))) / BYTES_PER_BLOCK; |
| DEBUG_printf("gc_alloc(" UINT_FMT " bytes -> " UINT_FMT " blocks)\n", n_bytes, n_blocks); |
| |
| // check for 0 allocation |
| if (n_blocks == 0) { |
| return NULL; |
| } |
| |
| // check if GC is locked |
| if (MP_STATE_THREAD(gc_lock_depth) > 0) { |
| return NULL; |
| } |
| |
| GC_ENTER(); |
| |
| mp_state_mem_area_t *area; |
| size_t i; |
| size_t end_block; |
| size_t start_block; |
| size_t n_free; |
| int collected = !MP_STATE_MEM(gc_auto_collect_enabled); |
| #if MICROPY_GC_SPLIT_HEAP_AUTO |
| bool added = false; |
| #endif |
| |
| #if MICROPY_GC_ALLOC_THRESHOLD |
| if (!collected && MP_STATE_MEM(gc_alloc_amount) >= MP_STATE_MEM(gc_alloc_threshold)) { |
| GC_EXIT(); |
| gc_collect(); |
| collected = 1; |
| GC_ENTER(); |
| } |
| #endif |
| |
| for (;;) { |
| |
| #if MICROPY_GC_SPLIT_HEAP |
| area = MP_STATE_MEM(gc_last_free_area); |
| #else |
| area = &MP_STATE_MEM(area); |
| #endif |
| |
| // look for a run of n_blocks available blocks |
| for (; area != NULL; area = NEXT_AREA(area), i = 0) { |
| n_free = 0; |
| for (i = area->gc_last_free_atb_index; i < area->gc_alloc_table_byte_len; i++) { |
| MICROPY_GC_HOOK_LOOP(i); |
| byte a = area->gc_alloc_table_start[i]; |
| // *FORMAT-OFF* |
| if (ATB_0_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 0; goto found; } } else { n_free = 0; } |
| if (ATB_1_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 1; goto found; } } else { n_free = 0; } |
| if (ATB_2_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 2; goto found; } } else { n_free = 0; } |
| if (ATB_3_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 3; goto found; } } else { n_free = 0; } |
| // *FORMAT-ON* |
| } |
| |
| // No free blocks found on this heap. Mark this heap as |
| // filled, so we won't try to find free space here again until |
| // space is freed. |
| #if MICROPY_GC_SPLIT_HEAP |
| if (n_blocks == 1) { |
| area->gc_last_free_atb_index = (i + 1) / BLOCKS_PER_ATB; // or (size_t)-1 |
| } |
| #endif |
| } |
| |
| GC_EXIT(); |
| // nothing found! |
| if (collected) { |
| #if MICROPY_GC_SPLIT_HEAP_AUTO |
| if (!added && gc_try_add_heap(n_bytes)) { |
| added = true; |
| continue; |
| } |
| #endif |
| return NULL; |
| } |
| DEBUG_printf("gc_alloc(" UINT_FMT "): no free mem, triggering GC\n", n_bytes); |
| gc_collect(); |
| collected = 1; |
| GC_ENTER(); |
| } |
| |
| // found, ending at block i inclusive |
| found: |
| // get starting and end blocks, both inclusive |
| end_block = i; |
| start_block = i - n_free + 1; |
| |
| // Set last free ATB index to block after last block we found, for start of |
| // next scan. To reduce fragmentation, we only do this if we were looking |
| // for a single free block, which guarantees that there are no free blocks |
| // before this one. Also, whenever we free or shink a block we must check |
| // if this index needs adjusting (see gc_realloc and gc_free). |
| if (n_free == 1) { |
| #if MICROPY_GC_SPLIT_HEAP |
| MP_STATE_MEM(gc_last_free_area) = area; |
| #endif |
| area->gc_last_free_atb_index = (i + 1) / BLOCKS_PER_ATB; |
| } |
| |
| area->gc_last_used_block = MAX(area->gc_last_used_block, end_block); |
| |
| // mark first block as used head |
| ATB_FREE_TO_HEAD(area, start_block); |
| |
| // mark rest of blocks as used tail |
| // TODO for a run of many blocks can make this more efficient |
| for (size_t bl = start_block + 1; bl <= end_block; bl++) { |
| ATB_FREE_TO_TAIL(area, bl); |
| } |
| |
| // get pointer to first block |
| // we must create this pointer before unlocking the GC so a collection can find it |
| void *ret_ptr = (void *)(area->gc_pool_start + start_block * BYTES_PER_BLOCK); |
| DEBUG_printf("gc_alloc(%p)\n", ret_ptr); |
| |
| #if MICROPY_GC_ALLOC_THRESHOLD |
| MP_STATE_MEM(gc_alloc_amount) += n_blocks; |
| #endif |
| |
| GC_EXIT(); |
| |
| #if MICROPY_GC_CONSERVATIVE_CLEAR |
| // be conservative and zero out all the newly allocated blocks |
| memset((byte *)ret_ptr, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK); |
| #else |
| // zero out the additional bytes of the newly allocated blocks |
| // This is needed because the blocks may have previously held pointers |
| // to the heap and will not be set to something else if the caller |
| // doesn't actually use the entire block. As such they will continue |
| // to point to the heap and may prevent other blocks from being reclaimed. |
| memset((byte *)ret_ptr + n_bytes, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK - n_bytes); |
| #endif |
| |
| #if MICROPY_ENABLE_FINALISER |
| if (has_finaliser) { |
| // clear type pointer in case it is never set |
| ((mp_obj_base_t *)ret_ptr)->type = NULL; |
| // set mp_obj flag only if it has a finaliser |
| GC_ENTER(); |
| FTB_SET(area, start_block); |
| GC_EXIT(); |
| } |
| #else |
| (void)has_finaliser; |
| #endif |
| |
| #if EXTENSIVE_HEAP_PROFILING |
| gc_dump_alloc_table(&mp_plat_print); |
| #endif |
| |
| return ret_ptr; |
| } |
| |
| /* |
| void *gc_alloc(mp_uint_t n_bytes) { |
| return _gc_alloc(n_bytes, false); |
| } |
| |
| void *gc_alloc_with_finaliser(mp_uint_t n_bytes) { |
| return _gc_alloc(n_bytes, true); |
| } |
| */ |
| |
| // force the freeing of a piece of memory |
| // TODO: freeing here does not call finaliser |
| void gc_free(void *ptr) { |
| if (MP_STATE_THREAD(gc_lock_depth) > 0) { |
| // Cannot free while the GC is locked. However free is an optimisation |
| // to reclaim the memory immediately, this means it will now be left |
| // until the next collection. |
| return; |
| } |
| |
| GC_ENTER(); |
| |
| DEBUG_printf("gc_free(%p)\n", ptr); |
| |
| if (ptr == NULL) { |
| // free(NULL) is a no-op |
| GC_EXIT(); |
| return; |
| } |
| |
| // get the GC block number corresponding to this pointer |
| mp_state_mem_area_t *area; |
| #if MICROPY_GC_SPLIT_HEAP |
| area = gc_get_ptr_area(ptr); |
| assert(area); |
| #else |
| assert(VERIFY_PTR(ptr)); |
| area = &MP_STATE_MEM(area); |
| #endif |
| |
| size_t block = BLOCK_FROM_PTR(area, ptr); |
| assert(ATB_GET_KIND(area, block) == AT_HEAD); |
| |
| #if MICROPY_ENABLE_FINALISER |
| FTB_CLEAR(area, block); |
| #endif |
| |
| #if MICROPY_GC_SPLIT_HEAP |
| if (MP_STATE_MEM(gc_last_free_area) != area) { |
| // We freed something but it isn't the current area. Reset the |
| // last free area to the start for a rescan. Note that this won't |
| // give much of a performance hit, since areas that are completely |
| // filled will likely be skipped (the gc_last_free_atb_index |
| // points to the last block). |
| // The reason why this is necessary is because it is not possible |
| // to see which area came first (like it is possible to adjust |
| // gc_last_free_atb_index based on whether the freed block is |
| // before the last free block). |
| MP_STATE_MEM(gc_last_free_area) = &MP_STATE_MEM(area); |
| } |
| #endif |
| |
| // set the last_free pointer to this block if it's earlier in the heap |
| if (block / BLOCKS_PER_ATB < area->gc_last_free_atb_index) { |
| area->gc_last_free_atb_index = block / BLOCKS_PER_ATB; |
| } |
| |
| // free head and all of its tail blocks |
| do { |
| ATB_ANY_TO_FREE(area, block); |
| block += 1; |
| } while (ATB_GET_KIND(area, block) == AT_TAIL); |
| |
| GC_EXIT(); |
| |
| #if EXTENSIVE_HEAP_PROFILING |
| gc_dump_alloc_table(&mp_plat_print); |
| #endif |
| } |
| |
| size_t gc_nbytes(const void *ptr) { |
| GC_ENTER(); |
| |
| mp_state_mem_area_t *area; |
| #if MICROPY_GC_SPLIT_HEAP |
| area = gc_get_ptr_area(ptr); |
| #else |
| if (VERIFY_PTR(ptr)) { |
| area = &MP_STATE_MEM(area); |
| } else { |
| area = NULL; |
| } |
| #endif |
| |
| if (area) { |
| size_t block = BLOCK_FROM_PTR(area, ptr); |
| if (ATB_GET_KIND(area, block) == AT_HEAD) { |
| // work out number of consecutive blocks in the chain starting with this on |
| size_t n_blocks = 0; |
| do { |
| n_blocks += 1; |
| } while (ATB_GET_KIND(area, block + n_blocks) == AT_TAIL); |
| GC_EXIT(); |
| return n_blocks * BYTES_PER_BLOCK; |
| } |
| } |
| |
| // invalid pointer |
| GC_EXIT(); |
| return 0; |
| } |
| |
| #if 0 |
| // old, simple realloc that didn't expand memory in place |
| void *gc_realloc(void *ptr, mp_uint_t n_bytes) { |
| mp_uint_t n_existing = gc_nbytes(ptr); |
| if (n_bytes <= n_existing) { |
| return ptr; |
| } else { |
| bool has_finaliser; |
| if (ptr == NULL) { |
| has_finaliser = false; |
| } else { |
| #if MICROPY_ENABLE_FINALISER |
| has_finaliser = FTB_GET(BLOCK_FROM_PTR((mp_uint_t)ptr)); |
| #else |
| has_finaliser = false; |
| #endif |
| } |
| void *ptr2 = gc_alloc(n_bytes, has_finaliser); |
| if (ptr2 == NULL) { |
| return ptr2; |
| } |
| memcpy(ptr2, ptr, n_existing); |
| gc_free(ptr); |
| return ptr2; |
| } |
| } |
| |
| #else // Alternative gc_realloc impl |
| |
| void *gc_realloc(void *ptr_in, size_t n_bytes, bool allow_move) { |
| // check for pure allocation |
| if (ptr_in == NULL) { |
| return gc_alloc(n_bytes, false); |
| } |
| |
| // check for pure free |
| if (n_bytes == 0) { |
| gc_free(ptr_in); |
| return NULL; |
| } |
| |
| if (MP_STATE_THREAD(gc_lock_depth) > 0) { |
| return NULL; |
| } |
| |
| void *ptr = ptr_in; |
| |
| GC_ENTER(); |
| |
| // get the GC block number corresponding to this pointer |
| mp_state_mem_area_t *area; |
| #if MICROPY_GC_SPLIT_HEAP |
| area = gc_get_ptr_area(ptr); |
| assert(area); |
| #else |
| assert(VERIFY_PTR(ptr)); |
| area = &MP_STATE_MEM(area); |
| #endif |
| size_t block = BLOCK_FROM_PTR(area, ptr); |
| assert(ATB_GET_KIND(area, block) == AT_HEAD); |
| |
| // compute number of new blocks that are requested |
| size_t new_blocks = (n_bytes + BYTES_PER_BLOCK - 1) / BYTES_PER_BLOCK; |
| |
| // Get the total number of consecutive blocks that are already allocated to |
| // this chunk of memory, and then count the number of free blocks following |
| // it. Stop if we reach the end of the heap, or if we find enough extra |
| // free blocks to satisfy the realloc. Note that we need to compute the |
| // total size of the existing memory chunk so we can correctly and |
| // efficiently shrink it (see below for shrinking code). |
| size_t n_free = 0; |
| size_t n_blocks = 1; // counting HEAD block |
| size_t max_block = area->gc_alloc_table_byte_len * BLOCKS_PER_ATB; |
| for (size_t bl = block + n_blocks; bl < max_block; bl++) { |
| byte block_type = ATB_GET_KIND(area, bl); |
| if (block_type == AT_TAIL) { |
| n_blocks++; |
| continue; |
| } |
| if (block_type == AT_FREE) { |
| n_free++; |
| if (n_blocks + n_free >= new_blocks) { |
| // stop as soon as we find enough blocks for n_bytes |
| break; |
| } |
| continue; |
| } |
| break; |
| } |
| |
| // return original ptr if it already has the requested number of blocks |
| if (new_blocks == n_blocks) { |
| GC_EXIT(); |
| return ptr_in; |
| } |
| |
| // check if we can shrink the allocated area |
| if (new_blocks < n_blocks) { |
| // free unneeded tail blocks |
| for (size_t bl = block + new_blocks, count = n_blocks - new_blocks; count > 0; bl++, count--) { |
| ATB_ANY_TO_FREE(area, bl); |
| } |
| |
| #if MICROPY_GC_SPLIT_HEAP |
| if (MP_STATE_MEM(gc_last_free_area) != area) { |
| // See comment in gc_free. |
| MP_STATE_MEM(gc_last_free_area) = &MP_STATE_MEM(area); |
| } |
| #endif |
| |
| // set the last_free pointer to end of this block if it's earlier in the heap |
| if ((block + new_blocks) / BLOCKS_PER_ATB < area->gc_last_free_atb_index) { |
| area->gc_last_free_atb_index = (block + new_blocks) / BLOCKS_PER_ATB; |
| } |
| |
| GC_EXIT(); |
| |
| #if EXTENSIVE_HEAP_PROFILING |
| gc_dump_alloc_table(&mp_plat_print); |
| #endif |
| |
| return ptr_in; |
| } |
| |
| // check if we can expand in place |
| if (new_blocks <= n_blocks + n_free) { |
| // mark few more blocks as used tail |
| size_t end_block = block + new_blocks; |
| for (size_t bl = block + n_blocks; bl < end_block; bl++) { |
| assert(ATB_GET_KIND(area, bl) == AT_FREE); |
| ATB_FREE_TO_TAIL(area, bl); |
| } |
| |
| area->gc_last_used_block = MAX(area->gc_last_used_block, end_block); |
| |
| GC_EXIT(); |
| |
| #if MICROPY_GC_CONSERVATIVE_CLEAR |
| // be conservative and zero out all the newly allocated blocks |
| memset((byte *)ptr_in + n_blocks * BYTES_PER_BLOCK, 0, (new_blocks - n_blocks) * BYTES_PER_BLOCK); |
| #else |
| // zero out the additional bytes of the newly allocated blocks (see comment above in gc_alloc) |
| memset((byte *)ptr_in + n_bytes, 0, new_blocks * BYTES_PER_BLOCK - n_bytes); |
| #endif |
| |
| #if EXTENSIVE_HEAP_PROFILING |
| gc_dump_alloc_table(&mp_plat_print); |
| #endif |
| |
| return ptr_in; |
| } |
| |
| #if MICROPY_ENABLE_FINALISER |
| bool ftb_state = FTB_GET(area, block); |
| #else |
| bool ftb_state = false; |
| #endif |
| |
| GC_EXIT(); |
| |
| if (!allow_move) { |
| // not allowed to move memory block so return failure |
| return NULL; |
| } |
| |
| // can't resize inplace; try to find a new contiguous chain |
| void *ptr_out = gc_alloc(n_bytes, ftb_state); |
| |
| // check that the alloc succeeded |
| if (ptr_out == NULL) { |
| return NULL; |
| } |
| |
| DEBUG_printf("gc_realloc(%p -> %p)\n", ptr_in, ptr_out); |
| memcpy(ptr_out, ptr_in, n_blocks * BYTES_PER_BLOCK); |
| gc_free(ptr_in); |
| return ptr_out; |
| } |
| #endif // Alternative gc_realloc impl |
| |
| void gc_dump_info(const mp_print_t *print) { |
| gc_info_t info; |
| gc_info(&info); |
| mp_printf(print, "GC: total: %u, used: %u, free: %u", |
| (uint)info.total, (uint)info.used, (uint)info.free); |
| #if MICROPY_GC_SPLIT_HEAP_AUTO |
| mp_printf(print, ", max new split: %u", (uint)info.max_new_split); |
| #endif |
| mp_printf(print, "\n No. of 1-blocks: %u, 2-blocks: %u, max blk sz: %u, max free sz: %u\n", |
| (uint)info.num_1block, (uint)info.num_2block, (uint)info.max_block, (uint)info.max_free); |
| } |
| |
| void gc_dump_alloc_table(const mp_print_t *print) { |
| GC_ENTER(); |
| static const size_t DUMP_BYTES_PER_LINE = 64; |
| for (mp_state_mem_area_t *area = &MP_STATE_MEM(area); area != NULL; area = NEXT_AREA(area)) { |
| #if !EXTENSIVE_HEAP_PROFILING |
| // When comparing heap output we don't want to print the starting |
| // pointer of the heap because it changes from run to run. |
| mp_printf(print, "GC memory layout; from %p:", area->gc_pool_start); |
| #endif |
| for (size_t bl = 0; bl < area->gc_alloc_table_byte_len * BLOCKS_PER_ATB; bl++) { |
| if (bl % DUMP_BYTES_PER_LINE == 0) { |
| // a new line of blocks |
| { |
| // check if this line contains only free blocks |
| size_t bl2 = bl; |
| while (bl2 < area->gc_alloc_table_byte_len * BLOCKS_PER_ATB && ATB_GET_KIND(area, bl2) == AT_FREE) { |
| bl2++; |
| } |
| if (bl2 - bl >= 2 * DUMP_BYTES_PER_LINE) { |
| // there are at least 2 lines containing only free blocks, so abbreviate their printing |
| mp_printf(print, "\n (%u lines all free)", (uint)(bl2 - bl) / DUMP_BYTES_PER_LINE); |
| bl = bl2 & (~(DUMP_BYTES_PER_LINE - 1)); |
| if (bl >= area->gc_alloc_table_byte_len * BLOCKS_PER_ATB) { |
| // got to end of heap |
| break; |
| } |
| } |
| } |
| // print header for new line of blocks |
| // (the cast to uint32_t is for 16-bit ports) |
| mp_printf(print, "\n%08x: ", (uint)(bl * BYTES_PER_BLOCK)); |
| } |
| int c = ' '; |
| switch (ATB_GET_KIND(area, bl)) { |
| case AT_FREE: |
| c = '.'; |
| break; |
| /* this prints out if the object is reachable from BSS or STACK (for unix only) |
| case AT_HEAD: { |
| c = 'h'; |
| void **ptrs = (void**)(void*)&mp_state_ctx; |
| mp_uint_t len = offsetof(mp_state_ctx_t, vm.stack_top) / sizeof(mp_uint_t); |
| for (mp_uint_t i = 0; i < len; i++) { |
| mp_uint_t ptr = (mp_uint_t)ptrs[i]; |
| if (gc_get_ptr_area(ptr) && BLOCK_FROM_PTR(ptr) == bl) { |
| c = 'B'; |
| break; |
| } |
| } |
| if (c == 'h') { |
| ptrs = (void**)&c; |
| len = ((mp_uint_t)MP_STATE_THREAD(stack_top) - (mp_uint_t)&c) / sizeof(mp_uint_t); |
| for (mp_uint_t i = 0; i < len; i++) { |
| mp_uint_t ptr = (mp_uint_t)ptrs[i]; |
| if (gc_get_ptr_area(ptr) && BLOCK_FROM_PTR(ptr) == bl) { |
| c = 'S'; |
| break; |
| } |
| } |
| } |
| break; |
| } |
| */ |
| /* this prints the uPy object type of the head block */ |
| case AT_HEAD: { |
| void **ptr = (void **)(area->gc_pool_start + bl * BYTES_PER_BLOCK); |
| if (*ptr == &mp_type_tuple) { |
| c = 'T'; |
| } else if (*ptr == &mp_type_list) { |
| c = 'L'; |
| } else if (*ptr == &mp_type_dict) { |
| c = 'D'; |
| } else if (*ptr == &mp_type_str || *ptr == &mp_type_bytes) { |
| c = 'S'; |
| } |
| #if MICROPY_PY_BUILTINS_BYTEARRAY |
| else if (*ptr == &mp_type_bytearray) { |
| c = 'A'; |
| } |
| #endif |
| #if MICROPY_PY_ARRAY |
| else if (*ptr == &mp_type_array) { |
| c = 'A'; |
| } |
| #endif |
| #if MICROPY_PY_BUILTINS_FLOAT |
| else if (*ptr == &mp_type_float) { |
| c = 'F'; |
| } |
| #endif |
| else if (*ptr == &mp_type_fun_bc) { |
| c = 'B'; |
| } else if (*ptr == &mp_type_module) { |
| c = 'M'; |
| } else { |
| c = 'h'; |
| #if 0 |
| // This code prints "Q" for qstr-pool data, and "q" for qstr-str |
| // data. It can be useful to see how qstrs are being allocated, |
| // but is disabled by default because it is very slow. |
| for (qstr_pool_t *pool = MP_STATE_VM(last_pool); c == 'h' && pool != NULL; pool = pool->prev) { |
| if ((qstr_pool_t *)ptr == pool) { |
| c = 'Q'; |
| break; |
| } |
| for (const byte **q = pool->qstrs, **q_top = pool->qstrs + pool->len; q < q_top; q++) { |
| if ((const byte *)ptr == *q) { |
| c = 'q'; |
| break; |
| } |
| } |
| } |
| #endif |
| } |
| break; |
| } |
| case AT_TAIL: |
| c = '='; |
| break; |
| case AT_MARK: |
| c = 'm'; |
| break; |
| } |
| mp_printf(print, "%c", c); |
| } |
| mp_print_str(print, "\n"); |
| } |
| GC_EXIT(); |
| } |
| |
| #if 0 |
| // For testing the GC functions |
| void gc_test(void) { |
| mp_uint_t len = 500; |
| mp_uint_t *heap = malloc(len); |
| gc_init(heap, heap + len / sizeof(mp_uint_t)); |
| void *ptrs[100]; |
| { |
| mp_uint_t **p = gc_alloc(16, false); |
| p[0] = gc_alloc(64, false); |
| p[1] = gc_alloc(1, false); |
| p[2] = gc_alloc(1, false); |
| p[3] = gc_alloc(1, false); |
| mp_uint_t ***p2 = gc_alloc(16, false); |
| p2[0] = p; |
| p2[1] = p; |
| ptrs[0] = p2; |
| } |
| for (int i = 0; i < 25; i += 2) { |
| mp_uint_t *p = gc_alloc(i, false); |
| printf("p=%p\n", p); |
| if (i & 3) { |
| // ptrs[i] = p; |
| } |
| } |
| |
| printf("Before GC:\n"); |
| gc_dump_alloc_table(&mp_plat_print); |
| printf("Starting GC...\n"); |
| gc_collect_start(); |
| gc_collect_root(ptrs, sizeof(ptrs) / sizeof(void *)); |
| gc_collect_end(); |
| printf("After GC:\n"); |
| gc_dump_alloc_table(&mp_plat_print); |
| } |
| #endif |
| |
| #endif // MICROPY_ENABLE_GC |