| // in principle, rt_xxx functions are called only by vm/native/viper and make assumptions about args |
| // mp_xxx functions are safer and can be called by anyone |
| // note that rt_assign_xxx are called only from emit*, and maybe we can rename them to reflect this |
| |
| #include <stdio.h> |
| #include <string.h> |
| #include <assert.h> |
| |
| #include "nlr.h" |
| #include "misc.h" |
| #include "mpconfig.h" |
| #include "qstr.h" |
| #include "obj.h" |
| #include "parsenum.h" |
| #include "runtime0.h" |
| #include "runtime.h" |
| #include "map.h" |
| #include "builtin.h" |
| #include "objarray.h" |
| #include "bc.h" |
| #include "intdivmod.h" |
| |
| #if 0 // print debugging info |
| #define DEBUG_PRINT (1) |
| #define WRITE_CODE (1) |
| #define DEBUG_printf DEBUG_printf |
| #define DEBUG_OP_printf(...) DEBUG_printf(__VA_ARGS__) |
| #else // don't print debugging info |
| #define DEBUG_printf(...) (void)0 |
| #define DEBUG_OP_printf(...) (void)0 |
| #endif |
| |
| // locals and globals need to be pointers because they can be the same in outer module scope |
| STATIC mp_map_t *map_locals; |
| STATIC mp_map_t *map_globals; |
| STATIC mp_map_t map_builtins; |
| STATIC mp_map_t map_loaded_modules; // TODO: expose as sys.modules |
| |
| typedef enum { |
| MP_CODE_NONE, |
| MP_CODE_BYTE, |
| MP_CODE_NATIVE, |
| MP_CODE_INLINE_ASM, |
| } mp_code_kind_t; |
| |
| typedef struct _mp_code_t { |
| mp_code_kind_t kind : 8; |
| uint scope_flags : 8; |
| uint n_args : 16; |
| uint n_state : 16; |
| union { |
| struct { |
| byte *code; |
| uint len; |
| } u_byte; |
| struct { |
| mp_fun_t fun; |
| } u_native; |
| struct { |
| void *fun; |
| } u_inline_asm; |
| }; |
| qstr *arg_names; |
| } mp_code_t; |
| |
| STATIC uint next_unique_code_id; |
| STATIC machine_uint_t unique_codes_alloc = 0; |
| STATIC mp_code_t *unique_codes = NULL; |
| |
| #ifdef WRITE_CODE |
| FILE *fp_write_code = NULL; |
| #endif |
| |
| // builtins |
| // we put this table in ROM because it's always needed and takes up quite a bit of room in RAM |
| // in fact, it uses less ROM here in table form than the equivalent in code form initialising a dynamic mp_map_t object in RAM |
| // at the moment it's a linear table, but we could convert it to a const mp_map_t table with a simple preprocessing script |
| // if we wanted to allow dynamic modification of the builtins, we could provide an mp_map_t object which is searched before this one |
| |
| typedef struct _mp_builtin_elem_t { |
| qstr qstr; |
| mp_obj_t fun; |
| } mp_builtin_elem_t; |
| |
| STATIC const mp_builtin_elem_t builtin_table[] = { |
| // built-in core functions |
| { MP_QSTR___build_class__, (mp_obj_t)&mp_builtin___build_class___obj }, |
| { MP_QSTR___import__, (mp_obj_t)&mp_builtin___import___obj }, |
| { MP_QSTR___repl_print__, (mp_obj_t)&mp_builtin___repl_print___obj }, |
| |
| // built-in types |
| { MP_QSTR_bool, (mp_obj_t)&bool_type }, |
| { MP_QSTR_bytes, (mp_obj_t)&bytes_type }, |
| #if MICROPY_ENABLE_FLOAT |
| { MP_QSTR_complex, (mp_obj_t)&mp_type_complex }, |
| #endif |
| { MP_QSTR_dict, (mp_obj_t)&dict_type }, |
| { MP_QSTR_enumerate, (mp_obj_t)&enumerate_type }, |
| { MP_QSTR_filter, (mp_obj_t)&filter_type }, |
| #if MICROPY_ENABLE_FLOAT |
| { MP_QSTR_float, (mp_obj_t)&mp_type_float }, |
| #endif |
| { MP_QSTR_int, (mp_obj_t)&int_type }, |
| { MP_QSTR_list, (mp_obj_t)&list_type }, |
| { MP_QSTR_map, (mp_obj_t)&map_type }, |
| { MP_QSTR_set, (mp_obj_t)&set_type }, |
| { MP_QSTR_str, (mp_obj_t)&str_type }, |
| { MP_QSTR_super, (mp_obj_t)&super_type }, |
| { MP_QSTR_tuple, (mp_obj_t)&tuple_type }, |
| { MP_QSTR_type, (mp_obj_t)&mp_type_type }, |
| { MP_QSTR_zip, (mp_obj_t)&zip_type }, |
| |
| { MP_QSTR_classmethod, (mp_obj_t)&mp_type_classmethod }, |
| { MP_QSTR_staticmethod, (mp_obj_t)&mp_type_staticmethod }, |
| |
| // built-in user functions |
| { MP_QSTR_abs, (mp_obj_t)&mp_builtin_abs_obj }, |
| { MP_QSTR_all, (mp_obj_t)&mp_builtin_all_obj }, |
| { MP_QSTR_any, (mp_obj_t)&mp_builtin_any_obj }, |
| { MP_QSTR_callable, (mp_obj_t)&mp_builtin_callable_obj }, |
| { MP_QSTR_chr, (mp_obj_t)&mp_builtin_chr_obj }, |
| { MP_QSTR_dir, (mp_obj_t)&mp_builtin_dir_obj }, |
| { MP_QSTR_divmod, (mp_obj_t)&mp_builtin_divmod_obj }, |
| { MP_QSTR_eval, (mp_obj_t)&mp_builtin_eval_obj }, |
| { MP_QSTR_exec, (mp_obj_t)&mp_builtin_exec_obj }, |
| { MP_QSTR_hash, (mp_obj_t)&mp_builtin_hash_obj }, |
| { MP_QSTR_id, (mp_obj_t)&mp_builtin_id_obj }, |
| { MP_QSTR_isinstance, (mp_obj_t)&mp_builtin_isinstance_obj }, |
| { MP_QSTR_issubclass, (mp_obj_t)&mp_builtin_issubclass_obj }, |
| { MP_QSTR_iter, (mp_obj_t)&mp_builtin_iter_obj }, |
| { MP_QSTR_len, (mp_obj_t)&mp_builtin_len_obj }, |
| { MP_QSTR_max, (mp_obj_t)&mp_builtin_max_obj }, |
| { MP_QSTR_min, (mp_obj_t)&mp_builtin_min_obj }, |
| { MP_QSTR_next, (mp_obj_t)&mp_builtin_next_obj }, |
| { MP_QSTR_ord, (mp_obj_t)&mp_builtin_ord_obj }, |
| { MP_QSTR_pow, (mp_obj_t)&mp_builtin_pow_obj }, |
| { MP_QSTR_print, (mp_obj_t)&mp_builtin_print_obj }, |
| { MP_QSTR_range, (mp_obj_t)&mp_builtin_range_obj }, |
| { MP_QSTR_repr, (mp_obj_t)&mp_builtin_repr_obj }, |
| { MP_QSTR_sorted, (mp_obj_t)&mp_builtin_sorted_obj }, |
| { MP_QSTR_sum, (mp_obj_t)&mp_builtin_sum_obj }, |
| { MP_QSTR_bytearray, (mp_obj_t)&mp_builtin_bytearray_obj }, |
| |
| // built-in exceptions |
| { MP_QSTR_BaseException, (mp_obj_t)&mp_type_BaseException }, |
| { MP_QSTR_ArithmeticError, (mp_obj_t)&mp_type_ArithmeticError }, |
| { MP_QSTR_AssertionError, (mp_obj_t)&mp_type_AssertionError }, |
| { MP_QSTR_AttributeError, (mp_obj_t)&mp_type_AttributeError }, |
| { MP_QSTR_BufferError, (mp_obj_t)&mp_type_BufferError }, |
| { MP_QSTR_BytesWarning, (mp_obj_t)&mp_type_BytesWarning }, |
| { MP_QSTR_DeprecationWarning, (mp_obj_t)&mp_type_DeprecationWarning }, |
| { MP_QSTR_EOFError, (mp_obj_t)&mp_type_EOFError }, |
| { MP_QSTR_EnvironmentError, (mp_obj_t)&mp_type_EnvironmentError }, |
| { MP_QSTR_Exception, (mp_obj_t)&mp_type_Exception }, |
| { MP_QSTR_FloatingPointError, (mp_obj_t)&mp_type_FloatingPointError }, |
| { MP_QSTR_FutureWarning, (mp_obj_t)&mp_type_FutureWarning }, |
| { MP_QSTR_GeneratorExit, (mp_obj_t)&mp_type_GeneratorExit }, |
| { MP_QSTR_IOError, (mp_obj_t)&mp_type_IOError }, |
| { MP_QSTR_ImportError, (mp_obj_t)&mp_type_ImportError }, |
| { MP_QSTR_ImportWarning, (mp_obj_t)&mp_type_ImportWarning }, |
| { MP_QSTR_IndentationError, (mp_obj_t)&mp_type_IndentationError }, |
| { MP_QSTR_IndexError, (mp_obj_t)&mp_type_IndexError }, |
| { MP_QSTR_KeyError, (mp_obj_t)&mp_type_KeyError }, |
| { MP_QSTR_LookupError, (mp_obj_t)&mp_type_LookupError }, |
| { MP_QSTR_MemoryError, (mp_obj_t)&mp_type_MemoryError }, |
| { MP_QSTR_NameError, (mp_obj_t)&mp_type_NameError }, |
| { MP_QSTR_NotImplementedError, (mp_obj_t)&mp_type_NotImplementedError }, |
| { MP_QSTR_OSError, (mp_obj_t)&mp_type_OSError }, |
| { MP_QSTR_OverflowError, (mp_obj_t)&mp_type_OverflowError }, |
| { MP_QSTR_PendingDeprecationWarning, (mp_obj_t)&mp_type_PendingDeprecationWarning }, |
| { MP_QSTR_ReferenceError, (mp_obj_t)&mp_type_ReferenceError }, |
| { MP_QSTR_ResourceWarning, (mp_obj_t)&mp_type_ResourceWarning }, |
| { MP_QSTR_RuntimeError, (mp_obj_t)&mp_type_RuntimeError }, |
| { MP_QSTR_RuntimeWarning, (mp_obj_t)&mp_type_RuntimeWarning }, |
| { MP_QSTR_SyntaxError, (mp_obj_t)&mp_type_SyntaxError }, |
| { MP_QSTR_SyntaxWarning, (mp_obj_t)&mp_type_SyntaxWarning }, |
| { MP_QSTR_SystemError, (mp_obj_t)&mp_type_SystemError }, |
| { MP_QSTR_SystemExit, (mp_obj_t)&mp_type_SystemExit }, |
| { MP_QSTR_TabError, (mp_obj_t)&mp_type_TabError }, |
| { MP_QSTR_TypeError, (mp_obj_t)&mp_type_TypeError }, |
| { MP_QSTR_UnboundLocalError, (mp_obj_t)&mp_type_UnboundLocalError }, |
| { MP_QSTR_UserWarning, (mp_obj_t)&mp_type_UserWarning }, |
| { MP_QSTR_ValueError, (mp_obj_t)&mp_type_ValueError }, |
| { MP_QSTR_Warning, (mp_obj_t)&mp_type_Warning }, |
| { MP_QSTR_ZeroDivisionError, (mp_obj_t)&mp_type_ZeroDivisionError }, |
| { MP_QSTR_StopIteration, (mp_obj_t)&mp_type_StopIteration }, |
| // Somehow CPython managed to have OverflowError not inherit from ValueError ;-/ |
| // TODO: For MICROPY_CPYTHON_COMPAT==0 use ValueError to avoid exc proliferation |
| |
| // Extra builtins as defined by a port |
| MICROPY_EXTRA_BUILTINS |
| |
| { MP_QSTR_, MP_OBJ_NULL }, // end of list sentinel |
| }; |
| |
| // a good optimising compiler will inline this if necessary |
| STATIC void mp_map_add_qstr(mp_map_t *map, qstr qstr, mp_obj_t value) { |
| mp_map_lookup(map, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = value; |
| } |
| |
| void rt_init(void) { |
| // locals = globals for outer module (see Objects/frameobject.c/PyFrame_New()) |
| map_locals = map_globals = mp_map_new(1); |
| mp_map_add_qstr(map_globals, MP_QSTR___name__, MP_OBJ_NEW_QSTR(MP_QSTR___main__)); |
| |
| // init built-in hash table |
| mp_map_init(&map_builtins, 3); |
| |
| // init loaded modules table |
| mp_map_init(&map_loaded_modules, 3); |
| |
| // built-in objects |
| mp_map_add_qstr(&map_builtins, MP_QSTR_Ellipsis, mp_const_ellipsis); |
| |
| mp_obj_t m_array = mp_obj_new_module(MP_QSTR_array); |
| rt_store_attr(m_array, MP_QSTR_array, (mp_obj_t)&array_type); |
| |
| mp_obj_t m_collections = mp_obj_new_module(MP_QSTR_collections); |
| rt_store_attr(m_collections, MP_QSTR_namedtuple, (mp_obj_t)&mp_namedtuple_obj); |
| |
| #if MICROPY_CPYTHON_COMPAT |
| // Precreate sys module, so "import sys" didn't throw exceptions. |
| mp_obj_t m_sys = mp_obj_new_module(MP_QSTR_sys); |
| // Avoid warning of unused var |
| (void)m_sys; |
| #endif |
| // init sys.path |
| // for efficiency, left to platform-specific startup code |
| //sys_path = mp_obj_new_list(0, NULL); |
| //rt_store_attr(m_sys, MP_QSTR_path, sys_path); |
| |
| // we pre-import the micropython module |
| // probably shouldn't do this, so we are compatible with CPython |
| rt_store_name(MP_QSTR_micropython, (mp_obj_t)&mp_module_micropython); |
| |
| // TODO: wastes one mp_code_t structure in mem |
| next_unique_code_id = 1; // 0 indicates "no code" |
| unique_codes_alloc = 0; |
| unique_codes = NULL; |
| |
| #ifdef WRITE_CODE |
| fp_write_code = fopen("out-code", "wb"); |
| #endif |
| } |
| |
| void rt_deinit(void) { |
| m_del(mp_code_t, unique_codes, unique_codes_alloc); |
| mp_map_free(map_globals); |
| mp_map_deinit(&map_loaded_modules); |
| mp_map_deinit(&map_builtins); |
| #ifdef WRITE_CODE |
| if (fp_write_code != NULL) { |
| fclose(fp_write_code); |
| } |
| #endif |
| } |
| |
| uint rt_get_unique_code_id(void) { |
| return next_unique_code_id++; |
| } |
| |
| STATIC void alloc_unique_codes(void) { |
| if (next_unique_code_id > unique_codes_alloc) { |
| DEBUG_printf("allocate more unique codes: " UINT_FMT " -> %u\n", unique_codes_alloc, next_unique_code_id); |
| // increase size of unique_codes table |
| unique_codes = m_renew(mp_code_t, unique_codes, unique_codes_alloc, next_unique_code_id); |
| for (uint i = unique_codes_alloc; i < next_unique_code_id; i++) { |
| unique_codes[i].kind = MP_CODE_NONE; |
| } |
| unique_codes_alloc = next_unique_code_id; |
| } |
| } |
| |
| void rt_assign_byte_code(uint unique_code_id, byte *code, uint len, int n_args, int n_locals, int n_stack, uint scope_flags, qstr *arg_names) { |
| alloc_unique_codes(); |
| |
| assert(1 <= unique_code_id && unique_code_id < next_unique_code_id && unique_codes[unique_code_id].kind == MP_CODE_NONE); |
| unique_codes[unique_code_id].kind = MP_CODE_BYTE; |
| unique_codes[unique_code_id].scope_flags = scope_flags; |
| unique_codes[unique_code_id].n_args = n_args; |
| unique_codes[unique_code_id].n_state = n_locals + n_stack; |
| unique_codes[unique_code_id].u_byte.code = code; |
| unique_codes[unique_code_id].u_byte.len = len; |
| unique_codes[unique_code_id].arg_names = arg_names; |
| |
| //printf("byte code: %d bytes\n", len); |
| |
| #ifdef DEBUG_PRINT |
| DEBUG_printf("assign byte code: id=%d code=%p len=%u n_args=%d n_locals=%d n_stack=%d\n", unique_code_id, code, len, n_args, n_locals, n_stack); |
| for (int i = 0; i < 128 && i < len; i++) { |
| if (i > 0 && i % 16 == 0) { |
| DEBUG_printf("\n"); |
| } |
| DEBUG_printf(" %02x", code[i]); |
| } |
| DEBUG_printf("\n"); |
| #if MICROPY_DEBUG_PRINTERS |
| mp_byte_code_print(code, len); |
| #endif |
| #endif |
| } |
| |
| void rt_assign_native_code(uint unique_code_id, void *fun, uint len, int n_args) { |
| alloc_unique_codes(); |
| |
| assert(1 <= unique_code_id && unique_code_id < next_unique_code_id && unique_codes[unique_code_id].kind == MP_CODE_NONE); |
| unique_codes[unique_code_id].kind = MP_CODE_NATIVE; |
| unique_codes[unique_code_id].scope_flags = 0; |
| unique_codes[unique_code_id].n_args = n_args; |
| unique_codes[unique_code_id].n_state = 0; |
| unique_codes[unique_code_id].u_native.fun = fun; |
| |
| //printf("native code: %d bytes\n", len); |
| |
| #ifdef DEBUG_PRINT |
| DEBUG_printf("assign native code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args); |
| byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code |
| for (int i = 0; i < 128 && i < len; i++) { |
| if (i > 0 && i % 16 == 0) { |
| DEBUG_printf("\n"); |
| } |
| DEBUG_printf(" %02x", fun_data[i]); |
| } |
| DEBUG_printf("\n"); |
| |
| #ifdef WRITE_CODE |
| if (fp_write_code != NULL) { |
| fwrite(fun_data, len, 1, fp_write_code); |
| fflush(fp_write_code); |
| } |
| #endif |
| #endif |
| } |
| |
| void rt_assign_inline_asm_code(uint unique_code_id, void *fun, uint len, int n_args) { |
| alloc_unique_codes(); |
| |
| assert(1 <= unique_code_id && unique_code_id < next_unique_code_id && unique_codes[unique_code_id].kind == MP_CODE_NONE); |
| unique_codes[unique_code_id].kind = MP_CODE_INLINE_ASM; |
| unique_codes[unique_code_id].scope_flags = 0; |
| unique_codes[unique_code_id].n_args = n_args; |
| unique_codes[unique_code_id].n_state = 0; |
| unique_codes[unique_code_id].u_inline_asm.fun = fun; |
| |
| #ifdef DEBUG_PRINT |
| DEBUG_printf("assign inline asm code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args); |
| byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code |
| for (int i = 0; i < 128 && i < len; i++) { |
| if (i > 0 && i % 16 == 0) { |
| DEBUG_printf("\n"); |
| } |
| DEBUG_printf(" %02x", fun_data[i]); |
| } |
| DEBUG_printf("\n"); |
| |
| #ifdef WRITE_CODE |
| if (fp_write_code != NULL) { |
| fwrite(fun_data, len, 1, fp_write_code); |
| } |
| #endif |
| #endif |
| } |
| |
| int rt_is_true(mp_obj_t arg) { |
| DEBUG_OP_printf("is true %p\n", arg); |
| if (arg == mp_const_false) { |
| return 0; |
| } else if (arg == mp_const_true) { |
| return 1; |
| } else if (arg == mp_const_none) { |
| return 0; |
| } else if (MP_OBJ_IS_SMALL_INT(arg)) { |
| if (MP_OBJ_SMALL_INT_VALUE(arg) == 0) { |
| return 0; |
| } else { |
| return 1; |
| } |
| } else { |
| mp_obj_type_t *type = mp_obj_get_type(arg); |
| if (type->unary_op != NULL) { |
| mp_obj_t result = type->unary_op(RT_UNARY_OP_BOOL, arg); |
| if (result != MP_OBJ_NULL) { |
| return result == mp_const_true; |
| } |
| } |
| |
| mp_obj_t len = mp_obj_len_maybe(arg); |
| if (len != MP_OBJ_NULL) { |
| // obj has a length, truth determined if len != 0 |
| return len != MP_OBJ_NEW_SMALL_INT(0); |
| } else { |
| // any other obj is true per Python semantics |
| return 1; |
| } |
| } |
| } |
| |
| mp_obj_t rt_list_append(mp_obj_t self_in, mp_obj_t arg) { |
| return mp_obj_list_append(self_in, arg); |
| } |
| |
| mp_obj_t rt_load_const_dec(qstr qstr) { |
| DEBUG_OP_printf("load '%s'\n", qstr_str(qstr)); |
| uint len; |
| const byte* data = qstr_data(qstr, &len); |
| return mp_parse_num_decimal((const char*)data, len, true, false); |
| } |
| |
| mp_obj_t rt_load_const_str(qstr qstr) { |
| DEBUG_OP_printf("load '%s'\n", qstr_str(qstr)); |
| return MP_OBJ_NEW_QSTR(qstr); |
| } |
| |
| mp_obj_t rt_load_const_bytes(qstr qstr) { |
| DEBUG_OP_printf("load b'%s'\n", qstr_str(qstr)); |
| uint len; |
| const byte *data = qstr_data(qstr, &len); |
| return mp_obj_new_bytes(data, len); |
| } |
| |
| mp_obj_t rt_load_name(qstr qstr) { |
| // logic: search locals, globals, builtins |
| DEBUG_OP_printf("load name %s\n", qstr_str(qstr)); |
| mp_map_elem_t *elem = mp_map_lookup(map_locals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP); |
| if (elem != NULL) { |
| return elem->value; |
| } else { |
| return rt_load_global(qstr); |
| } |
| } |
| |
| mp_obj_t rt_load_global(qstr qstr) { |
| // logic: search globals, builtins |
| DEBUG_OP_printf("load global %s\n", qstr_str(qstr)); |
| mp_map_elem_t *elem = mp_map_lookup(map_globals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP); |
| if (elem == NULL) { |
| elem = mp_map_lookup(&map_builtins, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP); |
| if (elem == NULL) { |
| for (const mp_builtin_elem_t *e = &builtin_table[0]; e->qstr != MP_QSTR_; e++) { |
| if (e->qstr == qstr) { |
| return e->fun; |
| } |
| } |
| nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_NameError, "name '%s' is not defined", qstr_str(qstr))); |
| } |
| } |
| return elem->value; |
| } |
| |
| mp_obj_t rt_load_build_class(void) { |
| DEBUG_OP_printf("load_build_class\n"); |
| mp_map_elem_t *elem = mp_map_lookup(&map_builtins, MP_OBJ_NEW_QSTR(MP_QSTR___build_class__), MP_MAP_LOOKUP); |
| if (elem != NULL) { |
| return elem->value; |
| } else { |
| return (mp_obj_t)&mp_builtin___build_class___obj; |
| } |
| } |
| |
| mp_obj_t rt_get_cell(mp_obj_t cell) { |
| return mp_obj_cell_get(cell); |
| } |
| |
| void rt_set_cell(mp_obj_t cell, mp_obj_t val) { |
| mp_obj_cell_set(cell, val); |
| } |
| |
| void rt_store_name(qstr qstr, mp_obj_t obj) { |
| DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qstr), obj); |
| mp_map_lookup(map_locals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = obj; |
| } |
| |
| void rt_store_global(qstr qstr, mp_obj_t obj) { |
| DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qstr), obj); |
| mp_map_lookup(map_globals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = obj; |
| } |
| |
| mp_obj_t rt_unary_op(int op, mp_obj_t arg) { |
| DEBUG_OP_printf("unary %d %p\n", op, arg); |
| |
| if (MP_OBJ_IS_SMALL_INT(arg)) { |
| mp_small_int_t val = MP_OBJ_SMALL_INT_VALUE(arg); |
| switch (op) { |
| case RT_UNARY_OP_BOOL: |
| return MP_BOOL(val != 0); |
| case RT_UNARY_OP_POSITIVE: |
| return arg; |
| case RT_UNARY_OP_NEGATIVE: |
| // check for overflow |
| if (val == MP_SMALL_INT_MIN) { |
| return mp_obj_new_int(-val); |
| } else { |
| return MP_OBJ_NEW_SMALL_INT(-val); |
| } |
| case RT_UNARY_OP_INVERT: |
| return MP_OBJ_NEW_SMALL_INT(~val); |
| default: |
| assert(0); |
| return arg; |
| } |
| } else { |
| mp_obj_type_t *type = mp_obj_get_type(arg); |
| if (type->unary_op != NULL) { |
| mp_obj_t result = type->unary_op(op, arg); |
| if (result != NULL) { |
| return result; |
| } |
| } |
| // TODO specify in error message what the operator is |
| nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "bad operand type for unary operator: '%s'", mp_obj_get_type_str(arg))); |
| } |
| } |
| |
| mp_obj_t rt_binary_op(int op, mp_obj_t lhs, mp_obj_t rhs) { |
| DEBUG_OP_printf("binary %d %p %p\n", op, lhs, rhs); |
| |
| // TODO correctly distinguish inplace operators for mutable objects |
| // lookup logic that CPython uses for +=: |
| // check for implemented += |
| // then check for implemented + |
| // then check for implemented seq.inplace_concat |
| // then check for implemented seq.concat |
| // then fail |
| // note that list does not implement + or +=, so that inplace_concat is reached first for += |
| |
| // deal with is |
| if (op == RT_BINARY_OP_IS) { |
| return MP_BOOL(lhs == rhs); |
| } |
| |
| // deal with == and != for all types |
| if (op == RT_BINARY_OP_EQUAL || op == RT_BINARY_OP_NOT_EQUAL) { |
| if (mp_obj_equal(lhs, rhs)) { |
| if (op == RT_BINARY_OP_EQUAL) { |
| return mp_const_true; |
| } else { |
| return mp_const_false; |
| } |
| } else { |
| if (op == RT_BINARY_OP_EQUAL) { |
| return mp_const_false; |
| } else { |
| return mp_const_true; |
| } |
| } |
| } |
| |
| // deal with exception_match for all types |
| if (op == RT_BINARY_OP_EXCEPTION_MATCH) { |
| // rhs must be issubclass(rhs, BaseException) |
| if (mp_obj_is_exception_type(rhs)) { |
| // if lhs is an instance of an exception, then extract and use its type |
| if (mp_obj_is_exception_instance(lhs)) { |
| lhs = mp_obj_get_type(lhs); |
| } |
| if (mp_obj_is_subclass_fast(lhs, rhs)) { |
| return mp_const_true; |
| } else { |
| return mp_const_false; |
| } |
| } |
| } |
| |
| if (MP_OBJ_IS_SMALL_INT(lhs)) { |
| mp_small_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs); |
| if (MP_OBJ_IS_SMALL_INT(rhs)) { |
| mp_small_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs); |
| // This is a binary operation: lhs_val op rhs_val |
| // We need to be careful to handle overflow; see CERT INT32-C |
| // Operations that can overflow: |
| // + result always fits in machine_int_t, then handled by SMALL_INT check |
| // - result always fits in machine_int_t, then handled by SMALL_INT check |
| // * checked explicitly |
| // / if lhs=MIN and rhs=-1; result always fits in machine_int_t, then handled by SMALL_INT check |
| // % if lhs=MIN and rhs=-1; result always fits in machine_int_t, then handled by SMALL_INT check |
| // << checked explicitly |
| switch (op) { |
| case RT_BINARY_OP_OR: |
| case RT_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break; |
| case RT_BINARY_OP_XOR: |
| case RT_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break; |
| case RT_BINARY_OP_AND: |
| case RT_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break; |
| case RT_BINARY_OP_LSHIFT: |
| case RT_BINARY_OP_INPLACE_LSHIFT: { |
| if (rhs_val < 0) { |
| // negative shift not allowed |
| nlr_jump(mp_obj_new_exception_msg(&mp_type_ValueError, "negative shift count")); |
| } else if (rhs_val >= BITS_PER_WORD || lhs_val > (MP_SMALL_INT_MAX >> rhs_val) || lhs_val < (MP_SMALL_INT_MIN >> rhs_val)) { |
| // left-shift will overflow, so use higher precision integer |
| lhs = mp_obj_new_int_from_ll(lhs_val); |
| goto generic_binary_op; |
| } else { |
| // use standard precision |
| lhs_val <<= rhs_val; |
| } |
| break; |
| } |
| case RT_BINARY_OP_RSHIFT: |
| case RT_BINARY_OP_INPLACE_RSHIFT: |
| if (rhs_val < 0) { |
| // negative shift not allowed |
| nlr_jump(mp_obj_new_exception_msg(&mp_type_ValueError, "negative shift count")); |
| } else { |
| // standard precision is enough for right-shift |
| lhs_val >>= rhs_val; |
| } |
| break; |
| case RT_BINARY_OP_ADD: |
| case RT_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break; |
| case RT_BINARY_OP_SUBTRACT: |
| case RT_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break; |
| case RT_BINARY_OP_MULTIPLY: |
| case RT_BINARY_OP_INPLACE_MULTIPLY: { |
| |
| // If long long type exists and is larger than machine_int_t, then |
| // we can use the following code to perform overflow-checked multiplication. |
| // Otherwise (eg in x64 case) we must use the branching code below. |
| #if 0 |
| // compute result using long long precision |
| long long res = (long long)lhs_val * (long long)rhs_val; |
| if (res > MP_SMALL_INT_MAX || res < MP_SMALL_INT_MIN) { |
| // result overflowed SMALL_INT, so return higher precision integer |
| return mp_obj_new_int_from_ll(res); |
| } else { |
| // use standard precision |
| lhs_val = (mp_small_int_t)res; |
| } |
| #endif |
| |
| if (lhs_val > 0) { // lhs_val is positive |
| if (rhs_val > 0) { // lhs_val and rhs_val are positive |
| if (lhs_val > (MP_SMALL_INT_MAX / rhs_val)) { |
| goto mul_overflow; |
| } |
| } else { // lhs_val positive, rhs_val nonpositive |
| if (rhs_val < (MP_SMALL_INT_MIN / lhs_val)) { |
| goto mul_overflow; |
| } |
| } // lhs_val positive, rhs_val nonpositive |
| } else { // lhs_val is nonpositive |
| if (rhs_val > 0) { // lhs_val is nonpositive, rhs_val is positive |
| if (lhs_val < (MP_SMALL_INT_MIN / rhs_val)) { |
| goto mul_overflow; |
| } |
| } else { // lhs_val and rhs_val are nonpositive |
| if (lhs_val != 0 && rhs_val < (MP_SMALL_INT_MAX / lhs_val)) { |
| goto mul_overflow; |
| } |
| } // End if lhs_val and rhs_val are nonpositive |
| } // End if lhs_val is nonpositive |
| |
| // use standard precision |
| return MP_OBJ_NEW_SMALL_INT(lhs_val * rhs_val); |
| |
| mul_overflow: |
| // use higher precision |
| lhs = mp_obj_new_int_from_ll(lhs_val); |
| goto generic_binary_op; |
| |
| break; |
| } |
| case RT_BINARY_OP_FLOOR_DIVIDE: |
| case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: lhs_val /= rhs_val; break; |
| #if MICROPY_ENABLE_FLOAT |
| case RT_BINARY_OP_TRUE_DIVIDE: |
| case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val); |
| #endif |
| |
| case RT_BINARY_OP_MODULO: |
| case RT_BINARY_OP_INPLACE_MODULO: |
| { |
| lhs_val = python_modulo(lhs_val, rhs_val); |
| break; |
| } |
| case RT_BINARY_OP_POWER: |
| case RT_BINARY_OP_INPLACE_POWER: |
| if (rhs_val < 0) { |
| #if MICROPY_ENABLE_FLOAT |
| lhs = mp_obj_new_float(lhs_val); |
| goto generic_binary_op; |
| #else |
| nlr_jump(mp_obj_new_exception_msg(&mp_type_ValueError, "negative power with no float support")); |
| #endif |
| } else { |
| // TODO check for overflow |
| machine_int_t ans = 1; |
| while (rhs_val > 0) { |
| if (rhs_val & 1) { |
| ans *= lhs_val; |
| } |
| lhs_val *= lhs_val; |
| rhs_val /= 2; |
| } |
| lhs_val = ans; |
| } |
| break; |
| case RT_BINARY_OP_LESS: return MP_BOOL(lhs_val < rhs_val); break; |
| case RT_BINARY_OP_MORE: return MP_BOOL(lhs_val > rhs_val); break; |
| case RT_BINARY_OP_LESS_EQUAL: return MP_BOOL(lhs_val <= rhs_val); break; |
| case RT_BINARY_OP_MORE_EQUAL: return MP_BOOL(lhs_val >= rhs_val); break; |
| |
| default: assert(0); |
| } |
| // TODO: We just should make mp_obj_new_int() inline and use that |
| if (MP_OBJ_FITS_SMALL_INT(lhs_val)) { |
| return MP_OBJ_NEW_SMALL_INT(lhs_val); |
| } else { |
| return mp_obj_new_int(lhs_val); |
| } |
| #if MICROPY_ENABLE_FLOAT |
| } else if (MP_OBJ_IS_TYPE(rhs, &mp_type_float)) { |
| return mp_obj_float_binary_op(op, lhs_val, rhs); |
| } else if (MP_OBJ_IS_TYPE(rhs, &mp_type_complex)) { |
| return mp_obj_complex_binary_op(op, lhs_val, 0, rhs); |
| #endif |
| } |
| } |
| |
| /* deal with `in` |
| * |
| * NOTE `a in b` is `b.__contains__(a)`, hence why the generic dispatch |
| * needs to go below with swapped arguments |
| */ |
| if (op == RT_BINARY_OP_IN) { |
| mp_obj_type_t *type = mp_obj_get_type(rhs); |
| if (type->binary_op != NULL) { |
| mp_obj_t res = type->binary_op(op, rhs, lhs); |
| if (res != MP_OBJ_NULL) { |
| return res; |
| } |
| } |
| if (type->getiter != NULL) { |
| /* second attempt, walk the iterator */ |
| mp_obj_t next = NULL; |
| mp_obj_t iter = rt_getiter(rhs); |
| while ((next = rt_iternext(iter)) != mp_const_stop_iteration) { |
| if (mp_obj_equal(next, lhs)) { |
| return mp_const_true; |
| } |
| } |
| return mp_const_false; |
| } |
| |
| nlr_jump(mp_obj_new_exception_msg_varg( |
| &mp_type_TypeError, "'%s' object is not iterable", |
| mp_obj_get_type_str(rhs))); |
| return mp_const_none; |
| } |
| |
| // generic binary_op supplied by type |
| mp_obj_type_t *type; |
| generic_binary_op: |
| type = mp_obj_get_type(lhs); |
| if (type->binary_op != NULL) { |
| mp_obj_t result = type->binary_op(op, lhs, rhs); |
| if (result != MP_OBJ_NULL) { |
| return result; |
| } |
| } |
| |
| // TODO implement dispatch for reverse binary ops |
| |
| // TODO specify in error message what the operator is |
| nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, |
| "unsupported operand types for binary operator: '%s', '%s'", |
| mp_obj_get_type_str(lhs), mp_obj_get_type_str(rhs))); |
| return mp_const_none; |
| } |
| |
| mp_obj_t rt_make_function_from_id(int unique_code_id, mp_obj_t def_args) { |
| DEBUG_OP_printf("make_function_from_id %d\n", unique_code_id); |
| if (unique_code_id < 1 || unique_code_id >= next_unique_code_id) { |
| // illegal code id |
| return mp_const_none; |
| } |
| |
| // make the function, depending on the code kind |
| mp_code_t *c = &unique_codes[unique_code_id]; |
| mp_obj_t fun; |
| switch (c->kind) { |
| case MP_CODE_BYTE: |
| fun = mp_obj_new_fun_bc(c->scope_flags, c->arg_names, c->n_args, def_args, c->n_state, c->u_byte.code); |
| break; |
| case MP_CODE_NATIVE: |
| fun = rt_make_function_n(c->n_args, c->u_native.fun); |
| break; |
| case MP_CODE_INLINE_ASM: |
| fun = mp_obj_new_fun_asm(c->n_args, c->u_inline_asm.fun); |
| break; |
| default: |
| assert(0); |
| fun = mp_const_none; |
| } |
| |
| // check for generator functions and if so wrap in generator object |
| if ((c->scope_flags & MP_SCOPE_FLAG_GENERATOR) != 0) { |
| fun = mp_obj_new_gen_wrap(fun); |
| } |
| |
| return fun; |
| } |
| |
| mp_obj_t rt_make_closure_from_id(int unique_code_id, mp_obj_t closure_tuple) { |
| DEBUG_OP_printf("make_closure_from_id %d\n", unique_code_id); |
| // make function object |
| mp_obj_t ffun = rt_make_function_from_id(unique_code_id, MP_OBJ_NULL); |
| // wrap function in closure object |
| return mp_obj_new_closure(ffun, closure_tuple); |
| } |
| |
| mp_obj_t rt_call_function_0(mp_obj_t fun) { |
| return rt_call_function_n_kw(fun, 0, 0, NULL); |
| } |
| |
| mp_obj_t rt_call_function_1(mp_obj_t fun, mp_obj_t arg) { |
| return rt_call_function_n_kw(fun, 1, 0, &arg); |
| } |
| |
| mp_obj_t rt_call_function_2(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2) { |
| mp_obj_t args[2]; |
| args[0] = arg1; |
| args[1] = arg2; |
| return rt_call_function_n_kw(fun, 2, 0, args); |
| } |
| |
| // wrapper that accepts n_args and n_kw in one argument |
| // native emitter can only pass at most 3 arguments to a function |
| mp_obj_t rt_call_function_n_kw_for_native(mp_obj_t fun_in, uint n_args_kw, const mp_obj_t *args) { |
| return rt_call_function_n_kw(fun_in, n_args_kw & 0xff, (n_args_kw >> 8) & 0xff, args); |
| } |
| |
| // args contains, eg: arg0 arg1 key0 value0 key1 value1 |
| mp_obj_t rt_call_function_n_kw(mp_obj_t fun_in, uint n_args, uint n_kw, const mp_obj_t *args) { |
| // TODO improve this: fun object can specify its type and we parse here the arguments, |
| // passing to the function arrays of fixed and keyword arguments |
| |
| DEBUG_OP_printf("calling function %p(n_args=%d, n_kw=%d, args=%p)\n", fun_in, n_args, n_kw, args); |
| |
| // get the type |
| mp_obj_type_t *type = mp_obj_get_type(fun_in); |
| |
| // do the call |
| if (type->call != NULL) { |
| return type->call(fun_in, n_args, n_kw, args); |
| } else { |
| nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not callable", mp_obj_get_type_str(fun_in))); |
| } |
| } |
| |
| // args contains: fun self/NULL arg(0) ... arg(n_args-2) arg(n_args-1) kw_key(0) kw_val(0) ... kw_key(n_kw-1) kw_val(n_kw-1) |
| // if n_args==0 and n_kw==0 then there are only fun and self/NULL |
| mp_obj_t rt_call_method_n_kw(uint n_args, uint n_kw, const mp_obj_t *args) { |
| DEBUG_OP_printf("call method (fun=%p, self=%p, n_args=%u, n_kw=%u, args=%p)\n", args[0], args[1], n_args, n_kw, args); |
| int adjust = (args[1] == NULL) ? 0 : 1; |
| return rt_call_function_n_kw(args[0], n_args + adjust, n_kw, args + 2 - adjust); |
| } |
| |
| mp_obj_t rt_build_tuple(int n_args, mp_obj_t *items) { |
| return mp_obj_new_tuple(n_args, items); |
| } |
| |
| mp_obj_t rt_build_list(int n_args, mp_obj_t *items) { |
| return mp_obj_new_list(n_args, items); |
| } |
| |
| mp_obj_t rt_build_set(int n_args, mp_obj_t *items) { |
| return mp_obj_new_set(n_args, items); |
| } |
| |
| mp_obj_t rt_store_set(mp_obj_t set, mp_obj_t item) { |
| mp_obj_set_store(set, item); |
| return set; |
| } |
| |
| // unpacked items are stored in reverse order into the array pointed to by items |
| void rt_unpack_sequence(mp_obj_t seq_in, uint num, mp_obj_t *items) { |
| uint seq_len; |
| if (MP_OBJ_IS_TYPE(seq_in, &tuple_type) || MP_OBJ_IS_TYPE(seq_in, &list_type)) { |
| mp_obj_t *seq_items; |
| if (MP_OBJ_IS_TYPE(seq_in, &tuple_type)) { |
| mp_obj_tuple_get(seq_in, &seq_len, &seq_items); |
| } else { |
| mp_obj_list_get(seq_in, &seq_len, &seq_items); |
| } |
| if (seq_len < num) { |
| goto too_short; |
| } else if (seq_len > num) { |
| goto too_long; |
| } |
| for (uint i = 0; i < num; i++) { |
| items[i] = seq_items[num - 1 - i]; |
| } |
| } else { |
| mp_obj_t iterable = rt_getiter(seq_in); |
| |
| for (seq_len = 0; seq_len < num; seq_len++) { |
| mp_obj_t el = rt_iternext(iterable); |
| if (el == mp_const_stop_iteration) { |
| goto too_short; |
| } |
| items[num - 1 - seq_len] = el; |
| } |
| if (rt_iternext(iterable) != mp_const_stop_iteration) { |
| goto too_long; |
| } |
| } |
| return; |
| |
| too_short: |
| nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "need more than %d values to unpack", seq_len)); |
| too_long: |
| nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "too many values to unpack (expected %d)", num)); |
| } |
| |
| mp_obj_t rt_build_map(int n_args) { |
| return mp_obj_new_dict(n_args); |
| } |
| |
| mp_obj_t rt_store_map(mp_obj_t map, mp_obj_t key, mp_obj_t value) { |
| // map should always be a dict |
| return mp_obj_dict_store(map, key, value); |
| } |
| |
| mp_obj_t rt_load_attr(mp_obj_t base, qstr attr) { |
| DEBUG_OP_printf("load attr %p.%s\n", base, qstr_str(attr)); |
| // use load_method |
| mp_obj_t dest[2]; |
| rt_load_method(base, attr, dest); |
| if (dest[1] == MP_OBJ_NULL) { |
| // load_method returned just a normal attribute |
| return dest[0]; |
| } else { |
| // load_method returned a method, so build a bound method object |
| return mp_obj_new_bound_meth(dest[0], dest[1]); |
| } |
| } |
| |
| // no attribute found, returns: dest[0] == MP_OBJ_NULL, dest[1] == MP_OBJ_NULL |
| // normal attribute found, returns: dest[0] == <attribute>, dest[1] == MP_OBJ_NULL |
| // method attribute found, returns: dest[0] == <method>, dest[1] == <self> |
| STATIC void rt_load_method_maybe(mp_obj_t base, qstr attr, mp_obj_t *dest) { |
| // clear output to indicate no attribute/method found yet |
| dest[0] = MP_OBJ_NULL; |
| dest[1] = MP_OBJ_NULL; |
| |
| // get the type |
| mp_obj_type_t *type = mp_obj_get_type(base); |
| |
| // if this type can do its own load, then call it |
| if (type->load_attr != NULL) { |
| type->load_attr(base, attr, dest); |
| } |
| |
| // if nothing found yet, look for built-in and generic names |
| if (dest[0] == MP_OBJ_NULL) { |
| if (attr == MP_QSTR___class__) { |
| // a.__class__ is equivalent to type(a) |
| dest[0] = type; |
| } else if (attr == MP_QSTR___next__ && type->iternext != NULL) { |
| dest[0] = (mp_obj_t)&mp_builtin_next_obj; |
| dest[1] = base; |
| } else if (type->load_attr == NULL) { |
| // generic method lookup if type didn't provide a specific one |
| // this is a lookup in the object (ie not class or type) |
| const mp_method_t *meth = type->methods; |
| if (meth != NULL) { |
| for (; meth->name != NULL; meth++) { |
| if (strcmp(meth->name, qstr_str(attr)) == 0) { |
| // check if the methods are functions, static or class methods |
| // see http://docs.python.org/3.3/howto/descriptor.html |
| if (MP_OBJ_IS_TYPE(meth->fun, &mp_type_staticmethod)) { |
| // return just the function |
| dest[0] = ((mp_obj_static_class_method_t*)meth->fun)->fun; |
| } else if (MP_OBJ_IS_TYPE(meth->fun, &mp_type_classmethod)) { |
| // return a bound method, with self being the type of this object |
| dest[0] = ((mp_obj_static_class_method_t*)meth->fun)->fun; |
| dest[1] = mp_obj_get_type(base); |
| } else { |
| // return a bound method, with self being this object |
| dest[0] = (mp_obj_t)meth->fun; |
| dest[1] = base; |
| } |
| break; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void rt_load_method(mp_obj_t base, qstr attr, mp_obj_t *dest) { |
| DEBUG_OP_printf("load method %p.%s\n", base, qstr_str(attr)); |
| |
| rt_load_method_maybe(base, attr, dest); |
| |
| if (dest[0] == MP_OBJ_NULL) { |
| // no attribute/method called attr |
| // following CPython, we give a more detailed error message for type objects |
| if (MP_OBJ_IS_TYPE(base, &mp_type_type)) { |
| nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_AttributeError, "type object '%s' has no attribute '%s'", ((mp_obj_type_t*)base)->name, qstr_str(attr))); |
| } else { |
| nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_AttributeError, "'%s' object has no attribute '%s'", mp_obj_get_type_str(base), qstr_str(attr))); |
| } |
| } |
| } |
| |
| void rt_store_attr(mp_obj_t base, qstr attr, mp_obj_t value) { |
| DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value); |
| mp_obj_type_t *type = mp_obj_get_type(base); |
| if (type->store_attr != NULL) { |
| if (type->store_attr(base, attr, value)) { |
| return; |
| } |
| } |
| nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_AttributeError, "'%s' object has no attribute '%s'", mp_obj_get_type_str(base), qstr_str(attr))); |
| } |
| |
| void rt_store_subscr(mp_obj_t base, mp_obj_t index, mp_obj_t value) { |
| DEBUG_OP_printf("store subscr %p[%p] <- %p\n", base, index, value); |
| if (MP_OBJ_IS_TYPE(base, &list_type)) { |
| // list store |
| mp_obj_list_store(base, index, value); |
| } else if (MP_OBJ_IS_TYPE(base, &dict_type)) { |
| // dict store |
| mp_obj_dict_store(base, index, value); |
| } else { |
| mp_obj_type_t *type = mp_obj_get_type(base); |
| if (type->store_item != NULL) { |
| bool r = type->store_item(base, index, value); |
| if (r) { |
| return; |
| } |
| // TODO: call base classes here? |
| } |
| nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object does not support item assignment", mp_obj_get_type_str(base))); |
| } |
| } |
| |
| mp_obj_t rt_getiter(mp_obj_t o_in) { |
| mp_obj_type_t *type = mp_obj_get_type(o_in); |
| if (type->getiter != NULL) { |
| return type->getiter(o_in); |
| } else { |
| // check for __getitem__ method |
| mp_obj_t dest[2]; |
| rt_load_method_maybe(o_in, MP_QSTR___getitem__, dest); |
| if (dest[0] != MP_OBJ_NULL) { |
| // __getitem__ exists, create an iterator |
| return mp_obj_new_getitem_iter(dest); |
| } else { |
| // object not iterable |
| nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not iterable", mp_obj_get_type_str(o_in))); |
| } |
| } |
| } |
| |
| mp_obj_t rt_iternext(mp_obj_t o_in) { |
| mp_obj_type_t *type = mp_obj_get_type(o_in); |
| if (type->iternext != NULL) { |
| return type->iternext(o_in); |
| } else { |
| nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not an iterator", mp_obj_get_type_str(o_in))); |
| } |
| } |
| |
| mp_obj_t rt_make_raise_obj(mp_obj_t o) { |
| DEBUG_printf("raise %p\n", o); |
| if (mp_obj_is_exception_type(o)) { |
| // o is an exception type (it is derived from BaseException (or is BaseException)) |
| // create and return a new exception instance by calling o |
| // TODO could have an option to disable traceback, then builtin exceptions (eg TypeError) |
| // could have const instances in ROM which we return here instead |
| return rt_call_function_n_kw(o, 0, 0, NULL); |
| } else if (mp_obj_is_exception_instance(o)) { |
| // o is an instance of an exception, so use it as the exception |
| return o; |
| } else { |
| // o cannot be used as an exception, so return a type error (which will be raised by the caller) |
| return mp_obj_new_exception_msg(&mp_type_TypeError, "exceptions must derive from BaseException"); |
| } |
| } |
| |
| mp_obj_t rt_import_name(qstr name, mp_obj_t fromlist, mp_obj_t level) { |
| DEBUG_printf("import name %s\n", qstr_str(name)); |
| |
| // build args array |
| mp_obj_t args[5]; |
| args[0] = MP_OBJ_NEW_QSTR(name); |
| args[1] = mp_const_none; // TODO should be globals |
| args[2] = mp_const_none; // TODO should be locals |
| args[3] = fromlist; |
| args[4] = level; // must be 0; we don't yet support other values |
| |
| // TODO lookup __import__ and call that instead of going straight to builtin implementation |
| return mp_builtin___import__(5, args); |
| } |
| |
| mp_obj_t rt_import_from(mp_obj_t module, qstr name) { |
| DEBUG_printf("import from %p %s\n", module, qstr_str(name)); |
| |
| mp_obj_t x = rt_load_attr(module, name); |
| /* TODO convert AttributeError to ImportError |
| if (fail) { |
| (ImportError, "cannot import name %s", qstr_str(name), NULL) |
| } |
| */ |
| return x; |
| } |
| |
| void rt_import_all(mp_obj_t module) { |
| DEBUG_printf("import all %p\n", module); |
| |
| mp_map_t *map = mp_obj_module_get_globals(module); |
| for (uint i = 0; i < map->alloc; i++) { |
| if (map->table[i].key != MP_OBJ_NULL) { |
| rt_store_name(MP_OBJ_QSTR_VALUE(map->table[i].key), map->table[i].value); |
| } |
| } |
| } |
| |
| mp_map_t *rt_locals_get(void) { |
| return map_locals; |
| } |
| |
| void rt_locals_set(mp_map_t *m) { |
| DEBUG_OP_printf("rt_locals_set(%p)\n", m); |
| map_locals = m; |
| } |
| |
| mp_map_t *rt_globals_get(void) { |
| return map_globals; |
| } |
| |
| void rt_globals_set(mp_map_t *m) { |
| DEBUG_OP_printf("rt_globals_set(%p)\n", m); |
| map_globals = m; |
| } |
| |
| mp_map_t *rt_loaded_modules_get(void) { |
| return &map_loaded_modules; |
| } |
| |
| // these must correspond to the respective enum |
| void *const rt_fun_table[RT_F_NUMBER_OF] = { |
| rt_load_const_dec, |
| rt_load_const_str, |
| rt_load_name, |
| rt_load_global, |
| rt_load_build_class, |
| rt_load_attr, |
| rt_load_method, |
| rt_store_name, |
| rt_store_attr, |
| rt_store_subscr, |
| rt_is_true, |
| rt_unary_op, |
| rt_binary_op, |
| rt_build_tuple, |
| rt_build_list, |
| rt_list_append, |
| rt_build_map, |
| rt_store_map, |
| rt_build_set, |
| rt_store_set, |
| rt_make_function_from_id, |
| rt_call_function_n_kw_for_native, |
| rt_call_method_n_kw, |
| rt_getiter, |
| rt_iternext, |
| }; |
| |
| /* |
| void rt_f_vector(rt_fun_kind_t fun_kind) { |
| (rt_f_table[fun_kind])(); |
| } |
| */ |