| // in principle, rt_xxx functions are called only by vm/native/viper and make assumptions about args |
| // mp_xxx functions are safer and can be called by anyone |
| // note that rt_assign_xxx are called only from emit*, and maybe we can rename them to reflect this |
| |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <assert.h> |
| |
| #include "nlr.h" |
| #include "misc.h" |
| #include "mpconfig.h" |
| #include "qstr.h" |
| #include "obj.h" |
| #include "runtime0.h" |
| #include "runtime.h" |
| #include "map.h" |
| #include "builtin.h" |
| #include "objarray.h" |
| #include "bc.h" |
| |
| #if 0 // print debugging info |
| #define DEBUG_PRINT (1) |
| #define WRITE_CODE (1) |
| #define DEBUG_printf(args...) printf(args) |
| #define DEBUG_OP_printf(args...) printf(args) |
| #else // don't print debugging info |
| #define DEBUG_printf(args...) (void)0 |
| #define DEBUG_OP_printf(args...) (void)0 |
| #endif |
| |
| // locals and globals need to be pointers because they can be the same in outer module scope |
| static mp_map_t *map_locals; |
| static mp_map_t *map_globals; |
| static mp_map_t map_builtins; |
| static mp_map_t map_loaded_modules; // TODO: expose as sys.modules |
| |
| typedef enum { |
| MP_CODE_NONE, |
| MP_CODE_BYTE, |
| MP_CODE_NATIVE, |
| MP_CODE_INLINE_ASM, |
| } mp_code_kind_t; |
| |
| typedef struct _mp_code_t { |
| struct { |
| mp_code_kind_t kind : 8; |
| bool is_generator : 1; |
| }; |
| struct { |
| uint n_args : 16; |
| uint n_state : 16; |
| }; |
| union { |
| struct { |
| byte *code; |
| uint len; |
| } u_byte; |
| struct { |
| mp_fun_t fun; |
| } u_native; |
| struct { |
| void *fun; |
| } u_inline_asm; |
| }; |
| } mp_code_t; |
| |
| static uint next_unique_code_id; |
| static machine_uint_t unique_codes_alloc = 0; |
| static mp_code_t *unique_codes = NULL; |
| |
| #ifdef WRITE_CODE |
| FILE *fp_write_code = NULL; |
| #endif |
| |
| // a good optimising compiler will inline this if necessary |
| static void mp_map_add_qstr(mp_map_t *map, qstr qstr, mp_obj_t value) { |
| mp_map_lookup(map, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = value; |
| } |
| |
| void rt_init(void) { |
| // locals = globals for outer module (see Objects/frameobject.c/PyFrame_New()) |
| map_locals = map_globals = mp_map_new(1); |
| mp_map_add_qstr(map_globals, MP_QSTR___name__, MP_OBJ_NEW_QSTR(MP_QSTR___main__)); |
| |
| // init built-in hash table |
| mp_map_init(&map_builtins, 3); |
| |
| // init loaded modules table |
| mp_map_init(&map_loaded_modules, 3); |
| |
| // built-in exceptions (TODO, make these proper classes, and const if possible) |
| mp_map_add_qstr(&map_builtins, MP_QSTR_AttributeError, mp_obj_new_exception(MP_QSTR_AttributeError)); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_IndexError, mp_obj_new_exception(MP_QSTR_IndexError)); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_KeyError, mp_obj_new_exception(MP_QSTR_KeyError)); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_NameError, mp_obj_new_exception(MP_QSTR_NameError)); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_TypeError, mp_obj_new_exception(MP_QSTR_TypeError)); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_SyntaxError, mp_obj_new_exception(MP_QSTR_SyntaxError)); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_ValueError, mp_obj_new_exception(MP_QSTR_ValueError)); |
| // Somehow CPython managed to have OverflowError not inherit from ValueError ;-/ |
| // TODO: For MICROPY_CPYTHON_COMPAT==0 use ValueError to avoid exc proliferation |
| mp_map_add_qstr(&map_builtins, MP_QSTR_OverflowError, mp_obj_new_exception(MP_QSTR_OverflowError)); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_OSError, mp_obj_new_exception(MP_QSTR_OSError)); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_AssertionError, mp_obj_new_exception(MP_QSTR_AssertionError)); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_StopIteration, mp_obj_new_exception(MP_QSTR_StopIteration)); |
| |
| // built-in objects |
| mp_map_add_qstr(&map_builtins, MP_QSTR_Ellipsis, mp_const_ellipsis); |
| |
| // built-in core functions |
| mp_map_add_qstr(&map_builtins, MP_QSTR___build_class__, (mp_obj_t)&mp_builtin___build_class___obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR___repl_print__, (mp_obj_t)&mp_builtin___repl_print___obj); |
| |
| // built-in types |
| mp_map_add_qstr(&map_builtins, MP_QSTR_bool, (mp_obj_t)&bool_type); |
| #if MICROPY_ENABLE_FLOAT |
| mp_map_add_qstr(&map_builtins, MP_QSTR_complex, (mp_obj_t)&complex_type); |
| #endif |
| mp_map_add_qstr(&map_builtins, MP_QSTR_dict, (mp_obj_t)&dict_type); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_enumerate, (mp_obj_t)&enumerate_type); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_filter, (mp_obj_t)&filter_type); |
| #if MICROPY_ENABLE_FLOAT |
| mp_map_add_qstr(&map_builtins, MP_QSTR_float, (mp_obj_t)&float_type); |
| #endif |
| mp_map_add_qstr(&map_builtins, MP_QSTR_int, (mp_obj_t)&int_type); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_list, (mp_obj_t)&list_type); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_map, (mp_obj_t)&map_type); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_set, (mp_obj_t)&set_type); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_tuple, (mp_obj_t)&tuple_type); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_type, (mp_obj_t)&mp_const_type); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_zip, (mp_obj_t)&zip_type); |
| |
| mp_obj_t m_array = mp_obj_new_module(MP_QSTR_array); |
| rt_store_attr(m_array, MP_QSTR_array, (mp_obj_t)&array_type); |
| |
| // built-in user functions |
| mp_map_add_qstr(&map_builtins, MP_QSTR_abs, (mp_obj_t)&mp_builtin_abs_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_all, (mp_obj_t)&mp_builtin_all_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_any, (mp_obj_t)&mp_builtin_any_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_bytes, (mp_obj_t)&mp_builtin_bytes_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_callable, (mp_obj_t)&mp_builtin_callable_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_chr, (mp_obj_t)&mp_builtin_chr_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_divmod, (mp_obj_t)&mp_builtin_divmod_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_eval, (mp_obj_t)&mp_builtin_eval_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_hash, (mp_obj_t)&mp_builtin_hash_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_isinstance, (mp_obj_t)&mp_builtin_isinstance_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_issubclass, (mp_obj_t)&mp_builtin_issubclass_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_iter, (mp_obj_t)&mp_builtin_iter_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_len, (mp_obj_t)&mp_builtin_len_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_max, (mp_obj_t)&mp_builtin_max_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_min, (mp_obj_t)&mp_builtin_min_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_next, (mp_obj_t)&mp_builtin_next_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_ord, (mp_obj_t)&mp_builtin_ord_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_pow, (mp_obj_t)&mp_builtin_pow_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_print, (mp_obj_t)&mp_builtin_print_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_range, (mp_obj_t)&mp_builtin_range_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_repr, (mp_obj_t)&mp_builtin_repr_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_sorted, (mp_obj_t)&mp_builtin_sorted_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_sum, (mp_obj_t)&mp_builtin_sum_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_str, (mp_obj_t)&mp_builtin_str_obj); |
| mp_map_add_qstr(&map_builtins, MP_QSTR_bytearray, (mp_obj_t)&mp_builtin_bytearray_obj); |
| |
| #if MICROPY_CPYTHON_COMPAT |
| // Precreate sys module, so "import sys" didn't throw exceptions. |
| mp_obj_new_module(QSTR_FROM_STR_STATIC("sys")); |
| #endif |
| |
| mp_module_micropython_init(); |
| |
| // TODO: wastes one mp_code_t structure in mem |
| next_unique_code_id = 1; // 0 indicates "no code" |
| unique_codes_alloc = 0; |
| unique_codes = NULL; |
| |
| #ifdef WRITE_CODE |
| fp_write_code = fopen("out-code", "wb"); |
| #endif |
| } |
| |
| void rt_deinit(void) { |
| m_del(mp_code_t, unique_codes, unique_codes_alloc); |
| mp_map_free(map_globals); |
| mp_map_deinit(&map_loaded_modules); |
| mp_map_deinit(&map_builtins); |
| #ifdef WRITE_CODE |
| if (fp_write_code != NULL) { |
| fclose(fp_write_code); |
| } |
| #endif |
| } |
| |
| uint rt_get_unique_code_id(void) { |
| return next_unique_code_id++; |
| } |
| |
| static void alloc_unique_codes(void) { |
| if (next_unique_code_id > unique_codes_alloc) { |
| DEBUG_printf("allocate more unique codes: " UINT_FMT " -> %u\n", unique_codes_alloc, next_unique_code_id); |
| // increase size of unique_codes table |
| unique_codes = m_renew(mp_code_t, unique_codes, unique_codes_alloc, next_unique_code_id); |
| for (uint i = unique_codes_alloc; i < next_unique_code_id; i++) { |
| unique_codes[i].kind = MP_CODE_NONE; |
| } |
| unique_codes_alloc = next_unique_code_id; |
| } |
| } |
| |
| void rt_assign_byte_code(uint unique_code_id, byte *code, uint len, int n_args, int n_locals, int n_stack, bool is_generator) { |
| alloc_unique_codes(); |
| |
| assert(1 <= unique_code_id && unique_code_id < next_unique_code_id && unique_codes[unique_code_id].kind == MP_CODE_NONE); |
| unique_codes[unique_code_id].kind = MP_CODE_BYTE; |
| unique_codes[unique_code_id].is_generator = is_generator; |
| unique_codes[unique_code_id].n_args = n_args; |
| unique_codes[unique_code_id].n_state = n_locals + n_stack; |
| unique_codes[unique_code_id].u_byte.code = code; |
| unique_codes[unique_code_id].u_byte.len = len; |
| |
| //printf("byte code: %d bytes\n", len); |
| |
| #ifdef DEBUG_PRINT |
| DEBUG_printf("assign byte code: id=%d code=%p len=%u n_args=%d n_locals=%d n_stack=%d\n", unique_code_id, code, len, n_args, n_locals, n_stack); |
| for (int i = 0; i < 128 && i < len; i++) { |
| if (i > 0 && i % 16 == 0) { |
| DEBUG_printf("\n"); |
| } |
| DEBUG_printf(" %02x", code[i]); |
| } |
| DEBUG_printf("\n"); |
| #if MICROPY_DEBUG_PRINTERS |
| mp_byte_code_print(code, len); |
| #endif |
| |
| #ifdef WRITE_CODE |
| if (fp_write_code != NULL) { |
| fwrite(code, len, 1, fp_write_code); |
| fflush(fp_write_code); |
| } |
| #endif |
| #endif |
| } |
| |
| void rt_assign_native_code(uint unique_code_id, void *fun, uint len, int n_args) { |
| alloc_unique_codes(); |
| |
| assert(1 <= unique_code_id && unique_code_id < next_unique_code_id && unique_codes[unique_code_id].kind == MP_CODE_NONE); |
| unique_codes[unique_code_id].kind = MP_CODE_NATIVE; |
| unique_codes[unique_code_id].is_generator = false; |
| unique_codes[unique_code_id].n_args = n_args; |
| unique_codes[unique_code_id].n_state = 0; |
| unique_codes[unique_code_id].u_native.fun = fun; |
| |
| //printf("native code: %d bytes\n", len); |
| |
| #ifdef DEBUG_PRINT |
| DEBUG_printf("assign native code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args); |
| byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code |
| for (int i = 0; i < 128 && i < len; i++) { |
| if (i > 0 && i % 16 == 0) { |
| DEBUG_printf("\n"); |
| } |
| DEBUG_printf(" %02x", fun_data[i]); |
| } |
| DEBUG_printf("\n"); |
| |
| #ifdef WRITE_CODE |
| if (fp_write_code != NULL) { |
| fwrite(fun_data, len, 1, fp_write_code); |
| fflush(fp_write_code); |
| } |
| #endif |
| #endif |
| } |
| |
| void rt_assign_inline_asm_code(uint unique_code_id, void *fun, uint len, int n_args) { |
| alloc_unique_codes(); |
| |
| assert(1 <= unique_code_id && unique_code_id < next_unique_code_id && unique_codes[unique_code_id].kind == MP_CODE_NONE); |
| unique_codes[unique_code_id].kind = MP_CODE_INLINE_ASM; |
| unique_codes[unique_code_id].is_generator = false; |
| unique_codes[unique_code_id].n_args = n_args; |
| unique_codes[unique_code_id].n_state = 0; |
| unique_codes[unique_code_id].u_inline_asm.fun = fun; |
| |
| #ifdef DEBUG_PRINT |
| DEBUG_printf("assign inline asm code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args); |
| byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code |
| for (int i = 0; i < 128 && i < len; i++) { |
| if (i > 0 && i % 16 == 0) { |
| DEBUG_printf("\n"); |
| } |
| DEBUG_printf(" %02x", fun_data[i]); |
| } |
| DEBUG_printf("\n"); |
| |
| #ifdef WRITE_CODE |
| if (fp_write_code != NULL) { |
| fwrite(fun_data, len, 1, fp_write_code); |
| } |
| #endif |
| #endif |
| } |
| |
| int rt_is_true(mp_obj_t arg) { |
| DEBUG_OP_printf("is true %p\n", arg); |
| if (MP_OBJ_IS_SMALL_INT(arg)) { |
| if (MP_OBJ_SMALL_INT_VALUE(arg) == 0) { |
| return 0; |
| } else { |
| return 1; |
| } |
| } else if (arg == mp_const_none) { |
| return 0; |
| } else if (arg == mp_const_false) { |
| return 0; |
| } else if (arg == mp_const_true) { |
| return 1; |
| } else { |
| mp_obj_t len = mp_obj_len_maybe(arg); |
| if (len != MP_OBJ_NULL) { |
| // obj has a length, truth determined if len != 0 |
| return len != MP_OBJ_NEW_SMALL_INT(0); |
| } else { |
| // TODO check for __bool__ method |
| // TODO check floats and complex numbers |
| |
| // any other obj is true (TODO is that correct?) |
| return 1; |
| } |
| } |
| } |
| |
| mp_obj_t rt_list_append(mp_obj_t self_in, mp_obj_t arg) { |
| return mp_obj_list_append(self_in, arg); |
| } |
| |
| #define PARSE_DEC_IN_INTG (1) |
| #define PARSE_DEC_IN_FRAC (2) |
| #define PARSE_DEC_IN_EXP (3) |
| |
| mp_obj_t rt_load_const_dec(qstr qstr) { |
| #if MICROPY_ENABLE_FLOAT |
| DEBUG_OP_printf("load '%s'\n", qstr_str(qstr)); |
| const char *s = qstr_str(qstr); |
| int in = PARSE_DEC_IN_INTG; |
| mp_float_t dec_val = 0; |
| bool exp_neg = false; |
| int exp_val = 0; |
| int exp_extra = 0; |
| bool imag = false; |
| for (; *s; s++) { |
| int dig = *s; |
| if ('0' <= dig && dig <= '9') { |
| dig -= '0'; |
| if (in == PARSE_DEC_IN_EXP) { |
| exp_val = 10 * exp_val + dig; |
| } else { |
| dec_val = 10 * dec_val + dig; |
| if (in == PARSE_DEC_IN_FRAC) { |
| exp_extra -= 1; |
| } |
| } |
| } else if (in == PARSE_DEC_IN_INTG && dig == '.') { |
| in = PARSE_DEC_IN_FRAC; |
| } else if (in != PARSE_DEC_IN_EXP && (dig == 'E' || dig == 'e')) { |
| in = PARSE_DEC_IN_EXP; |
| if (s[1] == '+') { |
| s++; |
| } else if (s[1] == '-') { |
| s++; |
| exp_neg = true; |
| } |
| } else if (dig == 'J' || dig == 'j') { |
| s++; |
| imag = true; |
| break; |
| } else { |
| // unknown character |
| break; |
| } |
| } |
| if (*s != 0) { |
| nlr_jump(mp_obj_new_exception_msg(MP_QSTR_SyntaxError, "invalid syntax for number")); |
| } |
| if (exp_neg) { |
| exp_val = -exp_val; |
| } |
| exp_val += exp_extra; |
| for (; exp_val > 0; exp_val--) { |
| dec_val *= 10; |
| } |
| for (; exp_val < 0; exp_val++) { |
| dec_val *= 0.1; |
| } |
| if (imag) { |
| return mp_obj_new_complex(0, dec_val); |
| } else { |
| return mp_obj_new_float(dec_val); |
| } |
| #else |
| nlr_jump(mp_obj_new_exception_msg(MP_QSTR_SyntaxError, "decimal numbers not supported")); |
| #endif |
| } |
| |
| mp_obj_t rt_load_const_str(qstr qstr) { |
| DEBUG_OP_printf("load '%s'\n", qstr_str(qstr)); |
| return MP_OBJ_NEW_QSTR(qstr); |
| } |
| |
| mp_obj_t rt_load_const_bytes(qstr qstr) { |
| DEBUG_OP_printf("load b'%s'\n", qstr_str(qstr)); |
| uint len; |
| const byte *data = qstr_data(qstr, &len); |
| return mp_obj_new_bytes(data, len); |
| } |
| |
| mp_obj_t rt_load_name(qstr qstr) { |
| // logic: search locals, globals, builtins |
| DEBUG_OP_printf("load name %s\n", qstr_str(qstr)); |
| mp_map_elem_t *elem = mp_map_lookup(map_locals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP); |
| if (elem == NULL) { |
| elem = mp_map_lookup(map_globals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP); |
| if (elem == NULL) { |
| elem = mp_map_lookup(&map_builtins, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP); |
| if (elem == NULL) { |
| nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_NameError, "name '%s' is not defined", qstr_str(qstr))); |
| } |
| } |
| } |
| return elem->value; |
| } |
| |
| mp_obj_t rt_load_global(qstr qstr) { |
| // logic: search globals, builtins |
| DEBUG_OP_printf("load global %s\n", qstr_str(qstr)); |
| mp_map_elem_t *elem = mp_map_lookup(map_globals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP); |
| if (elem == NULL) { |
| elem = mp_map_lookup(&map_builtins, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP); |
| if (elem == NULL) { |
| nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_NameError, "name '%s' is not defined", qstr_str(qstr))); |
| } |
| } |
| return elem->value; |
| } |
| |
| mp_obj_t rt_load_build_class(void) { |
| DEBUG_OP_printf("load_build_class\n"); |
| mp_map_elem_t *elem = mp_map_lookup(&map_builtins, MP_OBJ_NEW_QSTR(MP_QSTR___build_class__), MP_MAP_LOOKUP); |
| if (elem == NULL) { |
| nlr_jump(mp_obj_new_exception_msg(MP_QSTR_NameError, "name '__build_class__' is not defined")); |
| } |
| return elem->value; |
| } |
| |
| mp_obj_t rt_get_cell(mp_obj_t cell) { |
| return mp_obj_cell_get(cell); |
| } |
| |
| void rt_set_cell(mp_obj_t cell, mp_obj_t val) { |
| mp_obj_cell_set(cell, val); |
| } |
| |
| void rt_store_name(qstr qstr, mp_obj_t obj) { |
| DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qstr), obj); |
| mp_map_lookup(map_locals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = obj; |
| } |
| |
| void rt_store_global(qstr qstr, mp_obj_t obj) { |
| DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qstr), obj); |
| mp_map_lookup(map_globals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = obj; |
| } |
| |
| mp_obj_t rt_unary_op(int op, mp_obj_t arg) { |
| DEBUG_OP_printf("unary %d %p\n", op, arg); |
| if (MP_OBJ_IS_SMALL_INT(arg)) { |
| mp_small_int_t val = MP_OBJ_SMALL_INT_VALUE(arg); |
| switch (op) { |
| case RT_UNARY_OP_NOT: if (val == 0) { return mp_const_true;} else { return mp_const_false; } |
| case RT_UNARY_OP_POSITIVE: break; |
| case RT_UNARY_OP_NEGATIVE: val = -val; break; |
| case RT_UNARY_OP_INVERT: val = ~val; break; |
| default: assert(0); val = 0; |
| } |
| if (MP_OBJ_FITS_SMALL_INT(val)) { |
| return MP_OBJ_NEW_SMALL_INT(val); |
| } |
| return mp_obj_new_int(val); |
| } else { |
| mp_obj_type_t *type = mp_obj_get_type(arg); |
| if (type->unary_op != NULL) { |
| mp_obj_t result = type->unary_op(op, arg); |
| if (result != NULL) { |
| return result; |
| } |
| } |
| // TODO specify in error message what the operator is |
| nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError, "bad operand type for unary operator: '%s'", type->name)); |
| } |
| } |
| |
| mp_obj_t rt_binary_op(int op, mp_obj_t lhs, mp_obj_t rhs) { |
| DEBUG_OP_printf("binary %d %p %p\n", op, lhs, rhs); |
| |
| // TODO correctly distinguish inplace operators for mutable objects |
| // lookup logic that CPython uses for +=: |
| // check for implemented += |
| // then check for implemented + |
| // then check for implemented seq.inplace_concat |
| // then check for implemented seq.concat |
| // then fail |
| // note that list does not implement + or +=, so that inplace_concat is reached first for += |
| |
| // deal with is, is not |
| if (op == RT_COMPARE_OP_IS) { |
| // TODO: may need to handle strings specially, CPython appears to |
| // assume all strings are interned (so "is" == "==" for strings) |
| return MP_BOOL(lhs == rhs); |
| } |
| if (op == RT_COMPARE_OP_IS_NOT) { |
| // TODO: may need to handle strings specially, CPython appears to |
| // assume all strings are interned (so "is" == "==" for strings) |
| return MP_BOOL(lhs != rhs); |
| } |
| |
| // deal with == and != for all types |
| if (op == RT_COMPARE_OP_EQUAL || op == RT_COMPARE_OP_NOT_EQUAL) { |
| if (mp_obj_equal(lhs, rhs)) { |
| if (op == RT_COMPARE_OP_EQUAL) { |
| return mp_const_true; |
| } else { |
| return mp_const_false; |
| } |
| } else { |
| if (op == RT_COMPARE_OP_EQUAL) { |
| return mp_const_false; |
| } else { |
| return mp_const_true; |
| } |
| } |
| } |
| |
| // deal with exception_match for all types |
| if (op == RT_COMPARE_OP_EXCEPTION_MATCH) { |
| // TODO properly! at the moment it just compares the exception identifier for equality |
| if (MP_OBJ_IS_TYPE(lhs, &exception_type) && MP_OBJ_IS_TYPE(rhs, &exception_type)) { |
| if (mp_obj_exception_get_type(lhs) == mp_obj_exception_get_type(rhs)) { |
| return mp_const_true; |
| } else { |
| return mp_const_false; |
| } |
| } |
| } |
| |
| if (MP_OBJ_IS_SMALL_INT(lhs)) { |
| mp_small_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs); |
| if (MP_OBJ_IS_SMALL_INT(rhs)) { |
| mp_small_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs); |
| switch (op) { |
| case RT_BINARY_OP_OR: |
| case RT_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break; |
| case RT_BINARY_OP_XOR: |
| case RT_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break; |
| case RT_BINARY_OP_AND: |
| case RT_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break; |
| case RT_BINARY_OP_LSHIFT: |
| case RT_BINARY_OP_INPLACE_LSHIFT: lhs_val <<= rhs_val; break; |
| case RT_BINARY_OP_RSHIFT: |
| case RT_BINARY_OP_INPLACE_RSHIFT: lhs_val >>= rhs_val; break; |
| case RT_BINARY_OP_ADD: |
| case RT_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break; |
| case RT_BINARY_OP_SUBTRACT: |
| case RT_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break; |
| case RT_BINARY_OP_MULTIPLY: |
| case RT_BINARY_OP_INPLACE_MULTIPLY: lhs_val *= rhs_val; break; |
| case RT_BINARY_OP_FLOOR_DIVIDE: |
| case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: lhs_val /= rhs_val; break; |
| #if MICROPY_ENABLE_FLOAT |
| case RT_BINARY_OP_TRUE_DIVIDE: |
| case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val); |
| #endif |
| |
| // TODO implement modulo as specified by Python |
| case RT_BINARY_OP_MODULO: |
| case RT_BINARY_OP_INPLACE_MODULO: lhs_val %= rhs_val; break; |
| |
| // TODO check for negative power, and overflow |
| case RT_BINARY_OP_POWER: |
| case RT_BINARY_OP_INPLACE_POWER: |
| { |
| int ans = 1; |
| while (rhs_val > 0) { |
| if (rhs_val & 1) { |
| ans *= lhs_val; |
| } |
| lhs_val *= lhs_val; |
| rhs_val /= 2; |
| } |
| lhs_val = ans; |
| break; |
| } |
| case RT_COMPARE_OP_LESS: return MP_BOOL(lhs_val < rhs_val); break; |
| case RT_COMPARE_OP_MORE: return MP_BOOL(lhs_val > rhs_val); break; |
| case RT_COMPARE_OP_LESS_EQUAL: return MP_BOOL(lhs_val <= rhs_val); break; |
| case RT_COMPARE_OP_MORE_EQUAL: return MP_BOOL(lhs_val >= rhs_val); break; |
| |
| default: assert(0); |
| } |
| // TODO: We just should make mp_obj_new_int() inline and use that |
| if (MP_OBJ_FITS_SMALL_INT(lhs_val)) { |
| return MP_OBJ_NEW_SMALL_INT(lhs_val); |
| } |
| return mp_obj_new_int(lhs_val); |
| } else if (MP_OBJ_IS_TYPE(rhs, &float_type)) { |
| return mp_obj_float_binary_op(op, lhs_val, rhs); |
| } else if (MP_OBJ_IS_TYPE(rhs, &complex_type)) { |
| return mp_obj_complex_binary_op(op, lhs_val, 0, rhs); |
| } |
| } |
| |
| /* deal with `in` and `not in` |
| * |
| * NOTE `a in b` is `b.__contains__(a)`, hence why the generic dispatch |
| * needs to go below |
| */ |
| if (op == RT_COMPARE_OP_IN || op == RT_COMPARE_OP_NOT_IN) { |
| mp_obj_type_t *type = mp_obj_get_type(rhs); |
| if (type->binary_op != NULL) { |
| mp_obj_t res = type->binary_op(op, rhs, lhs); |
| if (res != NULL) { |
| return res; |
| } |
| } |
| if (type->getiter != NULL) { |
| /* second attempt, walk the iterator */ |
| mp_obj_t next = NULL; |
| mp_obj_t iter = rt_getiter(rhs); |
| while ((next = rt_iternext(iter)) != mp_const_stop_iteration) { |
| if (mp_obj_equal(next, lhs)) { |
| return MP_BOOL(op == RT_COMPARE_OP_IN); |
| } |
| } |
| return MP_BOOL(op != RT_COMPARE_OP_IN); |
| } |
| |
| nlr_jump(mp_obj_new_exception_msg_varg( |
| MP_QSTR_TypeError, "'%s' object is not iterable", |
| mp_obj_get_type_str(rhs))); |
| return mp_const_none; |
| } |
| |
| // generic binary_op supplied by type |
| mp_obj_type_t *type = mp_obj_get_type(lhs); |
| if (type->binary_op != NULL) { |
| mp_obj_t result = type->binary_op(op, lhs, rhs); |
| if (result != MP_OBJ_NULL) { |
| return result; |
| } |
| } |
| |
| // TODO implement dispatch for reverse binary ops |
| |
| // TODO specify in error message what the operator is |
| nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError, |
| "unsupported operand types for binary operator: '%s', '%s'", |
| mp_obj_get_type_str(lhs), mp_obj_get_type_str(rhs))); |
| return mp_const_none; |
| } |
| |
| mp_obj_t rt_make_function_from_id(int unique_code_id) { |
| DEBUG_OP_printf("make_function_from_id %d\n", unique_code_id); |
| if (unique_code_id < 1 || unique_code_id >= next_unique_code_id) { |
| // illegal code id |
| return mp_const_none; |
| } |
| |
| // make the function, depending on the code kind |
| mp_code_t *c = &unique_codes[unique_code_id]; |
| mp_obj_t fun; |
| switch (c->kind) { |
| case MP_CODE_BYTE: |
| fun = mp_obj_new_fun_bc(c->n_args, c->n_state, c->u_byte.code); |
| break; |
| case MP_CODE_NATIVE: |
| fun = rt_make_function_n(c->n_args, c->u_native.fun); |
| break; |
| case MP_CODE_INLINE_ASM: |
| fun = mp_obj_new_fun_asm(c->n_args, c->u_inline_asm.fun); |
| break; |
| default: |
| assert(0); |
| fun = mp_const_none; |
| } |
| |
| // check for generator functions and if so wrap in generator object |
| if (c->is_generator) { |
| fun = mp_obj_new_gen_wrap(fun); |
| } |
| |
| return fun; |
| } |
| |
| mp_obj_t rt_make_closure_from_id(int unique_code_id, mp_obj_t closure_tuple) { |
| DEBUG_OP_printf("make_closure_from_id %d\n", unique_code_id); |
| // make function object |
| mp_obj_t ffun = rt_make_function_from_id(unique_code_id); |
| // wrap function in closure object |
| return mp_obj_new_closure(ffun, closure_tuple); |
| } |
| |
| mp_obj_t rt_call_function_0(mp_obj_t fun) { |
| return rt_call_function_n_kw(fun, 0, 0, NULL); |
| } |
| |
| mp_obj_t rt_call_function_1(mp_obj_t fun, mp_obj_t arg) { |
| return rt_call_function_n_kw(fun, 1, 0, &arg); |
| } |
| |
| mp_obj_t rt_call_function_2(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2) { |
| mp_obj_t args[2]; |
| args[0] = arg1; |
| args[1] = arg2; |
| return rt_call_function_n_kw(fun, 2, 0, args); |
| } |
| |
| // args contains, eg: arg0 arg1 key0 value0 key1 value1 |
| mp_obj_t rt_call_function_n_kw(mp_obj_t fun_in, uint n_args, uint n_kw, const mp_obj_t *args) { |
| // TODO improve this: fun object can specify its type and we parse here the arguments, |
| // passing to the function arrays of fixed and keyword arguments |
| |
| DEBUG_OP_printf("calling function %p(n_args=%d, n_kw=%d, args=%p)\n", fun_in, n_args, n_kw, args); |
| |
| if (MP_OBJ_IS_SMALL_INT(fun_in)) { |
| nlr_jump(mp_obj_new_exception_msg(MP_QSTR_TypeError, "'int' object is not callable")); |
| } else { |
| mp_obj_base_t *fun = fun_in; |
| if (fun->type->call != NULL) { |
| return fun->type->call(fun_in, n_args, n_kw, args); |
| } else { |
| nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError, "'%s' object is not callable", fun->type->name)); |
| } |
| } |
| } |
| |
| // args contains: fun self/NULL arg(0) ... arg(n_args-2) arg(n_args-1) kw_key(0) kw_val(0) ... kw_key(n_kw-1) kw_val(n_kw-1) |
| // if n_args==0 and n_kw==0 then there are only fun and self/NULL |
| mp_obj_t rt_call_method_n_kw(uint n_args, uint n_kw, const mp_obj_t *args) { |
| DEBUG_OP_printf("call method (fun=%p, self=%p, n_args=%u, n_kw=%u, args=%p)\n", args[0], args[1], n_args, n_kw, args); |
| int adjust = (args[1] == NULL) ? 0 : 1; |
| return rt_call_function_n_kw(args[0], n_args + adjust, n_kw, args + 2 - adjust); |
| } |
| |
| mp_obj_t rt_build_tuple(int n_args, mp_obj_t *items) { |
| return mp_obj_new_tuple(n_args, items); |
| } |
| |
| mp_obj_t rt_build_list(int n_args, mp_obj_t *items) { |
| return mp_obj_new_list(n_args, items); |
| } |
| |
| mp_obj_t rt_build_set(int n_args, mp_obj_t *items) { |
| return mp_obj_new_set(n_args, items); |
| } |
| |
| mp_obj_t rt_store_set(mp_obj_t set, mp_obj_t item) { |
| mp_obj_set_store(set, item); |
| return set; |
| } |
| |
| // unpacked items are stored in reverse order into the array pointed to by items |
| void rt_unpack_sequence(mp_obj_t seq_in, uint num, mp_obj_t *items) { |
| if (MP_OBJ_IS_TYPE(seq_in, &tuple_type) || MP_OBJ_IS_TYPE(seq_in, &list_type)) { |
| uint seq_len; |
| mp_obj_t *seq_items; |
| if (MP_OBJ_IS_TYPE(seq_in, &tuple_type)) { |
| mp_obj_tuple_get(seq_in, &seq_len, &seq_items); |
| } else { |
| mp_obj_list_get(seq_in, &seq_len, &seq_items); |
| } |
| if (seq_len < num) { |
| nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_ValueError, "need more than %d values to unpack", (void*)(machine_uint_t)seq_len)); |
| } else if (seq_len > num) { |
| nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_ValueError, "too many values to unpack (expected %d)", (void*)(machine_uint_t)num)); |
| } |
| for (uint i = 0; i < num; i++) { |
| items[i] = seq_items[num - 1 - i]; |
| } |
| } else { |
| // TODO call rt_getiter and extract via rt_iternext |
| nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError, "'%s' object is not iterable", mp_obj_get_type_str(seq_in))); |
| } |
| } |
| |
| mp_obj_t rt_build_map(int n_args) { |
| return mp_obj_new_dict(n_args); |
| } |
| |
| mp_obj_t rt_store_map(mp_obj_t map, mp_obj_t key, mp_obj_t value) { |
| // map should always be a dict |
| return mp_obj_dict_store(map, key, value); |
| } |
| |
| mp_obj_t rt_load_attr(mp_obj_t base, qstr attr) { |
| DEBUG_OP_printf("load attr %p.%s\n", base, qstr_str(attr)); |
| // use load_method |
| mp_obj_t dest[2]; |
| rt_load_method(base, attr, dest); |
| if (dest[1] == MP_OBJ_NULL) { |
| // load_method returned just a normal attribute |
| return dest[0]; |
| } else { |
| // load_method returned a method, so build a bound method object |
| return mp_obj_new_bound_meth(dest[0], dest[1]); |
| } |
| } |
| |
| // no attribute found, returns: dest[0] == MP_OBJ_NULL, dest[1] == MP_OBJ_NULL |
| // normal attribute found, returns: dest[0] == <attribute>, dest[1] == MP_OBJ_NULL |
| // method attribute found, returns: dest[0] == <method>, dest[1] == <self> |
| static void rt_load_method_maybe(mp_obj_t base, qstr attr, mp_obj_t *dest) { |
| // clear output to indicate no attribute/method found yet |
| dest[0] = MP_OBJ_NULL; |
| dest[1] = MP_OBJ_NULL; |
| |
| // get the type |
| mp_obj_type_t *type = mp_obj_get_type(base); |
| |
| // if this type can do its own load, then call it |
| if (type->load_attr != NULL) { |
| type->load_attr(base, attr, dest); |
| } |
| |
| // if nothing found yet, look for built-in and generic names |
| if (dest[0] == MP_OBJ_NULL) { |
| if (attr == MP_QSTR___next__ && type->iternext != NULL) { |
| dest[0] = (mp_obj_t)&mp_builtin_next_obj; |
| dest[1] = base; |
| } else if (type->load_attr == NULL) { |
| // generic method lookup if type didn't provide a specific one |
| // this is a lookup in the object (ie not class or type) |
| const mp_method_t *meth = type->methods; |
| if (meth != NULL) { |
| for (; meth->name != NULL; meth++) { |
| if (strcmp(meth->name, qstr_str(attr)) == 0) { |
| // check if the methods are functions, static or class methods |
| // see http://docs.python.org/3.3/howto/descriptor.html |
| if (MP_OBJ_IS_TYPE(meth->fun, &mp_type_staticmethod)) { |
| // return just the function |
| dest[0] = ((mp_obj_staticmethod_t*)meth->fun)->fun; |
| } else if (MP_OBJ_IS_TYPE(meth->fun, &mp_type_classmethod)) { |
| // return a bound method, with self being the type of this object |
| dest[0] = ((mp_obj_classmethod_t*)meth->fun)->fun; |
| dest[1] = mp_obj_get_type(base); |
| } else { |
| // return a bound method, with self being this object |
| dest[0] = (mp_obj_t)meth->fun; |
| dest[1] = base; |
| } |
| break; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void rt_load_method(mp_obj_t base, qstr attr, mp_obj_t *dest) { |
| DEBUG_OP_printf("load method %p.%s\n", base, qstr_str(attr)); |
| |
| rt_load_method_maybe(base, attr, dest); |
| |
| if (dest[0] == MP_OBJ_NULL) { |
| // no attribute/method called attr |
| // following CPython, we give a more detailed error message for type objects |
| if (MP_OBJ_IS_TYPE(base, &mp_const_type)) { |
| nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_AttributeError, "type object '%s' has no attribute '%s'", ((mp_obj_type_t*)base)->name, qstr_str(attr))); |
| } else { |
| nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_AttributeError, "'%s' object has no attribute '%s'", mp_obj_get_type_str(base), qstr_str(attr))); |
| } |
| } |
| } |
| |
| void rt_store_attr(mp_obj_t base, qstr attr, mp_obj_t value) { |
| DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value); |
| mp_obj_type_t *type = mp_obj_get_type(base); |
| if (type->store_attr != NULL) { |
| if (type->store_attr(base, attr, value)) { |
| return; |
| } |
| } |
| nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_AttributeError, "'%s' object has no attribute '%s'", mp_obj_get_type_str(base), qstr_str(attr))); |
| } |
| |
| void rt_store_subscr(mp_obj_t base, mp_obj_t index, mp_obj_t value) { |
| DEBUG_OP_printf("store subscr %p[%p] <- %p\n", base, index, value); |
| if (MP_OBJ_IS_TYPE(base, &list_type)) { |
| // list store |
| mp_obj_list_store(base, index, value); |
| } else if (MP_OBJ_IS_TYPE(base, &dict_type)) { |
| // dict store |
| mp_obj_dict_store(base, index, value); |
| } else { |
| mp_obj_type_t *type = mp_obj_get_type(base); |
| if (type->store_item != NULL) { |
| bool r = type->store_item(base, index, value); |
| if (r) { |
| return; |
| } |
| // TODO: call base classes here? |
| } |
| nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError, "'%s' object does not support item assignment", mp_obj_get_type_str(base))); |
| } |
| } |
| |
| mp_obj_t rt_getiter(mp_obj_t o_in) { |
| mp_obj_type_t *type = mp_obj_get_type(o_in); |
| if (type->getiter != NULL) { |
| return type->getiter(o_in); |
| } else { |
| // check for __getitem__ method |
| mp_obj_t dest[2]; |
| rt_load_method_maybe(o_in, qstr_from_str("__getitem__"), dest); |
| if (dest[0] != MP_OBJ_NULL) { |
| // __getitem__ exists, create an iterator |
| return mp_obj_new_getitem_iter(dest); |
| } else { |
| // object not iterable |
| nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError, "'%s' object is not iterable", type->name)); |
| } |
| } |
| } |
| |
| mp_obj_t rt_iternext(mp_obj_t o_in) { |
| mp_obj_type_t *type = mp_obj_get_type(o_in); |
| if (type->iternext != NULL) { |
| return type->iternext(o_in); |
| } else { |
| nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError, "'%s' object is not an iterator", type->name)); |
| } |
| } |
| |
| mp_obj_t rt_import_name(qstr name, mp_obj_t fromlist, mp_obj_t level) { |
| // build args array |
| mp_obj_t args[5]; |
| args[0] = MP_OBJ_NEW_QSTR(name); |
| args[1] = mp_const_none; // TODO should be globals |
| args[2] = mp_const_none; // TODO should be locals |
| args[3] = fromlist; |
| args[4] = level; // must be 0; we don't yet support other values |
| |
| // TODO lookup __import__ and call that instead of going straight to builtin implementation |
| return mp_builtin___import__(5, args); |
| } |
| |
| mp_obj_t rt_import_from(mp_obj_t module, qstr name) { |
| mp_obj_t x = rt_load_attr(module, name); |
| /* TODO convert AttributeError to ImportError |
| if (fail) { |
| (ImportError, "cannot import name %s", qstr_str(name), NULL) |
| } |
| */ |
| return x; |
| } |
| |
| mp_map_t *rt_locals_get(void) { |
| return map_locals; |
| } |
| |
| void rt_locals_set(mp_map_t *m) { |
| DEBUG_OP_printf("rt_locals_set(%p)\n", m); |
| map_locals = m; |
| } |
| |
| mp_map_t *rt_globals_get(void) { |
| return map_globals; |
| } |
| |
| void rt_globals_set(mp_map_t *m) { |
| DEBUG_OP_printf("rt_globals_set(%p)\n", m); |
| map_globals = m; |
| } |
| |
| mp_map_t *rt_loaded_modules_get(void) { |
| return &map_loaded_modules; |
| } |
| |
| // these must correspond to the respective enum |
| void *const rt_fun_table[RT_F_NUMBER_OF] = { |
| rt_load_const_dec, |
| rt_load_const_str, |
| rt_load_name, |
| rt_load_global, |
| rt_load_build_class, |
| rt_load_attr, |
| rt_load_method, |
| rt_store_name, |
| rt_store_attr, |
| rt_store_subscr, |
| rt_is_true, |
| rt_unary_op, |
| rt_build_tuple, |
| rt_build_list, |
| rt_list_append, |
| rt_build_map, |
| rt_store_map, |
| rt_build_set, |
| rt_store_set, |
| rt_make_function_from_id, |
| rt_call_function_n_kw, |
| rt_call_method_n_kw, |
| rt_binary_op, |
| rt_getiter, |
| rt_iternext, |
| }; |
| |
| /* |
| void rt_f_vector(rt_fun_kind_t fun_kind) { |
| (rt_f_table[fun_kind])(); |
| } |
| */ |