| /* |
| * This file is part of the MicroPython project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013-2017 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdbool.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <unistd.h> // for ssize_t |
| #include <assert.h> |
| #include <string.h> |
| |
| #include "py/lexer.h" |
| #include "py/parse.h" |
| #include "py/parsenum.h" |
| #include "py/runtime.h" |
| #include "py/objint.h" |
| #include "py/objstr.h" |
| #include "py/builtin.h" |
| |
| #if MICROPY_ENABLE_COMPILER |
| |
| #define RULE_ACT_ARG_MASK (0x0f) |
| #define RULE_ACT_KIND_MASK (0x30) |
| #define RULE_ACT_ALLOW_IDENT (0x40) |
| #define RULE_ACT_ADD_BLANK (0x80) |
| #define RULE_ACT_OR (0x10) |
| #define RULE_ACT_AND (0x20) |
| #define RULE_ACT_LIST (0x30) |
| |
| #define RULE_ARG_KIND_MASK (0xf000) |
| #define RULE_ARG_ARG_MASK (0x0fff) |
| #define RULE_ARG_TOK (0x1000) |
| #define RULE_ARG_RULE (0x2000) |
| #define RULE_ARG_OPT_RULE (0x3000) |
| |
| // *FORMAT-OFF* |
| |
| enum { |
| // define rules with a compile function |
| #define DEF_RULE(rule, comp, kind, ...) RULE_##rule, |
| #define DEF_RULE_NC(rule, kind, ...) |
| #include "py/grammar.h" |
| #undef DEF_RULE |
| #undef DEF_RULE_NC |
| RULE_const_object, // special node for a constant, generic Python object |
| |
| // define rules without a compile function |
| #define DEF_RULE(rule, comp, kind, ...) |
| #define DEF_RULE_NC(rule, kind, ...) RULE_##rule, |
| #include "py/grammar.h" |
| #undef DEF_RULE |
| #undef DEF_RULE_NC |
| }; |
| |
| // Define an array of actions corresponding to each rule |
| static const uint8_t rule_act_table[] = { |
| #define or(n) (RULE_ACT_OR | n) |
| #define and(n) (RULE_ACT_AND | n) |
| #define and_ident(n) (RULE_ACT_AND | n | RULE_ACT_ALLOW_IDENT) |
| #define and_blank(n) (RULE_ACT_AND | n | RULE_ACT_ADD_BLANK) |
| #define one_or_more (RULE_ACT_LIST | 2) |
| #define list (RULE_ACT_LIST | 1) |
| #define list_with_end (RULE_ACT_LIST | 3) |
| |
| #define DEF_RULE(rule, comp, kind, ...) kind, |
| #define DEF_RULE_NC(rule, kind, ...) |
| #include "py/grammar.h" |
| #undef DEF_RULE |
| #undef DEF_RULE_NC |
| |
| 0, // RULE_const_object |
| |
| #define DEF_RULE(rule, comp, kind, ...) |
| #define DEF_RULE_NC(rule, kind, ...) kind, |
| #include "py/grammar.h" |
| #undef DEF_RULE |
| #undef DEF_RULE_NC |
| |
| #undef or |
| #undef and |
| #undef and_ident |
| #undef and_blank |
| #undef one_or_more |
| #undef list |
| #undef list_with_end |
| }; |
| |
| // Define the argument data for each rule, as a combined array |
| static const uint16_t rule_arg_combined_table[] = { |
| #define tok(t) (RULE_ARG_TOK | MP_TOKEN_##t) |
| #define rule(r) (RULE_ARG_RULE | RULE_##r) |
| #define opt_rule(r) (RULE_ARG_OPT_RULE | RULE_##r) |
| |
| #define DEF_RULE(rule, comp, kind, ...) __VA_ARGS__, |
| #define DEF_RULE_NC(rule, kind, ...) |
| #include "py/grammar.h" |
| #undef DEF_RULE |
| #undef DEF_RULE_NC |
| |
| #define DEF_RULE(rule, comp, kind, ...) |
| #define DEF_RULE_NC(rule, kind, ...) __VA_ARGS__, |
| #include "py/grammar.h" |
| #undef DEF_RULE |
| #undef DEF_RULE_NC |
| |
| #undef tok |
| #undef rule |
| #undef opt_rule |
| }; |
| |
| // Macro to create a list of N identifiers where N is the number of variable arguments to the macro |
| #define RULE_EXPAND(x) x |
| #define RULE_PADDING(rule, ...) RULE_PADDING2(rule, __VA_ARGS__, RULE_PADDING_IDS(rule)) |
| #define RULE_PADDING2(rule, ...) RULE_EXPAND(RULE_PADDING3(rule, __VA_ARGS__)) |
| #define RULE_PADDING3(rule, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, ...) __VA_ARGS__ |
| #define RULE_PADDING_IDS(r) PAD13_##r, PAD12_##r, PAD11_##r, PAD10_##r, PAD9_##r, PAD8_##r, PAD7_##r, PAD6_##r, PAD5_##r, PAD4_##r, PAD3_##r, PAD2_##r, PAD1_##r, |
| |
| // Use an enum to create constants specifying how much room a rule takes in rule_arg_combined_table |
| enum { |
| #define DEF_RULE(rule, comp, kind, ...) RULE_PADDING(rule, __VA_ARGS__) |
| #define DEF_RULE_NC(rule, kind, ...) |
| #include "py/grammar.h" |
| #undef DEF_RULE |
| #undef DEF_RULE_NC |
| #define DEF_RULE(rule, comp, kind, ...) |
| #define DEF_RULE_NC(rule, kind, ...) RULE_PADDING(rule, __VA_ARGS__) |
| #include "py/grammar.h" |
| #undef DEF_RULE |
| #undef DEF_RULE_NC |
| }; |
| |
| // Macro to compute the start of a rule in rule_arg_combined_table |
| #define RULE_ARG_OFFSET(rule, ...) RULE_ARG_OFFSET2(rule, __VA_ARGS__, RULE_ARG_OFFSET_IDS(rule)) |
| #define RULE_ARG_OFFSET2(rule, ...) RULE_EXPAND(RULE_ARG_OFFSET3(rule, __VA_ARGS__)) |
| #define RULE_ARG_OFFSET3(rule, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, ...) _14 |
| #define RULE_ARG_OFFSET_IDS(r) PAD13_##r, PAD12_##r, PAD11_##r, PAD10_##r, PAD9_##r, PAD8_##r, PAD7_##r, PAD6_##r, PAD5_##r, PAD4_##r, PAD3_##r, PAD2_##r, PAD1_##r, PAD0_##r, |
| |
| // Use the above enum values to create a table of offsets for each rule's arg |
| // data, which indexes rule_arg_combined_table. The offsets require 9 bits of |
| // storage but only the lower 8 bits are stored here. The 9th bit is computed |
| // in get_rule_arg using the FIRST_RULE_WITH_OFFSET_ABOVE_255 constant. |
| static const uint8_t rule_arg_offset_table[] = { |
| #define DEF_RULE(rule, comp, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) & 0xff, |
| #define DEF_RULE_NC(rule, kind, ...) |
| #include "py/grammar.h" |
| #undef DEF_RULE |
| #undef DEF_RULE_NC |
| 0, // RULE_const_object |
| #define DEF_RULE(rule, comp, kind, ...) |
| #define DEF_RULE_NC(rule, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) & 0xff, |
| #include "py/grammar.h" |
| #undef DEF_RULE |
| #undef DEF_RULE_NC |
| }; |
| |
| // Define a constant that's used to determine the 9th bit of the values in rule_arg_offset_table |
| static const size_t FIRST_RULE_WITH_OFFSET_ABOVE_255 = |
| #define DEF_RULE(rule, comp, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) >= 0x100 ? RULE_##rule : |
| #define DEF_RULE_NC(rule, kind, ...) |
| #include "py/grammar.h" |
| #undef DEF_RULE |
| #undef DEF_RULE_NC |
| #define DEF_RULE(rule, comp, kind, ...) |
| #define DEF_RULE_NC(rule, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) >= 0x100 ? RULE_##rule : |
| #include "py/grammar.h" |
| #undef DEF_RULE |
| #undef DEF_RULE_NC |
| 0; |
| |
| #if MICROPY_DEBUG_PARSE_RULE_NAME |
| // Define an array of rule names corresponding to each rule |
| static const char *const rule_name_table[] = { |
| #define DEF_RULE(rule, comp, kind, ...) #rule, |
| #define DEF_RULE_NC(rule, kind, ...) |
| #include "py/grammar.h" |
| #undef DEF_RULE |
| #undef DEF_RULE_NC |
| "", // RULE_const_object |
| #define DEF_RULE(rule, comp, kind, ...) |
| #define DEF_RULE_NC(rule, kind, ...) #rule, |
| #include "py/grammar.h" |
| #undef DEF_RULE |
| #undef DEF_RULE_NC |
| }; |
| #endif |
| |
| // *FORMAT-ON* |
| |
| typedef struct _rule_stack_t { |
| size_t src_line : (8 * sizeof(size_t) - 8); // maximum bits storing source line number |
| size_t rule_id : 8; // this must be large enough to fit largest rule number |
| size_t arg_i; // this dictates the maximum nodes in a "list" of things |
| } rule_stack_t; |
| |
| typedef struct _mp_parse_chunk_t { |
| size_t alloc; |
| union { |
| size_t used; |
| struct _mp_parse_chunk_t *next; |
| } union_; |
| byte data[]; |
| } mp_parse_chunk_t; |
| |
| typedef struct _parser_t { |
| size_t rule_stack_alloc; |
| size_t rule_stack_top; |
| rule_stack_t *rule_stack; |
| |
| size_t result_stack_alloc; |
| size_t result_stack_top; |
| mp_parse_node_t *result_stack; |
| |
| mp_lexer_t *lexer; |
| |
| mp_parse_tree_t tree; |
| mp_parse_chunk_t *cur_chunk; |
| |
| #if MICROPY_COMP_CONST |
| mp_map_t consts; |
| #endif |
| } parser_t; |
| |
| static void push_result_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t num_args); |
| |
| static const uint16_t *get_rule_arg(uint8_t r_id) { |
| size_t off = rule_arg_offset_table[r_id]; |
| if (r_id >= FIRST_RULE_WITH_OFFSET_ABOVE_255) { |
| off |= 0x100; |
| } |
| return &rule_arg_combined_table[off]; |
| } |
| |
| static void *parser_alloc(parser_t *parser, size_t num_bytes) { |
| // use a custom memory allocator to store parse nodes sequentially in large chunks |
| |
| mp_parse_chunk_t *chunk = parser->cur_chunk; |
| |
| if (chunk != NULL && chunk->union_.used + num_bytes > chunk->alloc) { |
| // not enough room at end of previously allocated chunk so try to grow |
| mp_parse_chunk_t *new_data = (mp_parse_chunk_t *)m_renew_maybe(byte, chunk, |
| sizeof(mp_parse_chunk_t) + chunk->alloc, |
| sizeof(mp_parse_chunk_t) + chunk->alloc + num_bytes, false); |
| if (new_data == NULL) { |
| // could not grow existing memory; shrink it to fit previous |
| (void)m_renew_maybe(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc, |
| sizeof(mp_parse_chunk_t) + chunk->union_.used, false); |
| chunk->alloc = chunk->union_.used; |
| chunk->union_.next = parser->tree.chunk; |
| parser->tree.chunk = chunk; |
| chunk = NULL; |
| } else { |
| // could grow existing memory |
| chunk->alloc += num_bytes; |
| } |
| } |
| |
| if (chunk == NULL) { |
| // no previous chunk, allocate a new chunk |
| size_t alloc = MICROPY_ALLOC_PARSE_CHUNK_INIT; |
| if (alloc < num_bytes) { |
| alloc = num_bytes; |
| } |
| chunk = (mp_parse_chunk_t *)m_new(byte, sizeof(mp_parse_chunk_t) + alloc); |
| chunk->alloc = alloc; |
| chunk->union_.used = 0; |
| parser->cur_chunk = chunk; |
| } |
| |
| byte *ret = chunk->data + chunk->union_.used; |
| chunk->union_.used += num_bytes; |
| return ret; |
| } |
| |
| #if MICROPY_COMP_CONST_TUPLE |
| static void parser_free_parse_node_struct(parser_t *parser, mp_parse_node_struct_t *pns) { |
| mp_parse_chunk_t *chunk = parser->cur_chunk; |
| if (chunk->data <= (byte *)pns && (byte *)pns < chunk->data + chunk->union_.used) { |
| size_t num_bytes = sizeof(mp_parse_node_struct_t) + sizeof(mp_parse_node_t) * MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| chunk->union_.used -= num_bytes; |
| } |
| } |
| #endif |
| |
| static void push_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t arg_i) { |
| if (parser->rule_stack_top >= parser->rule_stack_alloc) { |
| rule_stack_t *rs = m_renew(rule_stack_t, parser->rule_stack, parser->rule_stack_alloc, parser->rule_stack_alloc + MICROPY_ALLOC_PARSE_RULE_INC); |
| parser->rule_stack = rs; |
| parser->rule_stack_alloc += MICROPY_ALLOC_PARSE_RULE_INC; |
| } |
| rule_stack_t *rs = &parser->rule_stack[parser->rule_stack_top++]; |
| rs->src_line = src_line; |
| rs->rule_id = rule_id; |
| rs->arg_i = arg_i; |
| } |
| |
| static void push_rule_from_arg(parser_t *parser, size_t arg) { |
| assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE || (arg & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE); |
| size_t rule_id = arg & RULE_ARG_ARG_MASK; |
| push_rule(parser, parser->lexer->tok_line, rule_id, 0); |
| } |
| |
| static uint8_t pop_rule(parser_t *parser, size_t *arg_i, size_t *src_line) { |
| parser->rule_stack_top -= 1; |
| uint8_t rule_id = parser->rule_stack[parser->rule_stack_top].rule_id; |
| *arg_i = parser->rule_stack[parser->rule_stack_top].arg_i; |
| *src_line = parser->rule_stack[parser->rule_stack_top].src_line; |
| return rule_id; |
| } |
| |
| #if MICROPY_COMP_CONST_TUPLE |
| static uint8_t peek_rule(parser_t *parser, size_t n) { |
| assert(parser->rule_stack_top > n); |
| return parser->rule_stack[parser->rule_stack_top - 1 - n].rule_id; |
| } |
| #endif |
| |
| bool mp_parse_node_get_int_maybe(mp_parse_node_t pn, mp_obj_t *o) { |
| if (MP_PARSE_NODE_IS_SMALL_INT(pn)) { |
| *o = MP_OBJ_NEW_SMALL_INT(MP_PARSE_NODE_LEAF_SMALL_INT(pn)); |
| return true; |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_const_object)) { |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; |
| *o = mp_parse_node_extract_const_object(pns); |
| return mp_obj_is_int(*o); |
| } else { |
| return false; |
| } |
| } |
| |
| #if MICROPY_COMP_CONST_TUPLE || MICROPY_COMP_CONST |
| static bool mp_parse_node_is_const(mp_parse_node_t pn) { |
| if (MP_PARSE_NODE_IS_SMALL_INT(pn)) { |
| // Small integer. |
| return true; |
| } else if (MP_PARSE_NODE_IS_LEAF(pn)) { |
| // Possible str, or constant literal. |
| uintptr_t kind = MP_PARSE_NODE_LEAF_KIND(pn); |
| if (kind == MP_PARSE_NODE_STRING) { |
| return true; |
| } else if (kind == MP_PARSE_NODE_TOKEN) { |
| uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn); |
| return arg == MP_TOKEN_KW_NONE |
| || arg == MP_TOKEN_KW_FALSE |
| || arg == MP_TOKEN_KW_TRUE |
| || arg == MP_TOKEN_ELLIPSIS; |
| } |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_const_object)) { |
| // Constant object. |
| return true; |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_atom_paren)) { |
| // Possible empty tuple. |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; |
| return MP_PARSE_NODE_IS_NULL(pns->nodes[0]); |
| } |
| return false; |
| } |
| |
| static mp_obj_t mp_parse_node_convert_to_obj(mp_parse_node_t pn) { |
| assert(mp_parse_node_is_const(pn)); |
| if (MP_PARSE_NODE_IS_SMALL_INT(pn)) { |
| mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn); |
| #if MICROPY_DYNAMIC_COMPILER |
| mp_uint_t sign_mask = -((mp_uint_t)1 << (mp_dynamic_compiler.small_int_bits - 1)); |
| if (!((arg & sign_mask) == 0 || (arg & sign_mask) == sign_mask)) { |
| // Integer doesn't fit in a small-int, so create a multi-precision int object. |
| return mp_obj_new_int_from_ll(arg); |
| } |
| #endif |
| return MP_OBJ_NEW_SMALL_INT(arg); |
| } else if (MP_PARSE_NODE_IS_LEAF(pn)) { |
| uintptr_t kind = MP_PARSE_NODE_LEAF_KIND(pn); |
| uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn); |
| if (kind == MP_PARSE_NODE_STRING) { |
| return MP_OBJ_NEW_QSTR(arg); |
| } else { |
| assert(MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN); |
| switch (arg) { |
| case MP_TOKEN_KW_NONE: |
| return mp_const_none; |
| case MP_TOKEN_KW_FALSE: |
| return mp_const_false; |
| case MP_TOKEN_KW_TRUE: |
| return mp_const_true; |
| default: |
| assert(arg == MP_TOKEN_ELLIPSIS); |
| return MP_OBJ_FROM_PTR(&mp_const_ellipsis_obj); |
| } |
| } |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_const_object)) { |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; |
| return mp_parse_node_extract_const_object(pns); |
| } else { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_atom_paren)); |
| assert(MP_PARSE_NODE_IS_NULL(((mp_parse_node_struct_t *)pn)->nodes[0])); |
| return mp_const_empty_tuple; |
| } |
| } |
| #endif |
| |
| static bool parse_node_is_const_bool(mp_parse_node_t pn, bool value) { |
| // Returns true if 'pn' is a constant whose boolean value is equivalent to 'value' |
| #if MICROPY_COMP_CONST_TUPLE || MICROPY_COMP_CONST |
| return mp_parse_node_is_const(pn) && mp_obj_is_true(mp_parse_node_convert_to_obj(pn)) == value; |
| #else |
| return MP_PARSE_NODE_IS_TOKEN_KIND(pn, value ? MP_TOKEN_KW_TRUE : MP_TOKEN_KW_FALSE) |
| || (MP_PARSE_NODE_IS_SMALL_INT(pn) && !!MP_PARSE_NODE_LEAF_SMALL_INT(pn) == value); |
| #endif |
| } |
| |
| bool mp_parse_node_is_const_false(mp_parse_node_t pn) { |
| return parse_node_is_const_bool(pn, false); |
| } |
| |
| bool mp_parse_node_is_const_true(mp_parse_node_t pn) { |
| return parse_node_is_const_bool(pn, true); |
| } |
| |
| size_t mp_parse_node_extract_list(mp_parse_node_t *pn, size_t pn_kind, mp_parse_node_t **nodes) { |
| if (MP_PARSE_NODE_IS_NULL(*pn)) { |
| *nodes = NULL; |
| return 0; |
| } else if (MP_PARSE_NODE_IS_LEAF(*pn)) { |
| *nodes = pn; |
| return 1; |
| } else { |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)(*pn); |
| if (MP_PARSE_NODE_STRUCT_KIND(pns) != pn_kind) { |
| *nodes = pn; |
| return 1; |
| } else { |
| *nodes = pns->nodes; |
| return MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| } |
| } |
| } |
| |
| #if MICROPY_DEBUG_PRINTERS |
| void mp_parse_node_print(const mp_print_t *print, mp_parse_node_t pn, size_t indent) { |
| if (MP_PARSE_NODE_IS_STRUCT(pn)) { |
| mp_printf(print, "[% 4d] ", (int)((mp_parse_node_struct_t *)pn)->source_line); |
| } else { |
| mp_printf(print, " "); |
| } |
| for (size_t i = 0; i < indent; i++) { |
| mp_printf(print, " "); |
| } |
| if (MP_PARSE_NODE_IS_NULL(pn)) { |
| mp_printf(print, "NULL\n"); |
| } else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) { |
| mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn); |
| mp_printf(print, "int(" INT_FMT ")\n", arg); |
| } else if (MP_PARSE_NODE_IS_LEAF(pn)) { |
| uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn); |
| switch (MP_PARSE_NODE_LEAF_KIND(pn)) { |
| case MP_PARSE_NODE_ID: |
| mp_printf(print, "id(%s)\n", qstr_str(arg)); |
| break; |
| case MP_PARSE_NODE_STRING: |
| mp_printf(print, "str(%s)\n", qstr_str(arg)); |
| break; |
| default: |
| assert(MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN); |
| mp_printf(print, "tok(%u)\n", (uint)arg); |
| break; |
| } |
| } else { |
| // node must be a mp_parse_node_struct_t |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_const_object) { |
| mp_obj_t obj = mp_parse_node_extract_const_object(pns); |
| #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D |
| mp_printf(print, "literal const(%016llx)=", obj); |
| #else |
| mp_printf(print, "literal const(%p)=", obj); |
| #endif |
| mp_obj_print_helper(print, obj, PRINT_REPR); |
| mp_printf(print, "\n"); |
| } else { |
| size_t n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| #if MICROPY_DEBUG_PARSE_RULE_NAME |
| mp_printf(print, "%s(%u) (n=%u)\n", rule_name_table[MP_PARSE_NODE_STRUCT_KIND(pns)], (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n); |
| #else |
| mp_printf(print, "rule(%u) (n=%u)\n", (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n); |
| #endif |
| for (size_t i = 0; i < n; i++) { |
| mp_parse_node_print(print, pns->nodes[i], indent + 2); |
| } |
| } |
| } |
| } |
| #endif // MICROPY_DEBUG_PRINTERS |
| |
| /* |
| static void result_stack_show(const mp_print_t *print, parser_t *parser) { |
| mp_printf(print, "result stack, most recent first\n"); |
| for (ssize_t i = parser->result_stack_top - 1; i >= 0; i--) { |
| mp_parse_node_print(print, parser->result_stack[i], 0); |
| } |
| } |
| */ |
| |
| static mp_parse_node_t pop_result(parser_t *parser) { |
| assert(parser->result_stack_top > 0); |
| return parser->result_stack[--parser->result_stack_top]; |
| } |
| |
| static mp_parse_node_t peek_result(parser_t *parser, size_t pos) { |
| assert(parser->result_stack_top > pos); |
| return parser->result_stack[parser->result_stack_top - 1 - pos]; |
| } |
| |
| static void push_result_node(parser_t *parser, mp_parse_node_t pn) { |
| if (parser->result_stack_top >= parser->result_stack_alloc) { |
| mp_parse_node_t *stack = m_renew(mp_parse_node_t, parser->result_stack, parser->result_stack_alloc, parser->result_stack_alloc + MICROPY_ALLOC_PARSE_RESULT_INC); |
| parser->result_stack = stack; |
| parser->result_stack_alloc += MICROPY_ALLOC_PARSE_RESULT_INC; |
| } |
| parser->result_stack[parser->result_stack_top++] = pn; |
| } |
| |
| static mp_parse_node_t make_node_const_object(parser_t *parser, size_t src_line, mp_obj_t obj) { |
| mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_obj_t)); |
| pn->source_line = src_line; |
| #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D |
| // nodes are 32-bit pointers, but need to store 64-bit object |
| pn->kind_num_nodes = RULE_const_object | (2 << 8); |
| pn->nodes[0] = (uint64_t)obj; |
| pn->nodes[1] = (uint64_t)obj >> 32; |
| #else |
| pn->kind_num_nodes = RULE_const_object | (1 << 8); |
| pn->nodes[0] = (uintptr_t)obj; |
| #endif |
| return (mp_parse_node_t)pn; |
| } |
| |
| // Create a parse node representing a constant object, possibly optimising the case of |
| // an integer, by putting the (small) integer value directly in the parse node itself. |
| static mp_parse_node_t make_node_const_object_optimised(parser_t *parser, size_t src_line, mp_obj_t obj) { |
| if (mp_obj_is_small_int(obj)) { |
| mp_int_t val = MP_OBJ_SMALL_INT_VALUE(obj); |
| #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D |
| // A parse node is only 32-bits and the small-int value must fit in 31-bits |
| if (((val ^ (val << 1)) & 0xffffffff80000000) != 0) { |
| return make_node_const_object(parser, src_line, obj); |
| } |
| #endif |
| #if MICROPY_DYNAMIC_COMPILER |
| // Check that the integer value fits in target runtime's small-int |
| mp_uint_t sign_mask = -((mp_uint_t)1 << (mp_dynamic_compiler.small_int_bits - 1)); |
| if (!((val & sign_mask) == 0 || (val & sign_mask) == sign_mask)) { |
| return make_node_const_object(parser, src_line, obj); |
| } |
| #endif |
| return mp_parse_node_new_small_int(val); |
| } else { |
| return make_node_const_object(parser, src_line, obj); |
| } |
| } |
| |
| static void push_result_token(parser_t *parser, uint8_t rule_id) { |
| mp_parse_node_t pn; |
| mp_lexer_t *lex = parser->lexer; |
| if (lex->tok_kind == MP_TOKEN_NAME) { |
| qstr id = qstr_from_strn(lex->vstr.buf, lex->vstr.len); |
| #if MICROPY_COMP_CONST |
| // if name is a standalone identifier, look it up in the table of dynamic constants |
| mp_map_elem_t *elem; |
| if (rule_id == RULE_atom |
| && (elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP)) != NULL) { |
| pn = make_node_const_object_optimised(parser, lex->tok_line, elem->value); |
| } else { |
| pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, id); |
| } |
| #else |
| (void)rule_id; |
| pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, id); |
| #endif |
| } else if (lex->tok_kind == MP_TOKEN_INTEGER) { |
| mp_obj_t o = mp_parse_num_integer(lex->vstr.buf, lex->vstr.len, 0, lex); |
| pn = make_node_const_object_optimised(parser, lex->tok_line, o); |
| } else if (lex->tok_kind == MP_TOKEN_FLOAT_OR_IMAG) { |
| mp_obj_t o = mp_parse_num_float(lex->vstr.buf, lex->vstr.len, true, lex); |
| pn = make_node_const_object(parser, lex->tok_line, o); |
| } else if (lex->tok_kind == MP_TOKEN_STRING) { |
| // Don't automatically intern all strings. Doc strings (which are usually large) |
| // will be discarded by the compiler, and so we shouldn't intern them. |
| qstr qst = MP_QSTRnull; |
| if (lex->vstr.len <= MICROPY_ALLOC_PARSE_INTERN_STRING_LEN) { |
| // intern short strings |
| qst = qstr_from_strn(lex->vstr.buf, lex->vstr.len); |
| } else { |
| // check if this string is already interned |
| qst = qstr_find_strn(lex->vstr.buf, lex->vstr.len); |
| } |
| if (qst != MP_QSTRnull) { |
| // qstr exists, make a leaf node |
| pn = mp_parse_node_new_leaf(MP_PARSE_NODE_STRING, qst); |
| } else { |
| // not interned, make a node holding a pointer to the string object |
| mp_obj_t o = mp_obj_new_str_copy(&mp_type_str, (const byte *)lex->vstr.buf, lex->vstr.len); |
| pn = make_node_const_object(parser, lex->tok_line, o); |
| } |
| } else if (lex->tok_kind == MP_TOKEN_BYTES) { |
| // make a node holding a pointer to the bytes object |
| mp_obj_t o = mp_obj_new_bytes((const byte *)lex->vstr.buf, lex->vstr.len); |
| pn = make_node_const_object(parser, lex->tok_line, o); |
| } else { |
| pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, lex->tok_kind); |
| } |
| push_result_node(parser, pn); |
| } |
| |
| #if MICROPY_COMP_CONST_FOLDING |
| |
| #if MICROPY_COMP_MODULE_CONST |
| static const mp_rom_map_elem_t mp_constants_table[] = { |
| #if MICROPY_PY_ERRNO |
| { MP_ROM_QSTR(MP_QSTR_errno), MP_ROM_PTR(&mp_module_errno) }, |
| #endif |
| #if MICROPY_PY_UCTYPES |
| { MP_ROM_QSTR(MP_QSTR_uctypes), MP_ROM_PTR(&mp_module_uctypes) }, |
| #endif |
| // Extra constants as defined by a port |
| MICROPY_PORT_CONSTANTS |
| }; |
| static MP_DEFINE_CONST_MAP(mp_constants_map, mp_constants_table); |
| #endif |
| |
| static bool fold_logical_constants(parser_t *parser, uint8_t rule_id, size_t *num_args) { |
| if (rule_id == RULE_or_test |
| || rule_id == RULE_and_test) { |
| // folding for binary logical ops: or and |
| size_t copy_to = *num_args; |
| for (size_t i = copy_to; i > 0;) { |
| mp_parse_node_t pn = peek_result(parser, --i); |
| parser->result_stack[parser->result_stack_top - copy_to] = pn; |
| if (i == 0) { |
| // always need to keep the last value |
| break; |
| } |
| if (rule_id == RULE_or_test) { |
| if (mp_parse_node_is_const_true(pn)) { |
| // |
| break; |
| } else if (!mp_parse_node_is_const_false(pn)) { |
| copy_to -= 1; |
| } |
| } else { |
| // RULE_and_test |
| if (mp_parse_node_is_const_false(pn)) { |
| break; |
| } else if (!mp_parse_node_is_const_true(pn)) { |
| copy_to -= 1; |
| } |
| } |
| } |
| copy_to -= 1; // copy_to now contains number of args to pop |
| |
| // pop and discard all the short-circuited expressions |
| for (size_t i = 0; i < copy_to; ++i) { |
| pop_result(parser); |
| } |
| *num_args -= copy_to; |
| |
| // we did a complete folding if there's only 1 arg left |
| return *num_args == 1; |
| |
| } else if (rule_id == RULE_not_test_2) { |
| // folding for unary logical op: not |
| mp_parse_node_t pn = peek_result(parser, 0); |
| if (mp_parse_node_is_const_false(pn)) { |
| pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, MP_TOKEN_KW_TRUE); |
| } else if (mp_parse_node_is_const_true(pn)) { |
| pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, MP_TOKEN_KW_FALSE); |
| } else { |
| return false; |
| } |
| pop_result(parser); |
| push_result_node(parser, pn); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool fold_constants(parser_t *parser, uint8_t rule_id, size_t num_args) { |
| // this code does folding of arbitrary integer expressions, eg 1 + 2 * 3 + 4 |
| // it does not do partial folding, eg 1 + 2 + x -> 3 + x |
| |
| mp_obj_t arg0; |
| if (rule_id == RULE_expr |
| || rule_id == RULE_xor_expr |
| || rule_id == RULE_and_expr |
| || rule_id == RULE_power) { |
| // folding for binary ops: | ^ & ** |
| mp_parse_node_t pn = peek_result(parser, num_args - 1); |
| if (!mp_parse_node_get_int_maybe(pn, &arg0)) { |
| return false; |
| } |
| mp_binary_op_t op; |
| if (rule_id == RULE_expr) { |
| op = MP_BINARY_OP_OR; |
| } else if (rule_id == RULE_xor_expr) { |
| op = MP_BINARY_OP_XOR; |
| } else if (rule_id == RULE_and_expr) { |
| op = MP_BINARY_OP_AND; |
| } else { |
| op = MP_BINARY_OP_POWER; |
| } |
| for (ssize_t i = num_args - 2; i >= 0; --i) { |
| pn = peek_result(parser, i); |
| mp_obj_t arg1; |
| if (!mp_parse_node_get_int_maybe(pn, &arg1)) { |
| return false; |
| } |
| if (op == MP_BINARY_OP_POWER && mp_obj_int_sign(arg1) < 0) { |
| // ** can't have negative rhs |
| return false; |
| } |
| arg0 = mp_binary_op(op, arg0, arg1); |
| } |
| } else if (rule_id == RULE_shift_expr |
| || rule_id == RULE_arith_expr |
| || rule_id == RULE_term) { |
| // folding for binary ops: << >> + - * @ / % // |
| mp_parse_node_t pn = peek_result(parser, num_args - 1); |
| if (!mp_parse_node_get_int_maybe(pn, &arg0)) { |
| return false; |
| } |
| for (ssize_t i = num_args - 2; i >= 1; i -= 2) { |
| pn = peek_result(parser, i - 1); |
| mp_obj_t arg1; |
| if (!mp_parse_node_get_int_maybe(pn, &arg1)) { |
| return false; |
| } |
| mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, i)); |
| if (tok == MP_TOKEN_OP_AT || tok == MP_TOKEN_OP_SLASH) { |
| // Can't fold @ or / |
| return false; |
| } |
| mp_binary_op_t op = MP_BINARY_OP_LSHIFT + (tok - MP_TOKEN_OP_DBL_LESS); |
| int rhs_sign = mp_obj_int_sign(arg1); |
| if (op <= MP_BINARY_OP_RSHIFT) { |
| // << and >> can't have negative rhs |
| if (rhs_sign < 0) { |
| return false; |
| } |
| } else if (op >= MP_BINARY_OP_FLOOR_DIVIDE) { |
| // % and // can't have zero rhs |
| if (rhs_sign == 0) { |
| return false; |
| } |
| } |
| arg0 = mp_binary_op(op, arg0, arg1); |
| } |
| } else if (rule_id == RULE_factor_2) { |
| // folding for unary ops: + - ~ |
| mp_parse_node_t pn = peek_result(parser, 0); |
| if (!mp_parse_node_get_int_maybe(pn, &arg0)) { |
| return false; |
| } |
| mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, 1)); |
| mp_unary_op_t op; |
| if (tok == MP_TOKEN_OP_TILDE) { |
| op = MP_UNARY_OP_INVERT; |
| } else { |
| assert(tok == MP_TOKEN_OP_PLUS || tok == MP_TOKEN_OP_MINUS); // should be |
| op = MP_UNARY_OP_POSITIVE + (tok - MP_TOKEN_OP_PLUS); |
| } |
| arg0 = mp_unary_op(op, arg0); |
| |
| #if MICROPY_COMP_CONST |
| } else if (rule_id == RULE_expr_stmt) { |
| mp_parse_node_t pn1 = peek_result(parser, 0); |
| if (!MP_PARSE_NODE_IS_NULL(pn1) |
| && !(MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_augassign) |
| || MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_assign_list))) { |
| // this node is of the form <x> = <y> |
| mp_parse_node_t pn0 = peek_result(parser, 1); |
| if (MP_PARSE_NODE_IS_ID(pn0) |
| && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_atom_expr_normal) |
| && MP_PARSE_NODE_IS_ID(((mp_parse_node_struct_t *)pn1)->nodes[0]) |
| && MP_PARSE_NODE_LEAF_ARG(((mp_parse_node_struct_t *)pn1)->nodes[0]) == MP_QSTR_const |
| && MP_PARSE_NODE_IS_STRUCT_KIND(((mp_parse_node_struct_t *)pn1)->nodes[1], RULE_trailer_paren) |
| ) { |
| // code to assign dynamic constants: id = const(value) |
| |
| // get the id |
| qstr id = MP_PARSE_NODE_LEAF_ARG(pn0); |
| |
| // get the value |
| mp_parse_node_t pn_value = ((mp_parse_node_struct_t *)((mp_parse_node_struct_t *)pn1)->nodes[1])->nodes[0]; |
| if (!mp_parse_node_is_const(pn_value)) { |
| mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_SyntaxError, |
| MP_ERROR_TEXT("not a constant")); |
| mp_obj_exception_add_traceback(exc, parser->lexer->source_name, |
| ((mp_parse_node_struct_t *)pn1)->source_line, MP_QSTRnull); |
| nlr_raise(exc); |
| } |
| mp_obj_t value = mp_parse_node_convert_to_obj(pn_value); |
| |
| // store the value in the table of dynamic constants |
| mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND); |
| assert(elem->value == MP_OBJ_NULL); |
| elem->value = value; |
| |
| // If the constant starts with an underscore then treat it as a private |
| // variable and don't emit any code to store the value to the id. |
| if (qstr_str(id)[0] == '_') { |
| pop_result(parser); // pop const(value) |
| pop_result(parser); // pop id |
| push_result_rule(parser, 0, RULE_pass_stmt, 0); // replace with "pass" |
| return true; |
| } |
| |
| // replace const(value) with value |
| pop_result(parser); |
| push_result_node(parser, pn_value); |
| |
| // finished folding this assignment, but we still want it to be part of the tree |
| return false; |
| } |
| } |
| return false; |
| #endif |
| |
| #if MICROPY_COMP_MODULE_CONST |
| } else if (rule_id == RULE_atom_expr_normal) { |
| mp_parse_node_t pn0 = peek_result(parser, 1); |
| mp_parse_node_t pn1 = peek_result(parser, 0); |
| if (!(MP_PARSE_NODE_IS_ID(pn0) |
| && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_trailer_period))) { |
| return false; |
| } |
| // id1.id2 |
| // look it up in constant table, see if it can be replaced with an integer |
| mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pn1; |
| assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0])); |
| qstr q_base = MP_PARSE_NODE_LEAF_ARG(pn0); |
| qstr q_attr = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]); |
| mp_map_elem_t *elem = mp_map_lookup((mp_map_t *)&mp_constants_map, MP_OBJ_NEW_QSTR(q_base), MP_MAP_LOOKUP); |
| if (elem == NULL) { |
| return false; |
| } |
| mp_obj_t dest[2]; |
| mp_load_method_maybe(elem->value, q_attr, dest); |
| if (!(dest[0] != MP_OBJ_NULL && mp_obj_is_int(dest[0]) && dest[1] == MP_OBJ_NULL)) { |
| return false; |
| } |
| arg0 = dest[0]; |
| #endif |
| |
| } else { |
| return false; |
| } |
| |
| // success folding this rule |
| |
| for (size_t i = num_args; i > 0; i--) { |
| pop_result(parser); |
| } |
| push_result_node(parser, make_node_const_object_optimised(parser, 0, arg0)); |
| |
| return true; |
| } |
| |
| #endif // MICROPY_COMP_CONST_FOLDING |
| |
| #if MICROPY_COMP_CONST_TUPLE |
| static bool build_tuple_from_stack(parser_t *parser, size_t src_line, size_t num_args) { |
| for (size_t i = num_args; i > 0;) { |
| mp_parse_node_t pn = peek_result(parser, --i); |
| if (!mp_parse_node_is_const(pn)) { |
| return false; |
| } |
| } |
| mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(num_args, NULL)); |
| for (size_t i = num_args; i > 0;) { |
| mp_parse_node_t pn = pop_result(parser); |
| tuple->items[--i] = mp_parse_node_convert_to_obj(pn); |
| if (MP_PARSE_NODE_IS_STRUCT(pn)) { |
| parser_free_parse_node_struct(parser, (mp_parse_node_struct_t *)pn); |
| } |
| } |
| push_result_node(parser, make_node_const_object(parser, src_line, MP_OBJ_FROM_PTR(tuple))); |
| return true; |
| } |
| |
| static bool build_tuple(parser_t *parser, size_t src_line, uint8_t rule_id, size_t num_args) { |
| if (rule_id == RULE_testlist_comp) { |
| if (peek_rule(parser, 0) == RULE_atom_paren) { |
| // Tuple of the form "(a,)". |
| return build_tuple_from_stack(parser, src_line, num_args); |
| } |
| } |
| if (rule_id == RULE_testlist_comp_3c) { |
| assert(peek_rule(parser, 0) == RULE_testlist_comp_3b); |
| assert(peek_rule(parser, 1) == RULE_testlist_comp); |
| if (peek_rule(parser, 2) == RULE_atom_paren) { |
| // Tuple of the form "(a, b)". |
| if (build_tuple_from_stack(parser, src_line, num_args)) { |
| parser->rule_stack_top -= 2; // discard 2 rules |
| return true; |
| } |
| } |
| } |
| if (rule_id == RULE_testlist_star_expr |
| || rule_id == RULE_testlist |
| || rule_id == RULE_subscriptlist) { |
| // Tuple of the form: |
| // - x = a, b |
| // - return a, b |
| // - for x in a, b: pass |
| // - x[a, b] |
| return build_tuple_from_stack(parser, src_line, num_args); |
| } |
| |
| return false; |
| } |
| #endif |
| |
| static void push_result_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t num_args) { |
| // Simplify and optimise certain rules, to reduce memory usage and simplify the compiler. |
| if (rule_id == RULE_atom_paren) { |
| // Remove parenthesis around a single expression if possible. |
| // This atom_paren rule always has a single argument, and after this |
| // optimisation that argument is either NULL or testlist_comp. |
| mp_parse_node_t pn = peek_result(parser, 0); |
| if (MP_PARSE_NODE_IS_NULL(pn)) { |
| // need to keep parenthesis for () |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_testlist_comp)) { |
| // need to keep parenthesis for (a, b, ...) |
| } else { |
| // parenthesis around a single expression, so it's just the expression |
| return; |
| } |
| } else if (rule_id == RULE_testlist_comp) { |
| // The testlist_comp rule can be the sole argument to either atom_parent |
| // or atom_bracket, for (...) and [...] respectively. |
| assert(num_args == 2); |
| mp_parse_node_t pn = peek_result(parser, 0); |
| if (MP_PARSE_NODE_IS_STRUCT(pn)) { |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_testlist_comp_3b) { |
| // tuple of one item, with trailing comma |
| pop_result(parser); |
| --num_args; |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_testlist_comp_3c) { |
| // tuple of many items, convert testlist_comp_3c to testlist_comp |
| pop_result(parser); |
| assert(pn == peek_result(parser, 0)); |
| pns->kind_num_nodes = rule_id | MP_PARSE_NODE_STRUCT_NUM_NODES(pns) << 8; |
| return; |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_comp_for) { |
| // generator expression |
| } else { |
| // tuple with 2 items |
| } |
| } else { |
| // tuple with 2 items |
| } |
| } else if (rule_id == RULE_testlist_comp_3c) { |
| // steal first arg of outer testlist_comp rule |
| ++num_args; |
| } |
| |
| #if MICROPY_COMP_CONST_FOLDING |
| if (fold_logical_constants(parser, rule_id, &num_args)) { |
| // we folded this rule so return straight away |
| return; |
| } |
| if (fold_constants(parser, rule_id, num_args)) { |
| // we folded this rule so return straight away |
| return; |
| } |
| #endif |
| |
| #if MICROPY_COMP_CONST_TUPLE |
| if (build_tuple(parser, src_line, rule_id, num_args)) { |
| // we built a tuple from this rule so return straight away |
| return; |
| } |
| #endif |
| |
| mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_parse_node_t) * num_args); |
| pn->source_line = src_line; |
| pn->kind_num_nodes = (rule_id & 0xff) | (num_args << 8); |
| for (size_t i = num_args; i > 0; i--) { |
| pn->nodes[i - 1] = pop_result(parser); |
| } |
| if (rule_id == RULE_testlist_comp_3c) { |
| // need to push something non-null to replace stolen first arg of testlist_comp |
| push_result_node(parser, (mp_parse_node_t)pn); |
| } |
| push_result_node(parser, (mp_parse_node_t)pn); |
| } |
| |
| mp_parse_tree_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind) { |
| // Set exception handler to free the lexer if an exception is raised. |
| MP_DEFINE_NLR_JUMP_CALLBACK_FUNCTION_1(ctx, mp_lexer_free, lex); |
| nlr_push_jump_callback(&ctx.callback, mp_call_function_1_from_nlr_jump_callback); |
| |
| // initialise parser and allocate memory for its stacks |
| |
| parser_t parser; |
| |
| parser.rule_stack_alloc = MICROPY_ALLOC_PARSE_RULE_INIT; |
| parser.rule_stack_top = 0; |
| parser.rule_stack = m_new(rule_stack_t, parser.rule_stack_alloc); |
| |
| parser.result_stack_alloc = MICROPY_ALLOC_PARSE_RESULT_INIT; |
| parser.result_stack_top = 0; |
| parser.result_stack = m_new(mp_parse_node_t, parser.result_stack_alloc); |
| |
| parser.lexer = lex; |
| |
| parser.tree.chunk = NULL; |
| parser.cur_chunk = NULL; |
| |
| #if MICROPY_COMP_CONST |
| mp_map_init(&parser.consts, 0); |
| #endif |
| |
| // work out the top-level rule to use, and push it on the stack |
| size_t top_level_rule; |
| switch (input_kind) { |
| case MP_PARSE_SINGLE_INPUT: |
| top_level_rule = RULE_single_input; |
| break; |
| case MP_PARSE_EVAL_INPUT: |
| top_level_rule = RULE_eval_input; |
| break; |
| default: |
| top_level_rule = RULE_file_input; |
| } |
| push_rule(&parser, lex->tok_line, top_level_rule, 0); |
| |
| // parse! |
| |
| bool backtrack = false; |
| |
| for (;;) { |
| next_rule: |
| if (parser.rule_stack_top == 0) { |
| break; |
| } |
| |
| // Pop the next rule to process it |
| size_t i; // state for the current rule |
| size_t rule_src_line; // source line for the first token matched by the current rule |
| uint8_t rule_id = pop_rule(&parser, &i, &rule_src_line); |
| uint8_t rule_act = rule_act_table[rule_id]; |
| const uint16_t *rule_arg = get_rule_arg(rule_id); |
| size_t n = rule_act & RULE_ACT_ARG_MASK; |
| |
| #if 0 |
| // debugging |
| printf("depth=" UINT_FMT " ", parser.rule_stack_top); |
| for (int j = 0; j < parser.rule_stack_top; ++j) { |
| printf(" "); |
| } |
| printf("%s n=" UINT_FMT " i=" UINT_FMT " bt=%d\n", rule_name_table[rule_id], n, i, backtrack); |
| #endif |
| |
| switch (rule_act & RULE_ACT_KIND_MASK) { |
| case RULE_ACT_OR: |
| if (i > 0 && !backtrack) { |
| goto next_rule; |
| } else { |
| backtrack = false; |
| } |
| for (; i < n; ++i) { |
| uint16_t kind = rule_arg[i] & RULE_ARG_KIND_MASK; |
| if (kind == RULE_ARG_TOK) { |
| if (lex->tok_kind == (rule_arg[i] & RULE_ARG_ARG_MASK)) { |
| push_result_token(&parser, rule_id); |
| mp_lexer_to_next(lex); |
| goto next_rule; |
| } |
| } else { |
| assert(kind == RULE_ARG_RULE); |
| if (i + 1 < n) { |
| push_rule(&parser, rule_src_line, rule_id, i + 1); // save this or-rule |
| } |
| push_rule_from_arg(&parser, rule_arg[i]); // push child of or-rule |
| goto next_rule; |
| } |
| } |
| backtrack = true; |
| break; |
| |
| case RULE_ACT_AND: { |
| |
| // failed, backtrack if we can, else syntax error |
| if (backtrack) { |
| assert(i > 0); |
| if ((rule_arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) { |
| // an optional rule that failed, so continue with next arg |
| push_result_node(&parser, MP_PARSE_NODE_NULL); |
| backtrack = false; |
| } else { |
| // a mandatory rule that failed, so propagate backtrack |
| if (i > 1) { |
| // already eaten tokens so can't backtrack |
| goto syntax_error; |
| } else { |
| goto next_rule; |
| } |
| } |
| } |
| |
| // progress through the rule |
| for (; i < n; ++i) { |
| if ((rule_arg[i] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { |
| // need to match a token |
| mp_token_kind_t tok_kind = rule_arg[i] & RULE_ARG_ARG_MASK; |
| if (lex->tok_kind == tok_kind) { |
| // matched token |
| if (tok_kind == MP_TOKEN_NAME) { |
| push_result_token(&parser, rule_id); |
| } |
| mp_lexer_to_next(lex); |
| } else { |
| // failed to match token |
| if (i > 0) { |
| // already eaten tokens so can't backtrack |
| goto syntax_error; |
| } else { |
| // this rule failed, so backtrack |
| backtrack = true; |
| goto next_rule; |
| } |
| } |
| } else { |
| push_rule(&parser, rule_src_line, rule_id, i + 1); // save this and-rule |
| push_rule_from_arg(&parser, rule_arg[i]); // push child of and-rule |
| goto next_rule; |
| } |
| } |
| |
| assert(i == n); |
| |
| // matched the rule, so now build the corresponding parse_node |
| |
| #if !MICROPY_ENABLE_DOC_STRING |
| // this code discards lonely statements, such as doc strings |
| if (input_kind != MP_PARSE_SINGLE_INPUT && rule_id == RULE_expr_stmt && peek_result(&parser, 0) == MP_PARSE_NODE_NULL) { |
| mp_parse_node_t p = peek_result(&parser, 1); |
| if ((MP_PARSE_NODE_IS_LEAF(p) && !MP_PARSE_NODE_IS_ID(p)) |
| || MP_PARSE_NODE_IS_STRUCT_KIND(p, RULE_const_object)) { |
| pop_result(&parser); // MP_PARSE_NODE_NULL |
| pop_result(&parser); // const expression (leaf or RULE_const_object) |
| // Pushing the "pass" rule here will overwrite any RULE_const_object |
| // entry that was on the result stack, allowing the GC to reclaim |
| // the memory from the const object when needed. |
| push_result_rule(&parser, rule_src_line, RULE_pass_stmt, 0); |
| break; |
| } |
| } |
| #endif |
| |
| // count number of arguments for the parse node |
| i = 0; |
| size_t num_not_nil = 0; |
| for (size_t x = n; x > 0;) { |
| --x; |
| if ((rule_arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { |
| mp_token_kind_t tok_kind = rule_arg[x] & RULE_ARG_ARG_MASK; |
| if (tok_kind == MP_TOKEN_NAME) { |
| // only tokens which were names are pushed to stack |
| i += 1; |
| num_not_nil += 1; |
| } |
| } else { |
| // rules are always pushed |
| if (peek_result(&parser, i) != MP_PARSE_NODE_NULL) { |
| num_not_nil += 1; |
| } |
| i += 1; |
| } |
| } |
| |
| if (num_not_nil == 1 && (rule_act & RULE_ACT_ALLOW_IDENT)) { |
| // this rule has only 1 argument and should not be emitted |
| mp_parse_node_t pn = MP_PARSE_NODE_NULL; |
| for (size_t x = 0; x < i; ++x) { |
| mp_parse_node_t pn2 = pop_result(&parser); |
| if (pn2 != MP_PARSE_NODE_NULL) { |
| pn = pn2; |
| } |
| } |
| push_result_node(&parser, pn); |
| } else { |
| // this rule must be emitted |
| |
| if (rule_act & RULE_ACT_ADD_BLANK) { |
| // and add an extra blank node at the end (used by the compiler to store data) |
| push_result_node(&parser, MP_PARSE_NODE_NULL); |
| i += 1; |
| } |
| |
| push_result_rule(&parser, rule_src_line, rule_id, i); |
| } |
| break; |
| } |
| |
| default: { |
| assert((rule_act & RULE_ACT_KIND_MASK) == RULE_ACT_LIST); |
| |
| // n=2 is: item item* |
| // n=1 is: item (sep item)* |
| // n=3 is: item (sep item)* [sep] |
| bool had_trailing_sep; |
| if (backtrack) { |
| list_backtrack: |
| had_trailing_sep = false; |
| if (n == 2) { |
| if (i == 1) { |
| // fail on item, first time round; propagate backtrack |
| goto next_rule; |
| } else { |
| // fail on item, in later rounds; finish with this rule |
| backtrack = false; |
| } |
| } else { |
| if (i == 1) { |
| // fail on item, first time round; propagate backtrack |
| goto next_rule; |
| } else if ((i & 1) == 1) { |
| // fail on item, in later rounds; have eaten tokens so can't backtrack |
| if (n == 3) { |
| // list allows trailing separator; finish parsing list |
| had_trailing_sep = true; |
| backtrack = false; |
| } else { |
| // list doesn't allowing trailing separator; fail |
| goto syntax_error; |
| } |
| } else { |
| // fail on separator; finish parsing list |
| backtrack = false; |
| } |
| } |
| } else { |
| for (;;) { |
| size_t arg = rule_arg[i & 1 & n]; |
| if ((arg & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { |
| if (lex->tok_kind == (arg & RULE_ARG_ARG_MASK)) { |
| if (i & 1 & n) { |
| // separators which are tokens are not pushed to result stack |
| } else { |
| push_result_token(&parser, rule_id); |
| } |
| mp_lexer_to_next(lex); |
| // got element of list, so continue parsing list |
| i += 1; |
| } else { |
| // couldn't get element of list |
| i += 1; |
| backtrack = true; |
| goto list_backtrack; |
| } |
| } else { |
| assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE); |
| push_rule(&parser, rule_src_line, rule_id, i + 1); // save this list-rule |
| push_rule_from_arg(&parser, arg); // push child of list-rule |
| goto next_rule; |
| } |
| } |
| } |
| assert(i >= 1); |
| |
| // compute number of elements in list, result in i |
| i -= 1; |
| if ((n & 1) && (rule_arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { |
| // don't count separators when they are tokens |
| i = (i + 1) / 2; |
| } |
| |
| if (i == 1) { |
| // list matched single item |
| if (had_trailing_sep) { |
| // if there was a trailing separator, make a list of a single item |
| push_result_rule(&parser, rule_src_line, rule_id, i); |
| } else { |
| // just leave single item on stack (ie don't wrap in a list) |
| } |
| } else { |
| push_result_rule(&parser, rule_src_line, rule_id, i); |
| } |
| break; |
| } |
| } |
| } |
| |
| #if MICROPY_COMP_CONST |
| mp_map_deinit(&parser.consts); |
| #endif |
| |
| // truncate final chunk and link into chain of chunks |
| if (parser.cur_chunk != NULL) { |
| (void)m_renew_maybe(byte, parser.cur_chunk, |
| sizeof(mp_parse_chunk_t) + parser.cur_chunk->alloc, |
| sizeof(mp_parse_chunk_t) + parser.cur_chunk->union_.used, |
| false); |
| parser.cur_chunk->alloc = parser.cur_chunk->union_.used; |
| parser.cur_chunk->union_.next = parser.tree.chunk; |
| parser.tree.chunk = parser.cur_chunk; |
| } |
| |
| if ( |
| lex->tok_kind != MP_TOKEN_END // check we are at the end of the token stream |
| || parser.result_stack_top == 0 // check that we got a node (can fail on empty input) |
| ) { |
| syntax_error:; |
| mp_obj_t exc; |
| if (lex->tok_kind == MP_TOKEN_INDENT) { |
| exc = mp_obj_new_exception_msg(&mp_type_IndentationError, |
| MP_ERROR_TEXT("unexpected indent")); |
| } else if (lex->tok_kind == MP_TOKEN_DEDENT_MISMATCH) { |
| exc = mp_obj_new_exception_msg(&mp_type_IndentationError, |
| MP_ERROR_TEXT("unindent doesn't match any outer indent level")); |
| #if MICROPY_PY_FSTRINGS |
| } else if (lex->tok_kind == MP_TOKEN_MALFORMED_FSTRING) { |
| exc = mp_obj_new_exception_msg(&mp_type_SyntaxError, |
| MP_ERROR_TEXT("malformed f-string")); |
| #endif |
| } else { |
| exc = mp_obj_new_exception_msg(&mp_type_SyntaxError, |
| MP_ERROR_TEXT("invalid syntax")); |
| } |
| // add traceback to give info about file name and location |
| // we don't have a 'block' name, so just pass the NULL qstr to indicate this |
| mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTRnull); |
| nlr_raise(exc); |
| } |
| |
| // get the root parse node that we created |
| assert(parser.result_stack_top == 1); |
| parser.tree.root = parser.result_stack[0]; |
| |
| // free the memory that we don't need anymore |
| m_del(rule_stack_t, parser.rule_stack, parser.rule_stack_alloc); |
| m_del(mp_parse_node_t, parser.result_stack, parser.result_stack_alloc); |
| |
| // Deregister exception handler and free the lexer. |
| nlr_pop_jump_callback(true); |
| |
| return parser.tree; |
| } |
| |
| void mp_parse_tree_clear(mp_parse_tree_t *tree) { |
| mp_parse_chunk_t *chunk = tree->chunk; |
| while (chunk != NULL) { |
| mp_parse_chunk_t *next = chunk->union_.next; |
| m_del(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc); |
| chunk = next; |
| } |
| tree->chunk = NULL; // Avoid dangling pointer that may live on stack |
| } |
| |
| #endif // MICROPY_ENABLE_COMPILER |