| /* |
| * This file is part of the MicroPython project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <assert.h> |
| |
| #include "py/parsenum.h" |
| #include "py/runtime.h" |
| |
| #if MICROPY_PY_BUILTINS_FLOAT |
| |
| #include <math.h> |
| #include "py/formatfloat.h" |
| |
| #if MICROPY_OBJ_REPR != MICROPY_OBJ_REPR_C && MICROPY_OBJ_REPR != MICROPY_OBJ_REPR_D |
| |
| // M_E and M_PI are not part of the math.h standard and may not be defined |
| #ifndef M_E |
| #define M_E (2.7182818284590452354) |
| #endif |
| #ifndef M_PI |
| #define M_PI (3.14159265358979323846) |
| #endif |
| |
| typedef struct _mp_obj_float_t { |
| mp_obj_base_t base; |
| mp_float_t value; |
| } mp_obj_float_t; |
| |
| const mp_obj_float_t mp_const_float_e_obj = {{&mp_type_float}, (mp_float_t)M_E}; |
| const mp_obj_float_t mp_const_float_pi_obj = {{&mp_type_float}, (mp_float_t)M_PI}; |
| #if MICROPY_PY_MATH_CONSTANTS |
| #ifndef NAN |
| #error NAN macro is not defined |
| #endif |
| const mp_obj_float_t mp_const_float_tau_obj = {{&mp_type_float}, (mp_float_t)(2.0 * M_PI)}; |
| const mp_obj_float_t mp_const_float_inf_obj = {{&mp_type_float}, (mp_float_t)INFINITY}; |
| const mp_obj_float_t mp_const_float_nan_obj = {{&mp_type_float}, (mp_float_t)NAN}; |
| #endif |
| |
| #endif |
| |
| #define MICROPY_FLOAT_ZERO MICROPY_FLOAT_CONST(0.0) |
| |
| #if MICROPY_FLOAT_HIGH_QUALITY_HASH |
| // must return actual integer value if it fits in mp_int_t |
| mp_int_t mp_float_hash(mp_float_t src) { |
| mp_float_union_t u = {.f = src}; |
| mp_int_t val; |
| const int adj_exp = (int)u.p.exp - MP_FLOAT_EXP_BIAS; |
| if (adj_exp < 0) { |
| // value < 1; must be sure to handle 0.0 correctly (ie return 0) |
| val = u.i; |
| } else { |
| // if adj_exp is max then: u.p.frc==0 indicates inf, else NaN |
| // else: 1 <= value |
| mp_float_uint_t frc = u.p.frc | ((mp_float_uint_t)1 << MP_FLOAT_FRAC_BITS); |
| |
| if (adj_exp <= MP_FLOAT_FRAC_BITS) { |
| // number may have a fraction; xor the integer part with the fractional part |
| val = (frc >> (MP_FLOAT_FRAC_BITS - adj_exp)) |
| ^ (frc & (((mp_float_uint_t)1 << (MP_FLOAT_FRAC_BITS - adj_exp)) - 1)); |
| } else if ((unsigned int)adj_exp < MP_BITS_PER_BYTE * sizeof(mp_int_t) - 1) { |
| // the number is a (big) whole integer and will fit in val's signed-width |
| val = (mp_int_t)frc << (adj_exp - MP_FLOAT_FRAC_BITS); |
| } else { |
| // integer part will overflow val's width so just use what bits we can |
| val = frc; |
| } |
| } |
| |
| if (u.p.sgn) { |
| val = -(mp_uint_t)val; |
| } |
| |
| return val; |
| } |
| #endif |
| |
| static void float_print(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind) { |
| (void)kind; |
| mp_float_t o_val = mp_obj_float_get(o_in); |
| #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT |
| char buf[16]; |
| #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C |
| const int precision = 6; |
| #else |
| const int precision = 7; |
| #endif |
| #else |
| char buf[32]; |
| const int precision = 16; |
| #endif |
| mp_format_float(o_val, buf, sizeof(buf), 'g', precision, '\0'); |
| mp_print_str(print, buf); |
| if (strchr(buf, '.') == NULL && strchr(buf, 'e') == NULL && strchr(buf, 'n') == NULL) { |
| // Python floats always have decimal point (unless inf or nan) |
| mp_print_str(print, ".0"); |
| } |
| } |
| |
| static mp_obj_t float_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
| (void)type_in; |
| mp_arg_check_num(n_args, n_kw, 0, 1, false); |
| |
| switch (n_args) { |
| case 0: |
| return mp_obj_new_float(0); |
| |
| case 1: |
| default: { |
| mp_buffer_info_t bufinfo; |
| if (mp_get_buffer(args[0], &bufinfo, MP_BUFFER_READ)) { |
| // a textual representation, parse it |
| return mp_parse_num_float(bufinfo.buf, bufinfo.len, false, NULL); |
| } else if (mp_obj_is_float(args[0])) { |
| // a float, just return it |
| return args[0]; |
| } else { |
| // something else, try to cast it to a float |
| return mp_obj_new_float(mp_obj_get_float(args[0])); |
| } |
| } |
| } |
| } |
| |
| static mp_obj_t float_unary_op(mp_unary_op_t op, mp_obj_t o_in) { |
| mp_float_t val = mp_obj_float_get(o_in); |
| switch (op) { |
| case MP_UNARY_OP_BOOL: |
| return mp_obj_new_bool(val != 0); |
| case MP_UNARY_OP_HASH: |
| return MP_OBJ_NEW_SMALL_INT(mp_float_hash(val)); |
| case MP_UNARY_OP_POSITIVE: |
| return o_in; |
| case MP_UNARY_OP_NEGATIVE: |
| return mp_obj_new_float(-val); |
| case MP_UNARY_OP_ABS: { |
| if (signbit(val)) { |
| return mp_obj_new_float(-val); |
| } else { |
| return o_in; |
| } |
| } |
| default: |
| return MP_OBJ_NULL; // op not supported |
| } |
| } |
| |
| static mp_obj_t float_binary_op(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) { |
| mp_float_t lhs_val = mp_obj_float_get(lhs_in); |
| #if MICROPY_PY_BUILTINS_COMPLEX |
| if (mp_obj_is_type(rhs_in, &mp_type_complex)) { |
| return mp_obj_complex_binary_op(op, lhs_val, 0, rhs_in); |
| } |
| #endif |
| return mp_obj_float_binary_op(op, lhs_val, rhs_in); |
| } |
| |
| MP_DEFINE_CONST_OBJ_TYPE( |
| mp_type_float, MP_QSTR_float, MP_TYPE_FLAG_EQ_NOT_REFLEXIVE | MP_TYPE_FLAG_EQ_CHECKS_OTHER_TYPE, |
| make_new, float_make_new, |
| print, float_print, |
| unary_op, float_unary_op, |
| binary_op, float_binary_op |
| ); |
| |
| #if MICROPY_OBJ_REPR != MICROPY_OBJ_REPR_C && MICROPY_OBJ_REPR != MICROPY_OBJ_REPR_D |
| |
| mp_obj_t mp_obj_new_float(mp_float_t value) { |
| // Don't use mp_obj_malloc here to avoid extra function call overhead. |
| mp_obj_float_t *o = m_new_obj(mp_obj_float_t); |
| o->base.type = &mp_type_float; |
| o->value = value; |
| return MP_OBJ_FROM_PTR(o); |
| } |
| |
| mp_float_t mp_obj_float_get(mp_obj_t self_in) { |
| assert(mp_obj_is_float(self_in)); |
| mp_obj_float_t *self = MP_OBJ_TO_PTR(self_in); |
| return self->value; |
| } |
| |
| #endif |
| |
| static void mp_obj_float_divmod(mp_float_t *x, mp_float_t *y) { |
| // logic here follows that of CPython |
| // https://docs.python.org/3/reference/expressions.html#binary-arithmetic-operations |
| // x == (x//y)*y + (x%y) |
| // divmod(x, y) == (x//y, x%y) |
| mp_float_t mod = MICROPY_FLOAT_C_FUN(fmod)(*x, *y); |
| mp_float_t div = (*x - mod) / *y; |
| |
| // Python specs require that mod has same sign as second operand |
| if (mod == MICROPY_FLOAT_ZERO) { |
| mod = MICROPY_FLOAT_C_FUN(copysign)(MICROPY_FLOAT_ZERO, *y); |
| } else { |
| if ((mod < MICROPY_FLOAT_ZERO) != (*y < MICROPY_FLOAT_ZERO)) { |
| mod += *y; |
| div -= MICROPY_FLOAT_CONST(1.0); |
| } |
| } |
| |
| mp_float_t floordiv; |
| if (div == MICROPY_FLOAT_ZERO) { |
| // if division is zero, take the correct sign of zero |
| floordiv = MICROPY_FLOAT_C_FUN(copysign)(MICROPY_FLOAT_ZERO, *x / *y); |
| } else { |
| // Python specs require that x == (x//y)*y + (x%y) |
| floordiv = MICROPY_FLOAT_C_FUN(floor)(div); |
| if (div - floordiv > MICROPY_FLOAT_CONST(0.5)) { |
| floordiv += MICROPY_FLOAT_CONST(1.0); |
| } |
| } |
| |
| // return results |
| *x = floordiv; |
| *y = mod; |
| } |
| |
| mp_obj_t mp_obj_float_binary_op(mp_binary_op_t op, mp_float_t lhs_val, mp_obj_t rhs_in) { |
| mp_float_t rhs_val; |
| if (!mp_obj_get_float_maybe(rhs_in, &rhs_val)) { |
| return MP_OBJ_NULL; // op not supported |
| } |
| |
| switch (op) { |
| case MP_BINARY_OP_ADD: |
| case MP_BINARY_OP_INPLACE_ADD: |
| lhs_val += rhs_val; |
| break; |
| case MP_BINARY_OP_SUBTRACT: |
| case MP_BINARY_OP_INPLACE_SUBTRACT: |
| lhs_val -= rhs_val; |
| break; |
| case MP_BINARY_OP_MULTIPLY: |
| case MP_BINARY_OP_INPLACE_MULTIPLY: |
| lhs_val *= rhs_val; |
| break; |
| case MP_BINARY_OP_FLOOR_DIVIDE: |
| case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE: |
| if (rhs_val == 0) { |
| zero_division_error: |
| mp_raise_msg(&mp_type_ZeroDivisionError, MP_ERROR_TEXT("divide by zero")); |
| } |
| // Python specs require that x == (x//y)*y + (x%y) so we must |
| // call divmod to compute the correct floor division, which |
| // returns the floor divide in lhs_val. |
| mp_obj_float_divmod(&lhs_val, &rhs_val); |
| break; |
| case MP_BINARY_OP_TRUE_DIVIDE: |
| case MP_BINARY_OP_INPLACE_TRUE_DIVIDE: |
| if (rhs_val == 0) { |
| goto zero_division_error; |
| } |
| lhs_val /= rhs_val; |
| break; |
| case MP_BINARY_OP_MODULO: |
| case MP_BINARY_OP_INPLACE_MODULO: |
| if (rhs_val == MICROPY_FLOAT_ZERO) { |
| goto zero_division_error; |
| } |
| lhs_val = MICROPY_FLOAT_C_FUN(fmod)(lhs_val, rhs_val); |
| // Python specs require that mod has same sign as second operand |
| if (lhs_val == MICROPY_FLOAT_ZERO) { |
| lhs_val = MICROPY_FLOAT_C_FUN(copysign)(0.0, rhs_val); |
| } else { |
| if ((lhs_val < MICROPY_FLOAT_ZERO) != (rhs_val < MICROPY_FLOAT_ZERO)) { |
| lhs_val += rhs_val; |
| } |
| } |
| break; |
| case MP_BINARY_OP_POWER: |
| case MP_BINARY_OP_INPLACE_POWER: |
| if (lhs_val == 0 && rhs_val < 0 && !isinf(rhs_val)) { |
| goto zero_division_error; |
| } |
| if (lhs_val < 0 && rhs_val != MICROPY_FLOAT_C_FUN(floor)(rhs_val) && !isnan(rhs_val)) { |
| #if MICROPY_PY_BUILTINS_COMPLEX |
| return mp_obj_complex_binary_op(MP_BINARY_OP_POWER, lhs_val, 0, rhs_in); |
| #else |
| mp_raise_ValueError(MP_ERROR_TEXT("complex values not supported")); |
| #endif |
| } |
| #if MICROPY_PY_MATH_POW_FIX_NAN // Also see modmath.c. |
| if (lhs_val == MICROPY_FLOAT_CONST(1.0) || rhs_val == MICROPY_FLOAT_CONST(0.0)) { |
| lhs_val = MICROPY_FLOAT_CONST(1.0); |
| break; |
| } |
| #endif |
| lhs_val = MICROPY_FLOAT_C_FUN(pow)(lhs_val, rhs_val); |
| break; |
| case MP_BINARY_OP_DIVMOD: { |
| if (rhs_val == 0) { |
| goto zero_division_error; |
| } |
| mp_obj_float_divmod(&lhs_val, &rhs_val); |
| mp_obj_t tuple[2] = { |
| mp_obj_new_float(lhs_val), |
| mp_obj_new_float(rhs_val), |
| }; |
| return mp_obj_new_tuple(2, tuple); |
| } |
| case MP_BINARY_OP_LESS: |
| return mp_obj_new_bool(lhs_val < rhs_val); |
| case MP_BINARY_OP_MORE: |
| return mp_obj_new_bool(lhs_val > rhs_val); |
| case MP_BINARY_OP_EQUAL: |
| return mp_obj_new_bool(lhs_val == rhs_val); |
| case MP_BINARY_OP_LESS_EQUAL: |
| return mp_obj_new_bool(lhs_val <= rhs_val); |
| case MP_BINARY_OP_MORE_EQUAL: |
| return mp_obj_new_bool(lhs_val >= rhs_val); |
| |
| default: |
| return MP_OBJ_NULL; // op not supported |
| } |
| return mp_obj_new_float(lhs_val); |
| } |
| |
| #endif // MICROPY_PY_BUILTINS_FLOAT |