| /* |
| * This file is part of the MicroPython project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| // Essentially normal Python has 1 type: Python objects |
| // Viper has more than 1 type, and is just a more complicated (a superset of) Python. |
| // If you declare everything in Viper as a Python object (ie omit type decls) then |
| // it should in principle be exactly the same as Python native. |
| // Having types means having more opcodes, like binary_op_nat_nat, binary_op_nat_obj etc. |
| // In practice we won't have a VM but rather do this in asm which is actually very minimal. |
| |
| // Because it breaks strict Python equivalence it should be a completely separate |
| // decorator. It breaks equivalence because overflow on integers wraps around. |
| // It shouldn't break equivalence if you don't use the new types, but since the |
| // type decls might be used in normal Python for other reasons, it's probably safest, |
| // cleanest and clearest to make it a separate decorator. |
| |
| // Actually, it does break equivalence because integers default to native integers, |
| // not Python objects. |
| |
| // for x in l[0:8]: can be compiled into a native loop if l has pointer type |
| |
| #include <stdio.h> |
| #include <string.h> |
| #include <assert.h> |
| |
| #include "py/emit.h" |
| #include "py/nativeglue.h" |
| #include "py/objfun.h" |
| #include "py/objstr.h" |
| |
| #if MICROPY_DEBUG_VERBOSE // print debugging info |
| #define DEBUG_PRINT (1) |
| #define DEBUG_printf DEBUG_printf |
| #else // don't print debugging info |
| #define DEBUG_printf(...) (void)0 |
| #endif |
| |
| // wrapper around everything in this file |
| #if N_X64 || N_X86 || N_THUMB || N_ARM || N_XTENSA || N_XTENSAWIN || N_RV32 || N_DEBUG |
| |
| // C stack layout for native functions: |
| // 0: nlr_buf_t [optional] |
| // return_value [optional word] |
| // exc_handler_unwind [optional word] |
| // emit->code_state_start: mp_code_state_native_t |
| // emit->stack_start: Python object stack | emit->n_state |
| // locals (reversed, L0 at end) | |
| // |
| // C stack layout for native generator functions: |
| // 0=emit->stack_start: nlr_buf_t |
| // return_value |
| // exc_handler_unwind [optional word] |
| // |
| // Then REG_GENERATOR_STATE points to: |
| // 0=emit->code_state_start: mp_code_state_native_t |
| // emit->stack_start: Python object stack | emit->n_state |
| // locals (reversed, L0 at end) | |
| // |
| // C stack layout for viper functions: |
| // 0: nlr_buf_t [optional] |
| // return_value [optional word] |
| // exc_handler_unwind [optional word] |
| // emit->code_state_start: fun_obj, old_globals [optional] |
| // emit->stack_start: Python object stack | emit->n_state |
| // locals (reversed, L0 at end) | |
| // (L0-L2 may be in regs instead) |
| |
| // Native emitter needs to know the following sizes and offsets of C structs (on the target): |
| #if MICROPY_DYNAMIC_COMPILER |
| #define SIZEOF_NLR_BUF (2 + mp_dynamic_compiler.nlr_buf_num_regs + 1) // the +1 is conservative in case MICROPY_ENABLE_PYSTACK enabled |
| #else |
| #define SIZEOF_NLR_BUF (sizeof(nlr_buf_t) / sizeof(uintptr_t)) |
| #endif |
| #define SIZEOF_CODE_STATE (sizeof(mp_code_state_native_t) / sizeof(uintptr_t)) |
| #define OFFSETOF_CODE_STATE_STATE (offsetof(mp_code_state_native_t, state) / sizeof(uintptr_t)) |
| #define OFFSETOF_CODE_STATE_FUN_BC (offsetof(mp_code_state_native_t, fun_bc) / sizeof(uintptr_t)) |
| #define OFFSETOF_CODE_STATE_IP (offsetof(mp_code_state_native_t, ip) / sizeof(uintptr_t)) |
| #define OFFSETOF_CODE_STATE_SP (offsetof(mp_code_state_native_t, sp) / sizeof(uintptr_t)) |
| #define OFFSETOF_CODE_STATE_N_STATE (offsetof(mp_code_state_native_t, n_state) / sizeof(uintptr_t)) |
| #define OFFSETOF_OBJ_FUN_BC_CONTEXT (offsetof(mp_obj_fun_bc_t, context) / sizeof(uintptr_t)) |
| #define OFFSETOF_OBJ_FUN_BC_CHILD_TABLE (offsetof(mp_obj_fun_bc_t, child_table) / sizeof(uintptr_t)) |
| #define OFFSETOF_OBJ_FUN_BC_BYTECODE (offsetof(mp_obj_fun_bc_t, bytecode) / sizeof(uintptr_t)) |
| #define OFFSETOF_MODULE_CONTEXT_QSTR_TABLE (offsetof(mp_module_context_t, constants.qstr_table) / sizeof(uintptr_t)) |
| #define OFFSETOF_MODULE_CONTEXT_OBJ_TABLE (offsetof(mp_module_context_t, constants.obj_table) / sizeof(uintptr_t)) |
| #define OFFSETOF_MODULE_CONTEXT_GLOBALS (offsetof(mp_module_context_t, module.globals) / sizeof(uintptr_t)) |
| |
| // If not already defined, set parent args to same as child call registers |
| #ifndef REG_PARENT_RET |
| #define REG_PARENT_RET REG_RET |
| #define REG_PARENT_ARG_1 REG_ARG_1 |
| #define REG_PARENT_ARG_2 REG_ARG_2 |
| #define REG_PARENT_ARG_3 REG_ARG_3 |
| #define REG_PARENT_ARG_4 REG_ARG_4 |
| #endif |
| |
| // Word index of nlr_buf_t.ret_val |
| #define NLR_BUF_IDX_RET_VAL (1) |
| |
| // Whether the viper function needs access to fun_obj |
| #define NEED_FUN_OBJ(emit) ((emit)->scope->exc_stack_size > 0 \ |
| || ((emit)->scope->scope_flags & (MP_SCOPE_FLAG_REFGLOBALS | MP_SCOPE_FLAG_HASCONSTS))) |
| |
| // Whether the native/viper function needs to be wrapped in an exception handler |
| #define NEED_GLOBAL_EXC_HANDLER(emit) ((emit)->scope->exc_stack_size > 0 \ |
| || ((emit)->scope->scope_flags & (MP_SCOPE_FLAG_GENERATOR | MP_SCOPE_FLAG_REFGLOBALS))) |
| |
| // Whether a slot is needed to store LOCAL_IDX_EXC_HANDLER_UNWIND |
| #define NEED_EXC_HANDLER_UNWIND(emit) ((emit)->scope->exc_stack_size > 0) |
| #define NEED_THROW_VAL(emit) ((emit)->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) |
| |
| // Whether registers can be used to store locals (only true if there are no |
| // exception handlers, because otherwise an nlr_jump will restore registers to |
| // their state at the start of the function and updates to locals will be lost) |
| #define CAN_USE_REGS_FOR_LOCALS(emit) ((emit)->scope->exc_stack_size == 0 && !(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) |
| |
| // Indices within the local C stack for various variables |
| #define LOCAL_IDX_EXC_VAL(emit) (NLR_BUF_IDX_RET_VAL) |
| #define LOCAL_IDX_EXC_HANDLER_PC(emit) (NLR_BUF_IDX_LOCAL_1) |
| #define LOCAL_IDX_EXC_HANDLER_UNWIND(emit) (SIZEOF_NLR_BUF + 1) // this needs a dedicated variable outside nlr_buf_t |
| #define LOCAL_IDX_THROW_VAL(emit) (SIZEOF_NLR_BUF + 2) // needs a dedicated variable outside nlr_buf_t, following inject_exc in py/vm.c |
| #define LOCAL_IDX_RET_VAL(emit) (SIZEOF_NLR_BUF) // needed when NEED_GLOBAL_EXC_HANDLER is true |
| #define LOCAL_IDX_FUN_OBJ(emit) ((emit)->code_state_start + OFFSETOF_CODE_STATE_FUN_BC) |
| #define LOCAL_IDX_OLD_GLOBALS(emit) ((emit)->code_state_start + OFFSETOF_CODE_STATE_IP) |
| #define LOCAL_IDX_GEN_PC(emit) ((emit)->code_state_start + OFFSETOF_CODE_STATE_IP) |
| #define LOCAL_IDX_LOCAL_VAR(emit, local_num) ((emit)->stack_start + (emit)->n_state - 1 - (local_num)) |
| |
| #if MICROPY_PERSISTENT_CODE_SAVE |
| |
| // When building with the ability to save native code to .mpy files: |
| // - Qstrs are indirect via qstr_table, and REG_LOCAL_3 always points to qstr_table. |
| // - In a generator no registers are used to store locals, and REG_LOCAL_2 points to the generator state. |
| // - At most 2 registers hold local variables (see CAN_USE_REGS_FOR_LOCALS for when this is possible). |
| |
| #define REG_GENERATOR_STATE (REG_LOCAL_2) |
| #define REG_QSTR_TABLE (REG_LOCAL_3) |
| #define MAX_REGS_FOR_LOCAL_VARS (2) |
| |
| static const uint8_t reg_local_table[MAX_REGS_FOR_LOCAL_VARS] = {REG_LOCAL_1, REG_LOCAL_2}; |
| |
| #else |
| |
| // When building without the ability to save native code to .mpy files: |
| // - Qstrs values are written directly into the machine code. |
| // - In a generator no registers are used to store locals, and REG_LOCAL_3 points to the generator state. |
| // - At most 3 registers hold local variables (see CAN_USE_REGS_FOR_LOCALS for when this is possible). |
| |
| #define REG_GENERATOR_STATE (REG_LOCAL_3) |
| #define MAX_REGS_FOR_LOCAL_VARS (3) |
| |
| static const uint8_t reg_local_table[MAX_REGS_FOR_LOCAL_VARS] = {REG_LOCAL_1, REG_LOCAL_2, REG_LOCAL_3}; |
| |
| #endif |
| |
| #define REG_LOCAL_LAST (reg_local_table[MAX_REGS_FOR_LOCAL_VARS - 1]) |
| |
| #define EMIT_NATIVE_VIPER_TYPE_ERROR(emit, ...) do { \ |
| *emit->error_slot = mp_obj_new_exception_msg_varg(&mp_type_ViperTypeError, __VA_ARGS__); \ |
| } while (0) |
| |
| #if N_RV32 |
| #define FIT_SIGNED(value, bits) \ |
| ((((value) & ~((1U << ((bits) - 1)) - 1)) == 0) || \ |
| (((value) & ~((1U << ((bits) - 1)) - 1)) == ~((1U << ((bits) - 1)) - 1))) |
| #endif |
| |
| typedef enum { |
| STACK_VALUE, |
| STACK_REG, |
| STACK_IMM, |
| } stack_info_kind_t; |
| |
| // these enums must be distinct and the bottom 4 bits |
| // must correspond to the correct MP_NATIVE_TYPE_xxx value |
| typedef enum { |
| VTYPE_PYOBJ = 0x00 | MP_NATIVE_TYPE_OBJ, |
| VTYPE_BOOL = 0x00 | MP_NATIVE_TYPE_BOOL, |
| VTYPE_INT = 0x00 | MP_NATIVE_TYPE_INT, |
| VTYPE_UINT = 0x00 | MP_NATIVE_TYPE_UINT, |
| VTYPE_PTR = 0x00 | MP_NATIVE_TYPE_PTR, |
| VTYPE_PTR8 = 0x00 | MP_NATIVE_TYPE_PTR8, |
| VTYPE_PTR16 = 0x00 | MP_NATIVE_TYPE_PTR16, |
| VTYPE_PTR32 = 0x00 | MP_NATIVE_TYPE_PTR32, |
| |
| VTYPE_PTR_NONE = 0x50 | MP_NATIVE_TYPE_PTR, |
| |
| VTYPE_UNBOUND = 0x60 | MP_NATIVE_TYPE_OBJ, |
| VTYPE_BUILTIN_CAST = 0x70 | MP_NATIVE_TYPE_OBJ, |
| } vtype_kind_t; |
| |
| static qstr vtype_to_qstr(vtype_kind_t vtype) { |
| switch (vtype) { |
| case VTYPE_PYOBJ: |
| return MP_QSTR_object; |
| case VTYPE_BOOL: |
| return MP_QSTR_bool; |
| case VTYPE_INT: |
| return MP_QSTR_int; |
| case VTYPE_UINT: |
| return MP_QSTR_uint; |
| case VTYPE_PTR: |
| return MP_QSTR_ptr; |
| case VTYPE_PTR8: |
| return MP_QSTR_ptr8; |
| case VTYPE_PTR16: |
| return MP_QSTR_ptr16; |
| case VTYPE_PTR32: |
| return MP_QSTR_ptr32; |
| case VTYPE_PTR_NONE: |
| default: |
| return MP_QSTR_None; |
| } |
| } |
| |
| typedef struct _stack_info_t { |
| vtype_kind_t vtype; |
| stack_info_kind_t kind; |
| union { |
| int u_reg; |
| mp_int_t u_imm; |
| } data; |
| } stack_info_t; |
| |
| #define UNWIND_LABEL_UNUSED (0x7fff) |
| #define UNWIND_LABEL_DO_FINAL_UNWIND (0x7ffe) |
| |
| typedef struct _exc_stack_entry_t { |
| uint16_t label : 15; |
| uint16_t is_finally : 1; |
| uint16_t unwind_label : 15; |
| uint16_t is_active : 1; |
| } exc_stack_entry_t; |
| |
| struct _emit_t { |
| mp_emit_common_t *emit_common; |
| mp_obj_t *error_slot; |
| uint *label_slot; |
| uint exit_label; |
| int pass; |
| |
| bool do_viper_types; |
| |
| mp_uint_t local_vtype_alloc; |
| vtype_kind_t *local_vtype; |
| |
| mp_uint_t stack_info_alloc; |
| stack_info_t *stack_info; |
| vtype_kind_t saved_stack_vtype; |
| |
| size_t exc_stack_alloc; |
| size_t exc_stack_size; |
| exc_stack_entry_t *exc_stack; |
| |
| int prelude_offset; |
| int prelude_ptr_index; |
| int start_offset; |
| int n_state; |
| uint16_t code_state_start; |
| uint16_t stack_start; |
| int stack_size; |
| uint16_t n_info; |
| uint16_t n_cell; |
| |
| scope_t *scope; |
| |
| ASM_T *as; |
| }; |
| |
| static void emit_load_reg_with_object(emit_t *emit, int reg, mp_obj_t obj); |
| static void emit_native_global_exc_entry(emit_t *emit); |
| static void emit_native_global_exc_exit(emit_t *emit); |
| static void emit_native_load_const_obj(emit_t *emit, mp_obj_t obj); |
| |
| emit_t *EXPORT_FUN(new)(mp_emit_common_t * emit_common, mp_obj_t *error_slot, uint *label_slot, mp_uint_t max_num_labels) { |
| emit_t *emit = m_new0(emit_t, 1); |
| emit->emit_common = emit_common; |
| emit->error_slot = error_slot; |
| emit->label_slot = label_slot; |
| emit->stack_info_alloc = 8; |
| emit->stack_info = m_new(stack_info_t, emit->stack_info_alloc); |
| emit->exc_stack_alloc = 8; |
| emit->exc_stack = m_new(exc_stack_entry_t, emit->exc_stack_alloc); |
| emit->as = m_new0(ASM_T, 1); |
| mp_asm_base_init(&emit->as->base, max_num_labels); |
| return emit; |
| } |
| |
| void EXPORT_FUN(free)(emit_t * emit) { |
| mp_asm_base_deinit(&emit->as->base, false); |
| m_del_obj(ASM_T, emit->as); |
| m_del(exc_stack_entry_t, emit->exc_stack, emit->exc_stack_alloc); |
| m_del(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc); |
| m_del(stack_info_t, emit->stack_info, emit->stack_info_alloc); |
| m_del_obj(emit_t, emit); |
| } |
| |
| static void emit_call_with_imm_arg(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg); |
| |
| static void emit_native_mov_reg_const(emit_t *emit, int reg_dest, int const_val) { |
| ASM_LOAD_REG_REG_OFFSET(emit->as, reg_dest, REG_FUN_TABLE, const_val); |
| } |
| |
| static void emit_native_mov_state_reg(emit_t *emit, int local_num, int reg_src) { |
| if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { |
| ASM_STORE_REG_REG_OFFSET(emit->as, reg_src, REG_GENERATOR_STATE, local_num); |
| } else { |
| ASM_MOV_LOCAL_REG(emit->as, local_num, reg_src); |
| } |
| } |
| |
| static void emit_native_mov_reg_state(emit_t *emit, int reg_dest, int local_num) { |
| if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { |
| ASM_LOAD_REG_REG_OFFSET(emit->as, reg_dest, REG_GENERATOR_STATE, local_num); |
| } else { |
| ASM_MOV_REG_LOCAL(emit->as, reg_dest, local_num); |
| } |
| } |
| |
| static void emit_native_mov_reg_state_addr(emit_t *emit, int reg_dest, int local_num) { |
| if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { |
| ASM_MOV_REG_IMM(emit->as, reg_dest, local_num * ASM_WORD_SIZE); |
| ASM_ADD_REG_REG(emit->as, reg_dest, REG_GENERATOR_STATE); |
| } else { |
| ASM_MOV_REG_LOCAL_ADDR(emit->as, reg_dest, local_num); |
| } |
| } |
| |
| static void emit_native_mov_reg_qstr(emit_t *emit, int arg_reg, qstr qst) { |
| #if MICROPY_PERSISTENT_CODE_SAVE |
| ASM_LOAD16_REG_REG_OFFSET(emit->as, arg_reg, REG_QSTR_TABLE, mp_emit_common_use_qstr(emit->emit_common, qst)); |
| #elif defined(ASM_MOV_REG_QSTR) |
| ASM_MOV_REG_QSTR(emit->as, arg_reg, qst); |
| #else |
| ASM_MOV_REG_IMM(emit->as, arg_reg, qst); |
| #endif |
| } |
| |
| // This function may clobber REG_TEMP0 (and `reg_dest` can be REG_TEMP0). |
| static void emit_native_mov_reg_qstr_obj(emit_t *emit, int reg_dest, qstr qst) { |
| #if MICROPY_PERSISTENT_CODE_SAVE |
| emit_load_reg_with_object(emit, reg_dest, MP_OBJ_NEW_QSTR(qst)); |
| #else |
| ASM_MOV_REG_IMM(emit->as, reg_dest, (mp_uint_t)MP_OBJ_NEW_QSTR(qst)); |
| #endif |
| } |
| |
| #define emit_native_mov_state_imm_via(emit, local_num, imm, reg_temp) \ |
| do { \ |
| ASM_MOV_REG_IMM((emit)->as, (reg_temp), (imm)); \ |
| emit_native_mov_state_reg((emit), (local_num), (reg_temp)); \ |
| } while (false) |
| |
| static void emit_native_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) { |
| DEBUG_printf("start_pass(pass=%u, scope=%p)\n", pass, scope); |
| |
| emit->pass = pass; |
| emit->do_viper_types = scope->emit_options == MP_EMIT_OPT_VIPER; |
| emit->stack_size = 0; |
| emit->scope = scope; |
| |
| // allocate memory for keeping track of the types of locals |
| if (emit->local_vtype_alloc < scope->num_locals) { |
| emit->local_vtype = m_renew(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc, scope->num_locals); |
| emit->local_vtype_alloc = scope->num_locals; |
| } |
| |
| // set default type for arguments |
| mp_uint_t num_args = emit->scope->num_pos_args + emit->scope->num_kwonly_args; |
| if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) { |
| num_args += 1; |
| } |
| if (scope->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) { |
| num_args += 1; |
| } |
| for (mp_uint_t i = 0; i < num_args; i++) { |
| emit->local_vtype[i] = VTYPE_PYOBJ; |
| } |
| |
| // Set viper type for arguments |
| if (emit->do_viper_types) { |
| for (int i = 0; i < emit->scope->id_info_len; ++i) { |
| id_info_t *id = &emit->scope->id_info[i]; |
| if (id->flags & ID_FLAG_IS_PARAM) { |
| assert(id->local_num < emit->local_vtype_alloc); |
| emit->local_vtype[id->local_num] = id->flags >> ID_FLAG_VIPER_TYPE_POS; |
| } |
| } |
| } |
| |
| // local variables begin unbound, and have unknown type |
| for (mp_uint_t i = num_args; i < emit->local_vtype_alloc; i++) { |
| emit->local_vtype[i] = emit->do_viper_types ? VTYPE_UNBOUND : VTYPE_PYOBJ; |
| } |
| |
| // values on stack begin unbound |
| for (mp_uint_t i = 0; i < emit->stack_info_alloc; i++) { |
| emit->stack_info[i].kind = STACK_VALUE; |
| emit->stack_info[i].vtype = VTYPE_UNBOUND; |
| } |
| |
| mp_asm_base_start_pass(&emit->as->base, pass == MP_PASS_EMIT ? MP_ASM_PASS_EMIT : MP_ASM_PASS_COMPUTE); |
| |
| // generate code for entry to function |
| |
| // Work out start of code state (mp_code_state_native_t or reduced version for viper) |
| emit->code_state_start = 0; |
| if (NEED_GLOBAL_EXC_HANDLER(emit)) { |
| emit->code_state_start = SIZEOF_NLR_BUF; // for nlr_buf_t |
| emit->code_state_start += 1; // for return_value |
| if (NEED_THROW_VAL(emit)) { |
| emit->code_state_start += 2; |
| } else if (NEED_EXC_HANDLER_UNWIND(emit)) { |
| emit->code_state_start += 1; |
| } |
| } |
| |
| size_t fun_table_off = mp_emit_common_use_const_obj(emit->emit_common, MP_OBJ_FROM_PTR(&mp_fun_table)); |
| |
| if (emit->do_viper_types) { |
| // Work out size of state (locals plus stack) |
| // n_state counts all stack and locals, even those in registers |
| emit->n_state = scope->num_locals + scope->stack_size; |
| int num_locals_in_regs = 0; |
| if (CAN_USE_REGS_FOR_LOCALS(emit)) { |
| num_locals_in_regs = scope->num_locals; |
| if (num_locals_in_regs > MAX_REGS_FOR_LOCAL_VARS) { |
| num_locals_in_regs = MAX_REGS_FOR_LOCAL_VARS; |
| } |
| // Need a spot for REG_LOCAL_LAST (see below) |
| if (scope->num_pos_args >= MAX_REGS_FOR_LOCAL_VARS + 1) { |
| --num_locals_in_regs; |
| } |
| } |
| |
| // Work out where the locals and Python stack start within the C stack |
| if (NEED_GLOBAL_EXC_HANDLER(emit)) { |
| // Reserve 2 words for function object and old globals |
| emit->stack_start = emit->code_state_start + 2; |
| } else if (scope->scope_flags & MP_SCOPE_FLAG_HASCONSTS) { |
| // Reserve 1 word for function object, to access const table |
| emit->stack_start = emit->code_state_start + 1; |
| } else { |
| emit->stack_start = emit->code_state_start + 0; |
| } |
| |
| // Entry to function |
| ASM_ENTRY(emit->as, emit->stack_start + emit->n_state - num_locals_in_regs); |
| |
| #if N_X86 |
| asm_x86_mov_arg_to_r32(emit->as, 0, REG_PARENT_ARG_1); |
| #endif |
| |
| // Load REG_FUN_TABLE with a pointer to mp_fun_table, found in the const_table |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_PARENT_ARG_1, OFFSETOF_OBJ_FUN_BC_CONTEXT); |
| #if MICROPY_PERSISTENT_CODE_SAVE |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_QSTR_TABLE, REG_FUN_TABLE, OFFSETOF_MODULE_CONTEXT_QSTR_TABLE); |
| #endif |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_FUN_TABLE, OFFSETOF_MODULE_CONTEXT_OBJ_TABLE); |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_FUN_TABLE, fun_table_off); |
| |
| // Store function object (passed as first arg) to stack if needed |
| if (NEED_FUN_OBJ(emit)) { |
| ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_FUN_OBJ(emit), REG_PARENT_ARG_1); |
| } |
| |
| // Put n_args in REG_ARG_1, n_kw in REG_ARG_2, args array in REG_LOCAL_LAST |
| #if N_X86 |
| asm_x86_mov_arg_to_r32(emit->as, 1, REG_ARG_1); |
| asm_x86_mov_arg_to_r32(emit->as, 2, REG_ARG_2); |
| asm_x86_mov_arg_to_r32(emit->as, 3, REG_LOCAL_LAST); |
| #else |
| ASM_MOV_REG_REG(emit->as, REG_ARG_1, REG_PARENT_ARG_2); |
| ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_PARENT_ARG_3); |
| ASM_MOV_REG_REG(emit->as, REG_LOCAL_LAST, REG_PARENT_ARG_4); |
| #endif |
| |
| // Check number of args matches this function, and call mp_arg_check_num_sig if not |
| ASM_JUMP_IF_REG_NONZERO(emit->as, REG_ARG_2, *emit->label_slot + 4, true); |
| ASM_MOV_REG_IMM(emit->as, REG_ARG_3, scope->num_pos_args); |
| ASM_JUMP_IF_REG_EQ(emit->as, REG_ARG_1, REG_ARG_3, *emit->label_slot + 5); |
| mp_asm_base_label_assign(&emit->as->base, *emit->label_slot + 4); |
| ASM_MOV_REG_IMM(emit->as, REG_ARG_3, MP_OBJ_FUN_MAKE_SIG(scope->num_pos_args, scope->num_pos_args, false)); |
| ASM_CALL_IND(emit->as, MP_F_ARG_CHECK_NUM_SIG); |
| mp_asm_base_label_assign(&emit->as->base, *emit->label_slot + 5); |
| |
| // Store arguments into locals (reg or stack), converting to native if needed |
| for (int i = 0; i < emit->scope->num_pos_args; i++) { |
| int r = REG_ARG_1; |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_1, REG_LOCAL_LAST, i); |
| if (emit->local_vtype[i] != VTYPE_PYOBJ) { |
| emit_call_with_imm_arg(emit, MP_F_CONVERT_OBJ_TO_NATIVE, emit->local_vtype[i], REG_ARG_2); |
| r = REG_RET; |
| } |
| // REG_LOCAL_LAST points to the args array so be sure not to overwrite it if it's still needed |
| if (i < MAX_REGS_FOR_LOCAL_VARS && CAN_USE_REGS_FOR_LOCALS(emit) && (i != MAX_REGS_FOR_LOCAL_VARS - 1 || emit->scope->num_pos_args == MAX_REGS_FOR_LOCAL_VARS)) { |
| ASM_MOV_REG_REG(emit->as, reg_local_table[i], r); |
| } else { |
| emit_native_mov_state_reg(emit, LOCAL_IDX_LOCAL_VAR(emit, i), r); |
| } |
| } |
| // Get local from the stack back into REG_LOCAL_LAST if this reg couldn't be written to above |
| if (emit->scope->num_pos_args >= MAX_REGS_FOR_LOCAL_VARS + 1 && CAN_USE_REGS_FOR_LOCALS(emit)) { |
| ASM_MOV_REG_LOCAL(emit->as, REG_LOCAL_LAST, LOCAL_IDX_LOCAL_VAR(emit, MAX_REGS_FOR_LOCAL_VARS - 1)); |
| } |
| |
| emit_native_global_exc_entry(emit); |
| |
| } else { |
| // work out size of state (locals plus stack) |
| emit->n_state = scope->num_locals + scope->stack_size; |
| |
| // Store in the first machine-word an index used to the function's prelude. |
| // This is used at runtime by mp_obj_fun_native_get_prelude_ptr(). |
| mp_asm_base_data(&emit->as->base, ASM_WORD_SIZE, (uintptr_t)emit->prelude_ptr_index); |
| |
| if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { |
| mp_asm_base_data(&emit->as->base, ASM_WORD_SIZE, (uintptr_t)emit->start_offset); |
| ASM_ENTRY(emit->as, emit->code_state_start); |
| |
| // Reset the state size for the state pointed to by REG_GENERATOR_STATE |
| emit->code_state_start = 0; |
| emit->stack_start = SIZEOF_CODE_STATE; |
| |
| // Put address of code_state into REG_GENERATOR_STATE |
| #if N_X86 |
| asm_x86_mov_arg_to_r32(emit->as, 0, REG_GENERATOR_STATE); |
| #else |
| ASM_MOV_REG_REG(emit->as, REG_GENERATOR_STATE, REG_PARENT_ARG_1); |
| #endif |
| |
| // Put throw value into LOCAL_IDX_THROW_VAL slot, for yield/yield-from |
| #if N_X86 |
| asm_x86_mov_arg_to_r32(emit->as, 1, REG_PARENT_ARG_2); |
| #endif |
| ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_THROW_VAL(emit), REG_PARENT_ARG_2); |
| |
| // Load REG_FUN_TABLE with a pointer to mp_fun_table, found in the const_table |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_GENERATOR_STATE, LOCAL_IDX_FUN_OBJ(emit)); |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_OBJ_FUN_BC_CONTEXT); |
| #if MICROPY_PERSISTENT_CODE_SAVE |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_QSTR_TABLE, REG_TEMP0, OFFSETOF_MODULE_CONTEXT_QSTR_TABLE); |
| #endif |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_MODULE_CONTEXT_OBJ_TABLE); |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_TEMP0, fun_table_off); |
| } else { |
| // The locals and stack start after the code_state structure |
| emit->stack_start = emit->code_state_start + SIZEOF_CODE_STATE; |
| |
| // Allocate space on C-stack for code_state structure, which includes state |
| ASM_ENTRY(emit->as, emit->stack_start + emit->n_state); |
| |
| // Prepare incoming arguments for call to mp_setup_code_state |
| |
| #if N_X86 |
| asm_x86_mov_arg_to_r32(emit->as, 0, REG_PARENT_ARG_1); |
| asm_x86_mov_arg_to_r32(emit->as, 1, REG_PARENT_ARG_2); |
| asm_x86_mov_arg_to_r32(emit->as, 2, REG_PARENT_ARG_3); |
| asm_x86_mov_arg_to_r32(emit->as, 3, REG_PARENT_ARG_4); |
| #endif |
| |
| // Load REG_FUN_TABLE with a pointer to mp_fun_table, found in the const_table |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_PARENT_ARG_1, OFFSETOF_OBJ_FUN_BC_CONTEXT); |
| #if MICROPY_PERSISTENT_CODE_SAVE |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_QSTR_TABLE, REG_FUN_TABLE, OFFSETOF_MODULE_CONTEXT_QSTR_TABLE); |
| #endif |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_FUN_TABLE, OFFSETOF_MODULE_CONTEXT_OBJ_TABLE); |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_FUN_TABLE, fun_table_off); |
| |
| // Set code_state.fun_bc |
| ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_FUN_OBJ(emit), REG_PARENT_ARG_1); |
| |
| // Set code_state.n_state (only works on little endian targets due to n_state being uint16_t) |
| emit_native_mov_state_imm_via(emit, emit->code_state_start + OFFSETOF_CODE_STATE_N_STATE, emit->n_state, REG_ARG_1); |
| |
| // Put address of code_state into first arg |
| ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, emit->code_state_start); |
| |
| // Copy next 3 args if needed |
| #if REG_ARG_2 != REG_PARENT_ARG_2 |
| ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_PARENT_ARG_2); |
| #endif |
| #if REG_ARG_3 != REG_PARENT_ARG_3 |
| ASM_MOV_REG_REG(emit->as, REG_ARG_3, REG_PARENT_ARG_3); |
| #endif |
| #if REG_ARG_4 != REG_PARENT_ARG_4 |
| ASM_MOV_REG_REG(emit->as, REG_ARG_4, REG_PARENT_ARG_4); |
| #endif |
| |
| // Call mp_setup_code_state to prepare code_state structure |
| #if N_THUMB |
| asm_thumb_bl_ind(emit->as, MP_F_SETUP_CODE_STATE, ASM_THUMB_REG_R4); |
| #elif N_ARM |
| asm_arm_bl_ind(emit->as, MP_F_SETUP_CODE_STATE, ASM_ARM_REG_R4); |
| #else |
| ASM_CALL_IND(emit->as, MP_F_SETUP_CODE_STATE); |
| #endif |
| } |
| |
| emit_native_global_exc_entry(emit); |
| |
| // cache some locals in registers, but only if no exception handlers |
| if (CAN_USE_REGS_FOR_LOCALS(emit)) { |
| for (int i = 0; i < MAX_REGS_FOR_LOCAL_VARS && i < scope->num_locals; ++i) { |
| ASM_MOV_REG_LOCAL(emit->as, reg_local_table[i], LOCAL_IDX_LOCAL_VAR(emit, i)); |
| } |
| } |
| |
| // set the type of closed over variables |
| for (mp_uint_t i = 0; i < scope->id_info_len; i++) { |
| id_info_t *id = &scope->id_info[i]; |
| if (id->kind == ID_INFO_KIND_CELL) { |
| emit->local_vtype[id->local_num] = VTYPE_PYOBJ; |
| } |
| } |
| } |
| } |
| |
| static inline void emit_native_write_code_info_byte(emit_t *emit, byte val) { |
| mp_asm_base_data(&emit->as->base, 1, val); |
| } |
| |
| static inline void emit_native_write_code_info_qstr(emit_t *emit, qstr qst) { |
| mp_encode_uint(&emit->as->base, mp_asm_base_get_cur_to_write_bytes, mp_emit_common_use_qstr(emit->emit_common, qst)); |
| } |
| |
| static bool emit_native_end_pass(emit_t *emit) { |
| emit_native_global_exc_exit(emit); |
| |
| if (!emit->do_viper_types) { |
| emit->prelude_offset = mp_asm_base_get_code_pos(&emit->as->base); |
| emit->prelude_ptr_index = emit->emit_common->ct_cur_child; |
| |
| size_t n_state = emit->n_state; |
| size_t n_exc_stack = 0; // exc-stack not needed for native code |
| MP_BC_PRELUDE_SIG_ENCODE(n_state, n_exc_stack, emit->scope, emit_native_write_code_info_byte, emit); |
| |
| size_t n_info = emit->n_info; |
| size_t n_cell = emit->n_cell; |
| MP_BC_PRELUDE_SIZE_ENCODE(n_info, n_cell, emit_native_write_code_info_byte, emit); |
| |
| // bytecode prelude: source info (function and argument qstrs) |
| size_t info_start = mp_asm_base_get_code_pos(&emit->as->base); |
| emit_native_write_code_info_qstr(emit, emit->scope->simple_name); |
| for (int i = 0; i < emit->scope->num_pos_args + emit->scope->num_kwonly_args; i++) { |
| qstr qst = MP_QSTR__star_; |
| for (int j = 0; j < emit->scope->id_info_len; ++j) { |
| id_info_t *id = &emit->scope->id_info[j]; |
| if ((id->flags & ID_FLAG_IS_PARAM) && id->local_num == i) { |
| qst = id->qst; |
| break; |
| } |
| } |
| emit_native_write_code_info_qstr(emit, qst); |
| } |
| emit->n_info = mp_asm_base_get_code_pos(&emit->as->base) - info_start; |
| |
| // bytecode prelude: initialise closed over variables |
| size_t cell_start = mp_asm_base_get_code_pos(&emit->as->base); |
| for (int i = 0; i < emit->scope->id_info_len; i++) { |
| id_info_t *id = &emit->scope->id_info[i]; |
| if (id->kind == ID_INFO_KIND_CELL) { |
| assert(id->local_num <= 255); |
| mp_asm_base_data(&emit->as->base, 1, id->local_num); // write the local which should be converted to a cell |
| } |
| } |
| emit->n_cell = mp_asm_base_get_code_pos(&emit->as->base) - cell_start; |
| |
| } |
| |
| ASM_END_PASS(emit->as); |
| |
| // check stack is back to zero size |
| assert(emit->stack_size == 0); |
| assert(emit->exc_stack_size == 0); |
| |
| if (emit->pass == MP_PASS_EMIT) { |
| void *f = mp_asm_base_get_code(&emit->as->base); |
| mp_uint_t f_len = mp_asm_base_get_code_size(&emit->as->base); |
| |
| mp_raw_code_t **children = emit->emit_common->children; |
| if (!emit->do_viper_types) { |
| #if MICROPY_EMIT_NATIVE_PRELUDE_SEPARATE_FROM_MACHINE_CODE |
| // Executable code cannot be accessed byte-wise on this architecture, so copy |
| // the prelude to a separate memory region that is byte-wise readable. |
| void *buf = emit->as->base.code_base + emit->prelude_offset; |
| size_t n = emit->as->base.code_offset - emit->prelude_offset; |
| const uint8_t *prelude_ptr = memcpy(m_new(uint8_t, n), buf, n); |
| #else |
| // Point to the prelude directly, at the end of the machine code data. |
| const uint8_t *prelude_ptr = (const uint8_t *)f + emit->prelude_offset; |
| #endif |
| |
| // Store the pointer to the prelude using the child_table. |
| assert(emit->prelude_ptr_index == emit->emit_common->ct_cur_child); |
| if (emit->prelude_ptr_index == 0) { |
| children = (void *)prelude_ptr; |
| } else { |
| children = m_renew(mp_raw_code_t *, children, emit->prelude_ptr_index, emit->prelude_ptr_index + 1); |
| children[emit->prelude_ptr_index] = (void *)prelude_ptr; |
| } |
| } |
| |
| mp_emit_glue_assign_native(emit->scope->raw_code, |
| emit->do_viper_types ? MP_CODE_NATIVE_VIPER : MP_CODE_NATIVE_PY, |
| f, f_len, |
| children, |
| #if MICROPY_PERSISTENT_CODE_SAVE |
| emit->emit_common->ct_cur_child, |
| emit->prelude_offset, |
| #endif |
| emit->scope->scope_flags, 0, 0); |
| } |
| |
| return true; |
| } |
| |
| static void ensure_extra_stack(emit_t *emit, size_t delta) { |
| if (emit->stack_size + delta > emit->stack_info_alloc) { |
| size_t new_alloc = (emit->stack_size + delta + 8) & ~3; |
| emit->stack_info = m_renew(stack_info_t, emit->stack_info, emit->stack_info_alloc, new_alloc); |
| emit->stack_info_alloc = new_alloc; |
| } |
| } |
| |
| static void adjust_stack(emit_t *emit, mp_int_t stack_size_delta) { |
| assert((mp_int_t)emit->stack_size + stack_size_delta >= 0); |
| assert((mp_int_t)emit->stack_size + stack_size_delta <= (mp_int_t)emit->stack_info_alloc); |
| emit->stack_size += stack_size_delta; |
| if (emit->pass > MP_PASS_SCOPE && emit->stack_size > emit->scope->stack_size) { |
| emit->scope->stack_size = emit->stack_size; |
| } |
| #if DEBUG_PRINT |
| DEBUG_printf(" adjust_stack; stack_size=%d+%d; stack now:", emit->stack_size - stack_size_delta, stack_size_delta); |
| for (int i = 0; i < emit->stack_size; i++) { |
| stack_info_t *si = &emit->stack_info[i]; |
| DEBUG_printf(" (v=%d k=%d %d)", si->vtype, si->kind, si->data.u_reg); |
| } |
| DEBUG_printf("\n"); |
| #endif |
| } |
| |
| static void emit_native_adjust_stack_size(emit_t *emit, mp_int_t delta) { |
| DEBUG_printf("adjust_stack_size(" INT_FMT ")\n", delta); |
| if (delta > 0) { |
| ensure_extra_stack(emit, delta); |
| } |
| // If we are adjusting the stack in a positive direction (pushing) then we |
| // need to fill in values for the stack kind and vtype of the newly-pushed |
| // entries. These should be set to "value" (ie not reg or imm) because we |
| // should only need to adjust the stack due to a jump to this part in the |
| // code (and hence we have settled the stack before the jump). |
| for (mp_int_t i = 0; i < delta; i++) { |
| stack_info_t *si = &emit->stack_info[emit->stack_size + i]; |
| si->kind = STACK_VALUE; |
| // TODO we don't know the vtype to use here. At the moment this is a |
| // hack to get the case of multi comparison working. |
| if (delta == 1) { |
| si->vtype = emit->saved_stack_vtype; |
| } else { |
| si->vtype = VTYPE_PYOBJ; |
| } |
| } |
| adjust_stack(emit, delta); |
| } |
| |
| static void emit_native_set_source_line(emit_t *emit, mp_uint_t source_line) { |
| (void)emit; |
| (void)source_line; |
| } |
| |
| // this must be called at start of emit functions |
| static void emit_native_pre(emit_t *emit) { |
| (void)emit; |
| } |
| |
| // depth==0 is top, depth==1 is before top, etc |
| static stack_info_t *peek_stack(emit_t *emit, mp_uint_t depth) { |
| return &emit->stack_info[emit->stack_size - 1 - depth]; |
| } |
| |
| // depth==0 is top, depth==1 is before top, etc |
| static vtype_kind_t peek_vtype(emit_t *emit, mp_uint_t depth) { |
| if (emit->do_viper_types) { |
| return peek_stack(emit, depth)->vtype; |
| } else { |
| // Type is always PYOBJ even if the intermediate stored value is not |
| return VTYPE_PYOBJ; |
| } |
| } |
| |
| // pos=1 is TOS, pos=2 is next, etc |
| // use pos=0 for no skipping |
| static void need_reg_single(emit_t *emit, int reg_needed, int skip_stack_pos) { |
| skip_stack_pos = emit->stack_size - skip_stack_pos; |
| for (int i = 0; i < emit->stack_size; i++) { |
| if (i != skip_stack_pos) { |
| stack_info_t *si = &emit->stack_info[i]; |
| if (si->kind == STACK_REG && si->data.u_reg == reg_needed) { |
| si->kind = STACK_VALUE; |
| emit_native_mov_state_reg(emit, emit->stack_start + i, si->data.u_reg); |
| } |
| } |
| } |
| } |
| |
| // Ensures all unsettled registers that hold Python values are copied to the |
| // concrete Python stack. All registers are then free to use. |
| static void need_reg_all(emit_t *emit) { |
| for (int i = 0; i < emit->stack_size; i++) { |
| stack_info_t *si = &emit->stack_info[i]; |
| if (si->kind == STACK_REG) { |
| DEBUG_printf(" reg(%u) to local(%u)\n", si->data.u_reg, emit->stack_start + i); |
| si->kind = STACK_VALUE; |
| emit_native_mov_state_reg(emit, emit->stack_start + i, si->data.u_reg); |
| } |
| } |
| } |
| |
| static vtype_kind_t load_reg_stack_imm(emit_t *emit, int reg_dest, const stack_info_t *si, bool convert_to_pyobj) { |
| if (!convert_to_pyobj && emit->do_viper_types) { |
| ASM_MOV_REG_IMM(emit->as, reg_dest, si->data.u_imm); |
| return si->vtype; |
| } else { |
| if (si->vtype == VTYPE_PYOBJ) { |
| ASM_MOV_REG_IMM(emit->as, reg_dest, si->data.u_imm); |
| } else if (si->vtype == VTYPE_BOOL) { |
| emit_native_mov_reg_const(emit, reg_dest, MP_F_CONST_FALSE_OBJ + si->data.u_imm); |
| } else if (si->vtype == VTYPE_INT || si->vtype == VTYPE_UINT) { |
| ASM_MOV_REG_IMM(emit->as, reg_dest, (uintptr_t)MP_OBJ_NEW_SMALL_INT(si->data.u_imm)); |
| } else if (si->vtype == VTYPE_PTR_NONE) { |
| emit_native_mov_reg_const(emit, reg_dest, MP_F_CONST_NONE_OBJ); |
| } else { |
| mp_raise_NotImplementedError(MP_ERROR_TEXT("conversion to object")); |
| } |
| return VTYPE_PYOBJ; |
| } |
| } |
| |
| // Copies all unsettled registers and immediates that are Python values into the |
| // concrete Python stack. This ensures the concrete Python stack holds valid |
| // values for the current stack_size. |
| // This function may clobber REG_TEMP1. |
| static void need_stack_settled(emit_t *emit) { |
| DEBUG_printf(" need_stack_settled; stack_size=%d\n", emit->stack_size); |
| need_reg_all(emit); |
| for (int i = 0; i < emit->stack_size; i++) { |
| stack_info_t *si = &emit->stack_info[i]; |
| if (si->kind == STACK_IMM) { |
| DEBUG_printf(" imm(" INT_FMT ") to local(%u)\n", si->data.u_imm, emit->stack_start + i); |
| si->kind = STACK_VALUE; |
| // using REG_TEMP1 to avoid clobbering REG_TEMP0 (aka REG_RET) |
| si->vtype = load_reg_stack_imm(emit, REG_TEMP1, si, false); |
| emit_native_mov_state_reg(emit, emit->stack_start + i, REG_TEMP1); |
| } |
| } |
| } |
| |
| // pos=1 is TOS, pos=2 is next, etc |
| static void emit_access_stack(emit_t *emit, int pos, vtype_kind_t *vtype, int reg_dest) { |
| need_reg_single(emit, reg_dest, pos); |
| stack_info_t *si = &emit->stack_info[emit->stack_size - pos]; |
| *vtype = si->vtype; |
| switch (si->kind) { |
| case STACK_VALUE: |
| emit_native_mov_reg_state(emit, reg_dest, emit->stack_start + emit->stack_size - pos); |
| break; |
| |
| case STACK_REG: |
| if (si->data.u_reg != reg_dest) { |
| ASM_MOV_REG_REG(emit->as, reg_dest, si->data.u_reg); |
| } |
| break; |
| |
| case STACK_IMM: |
| *vtype = load_reg_stack_imm(emit, reg_dest, si, false); |
| break; |
| } |
| } |
| |
| // does an efficient X=pop(); discard(); push(X) |
| // needs a (non-temp) register in case the popped element was stored in the stack |
| static void emit_fold_stack_top(emit_t *emit, int reg_dest) { |
| stack_info_t *si = &emit->stack_info[emit->stack_size - 2]; |
| si[0] = si[1]; |
| if (si->kind == STACK_VALUE) { |
| // if folded element was on the stack we need to put it in a register |
| emit_native_mov_reg_state(emit, reg_dest, emit->stack_start + emit->stack_size - 1); |
| si->kind = STACK_REG; |
| si->data.u_reg = reg_dest; |
| } |
| adjust_stack(emit, -1); |
| } |
| |
| // If stacked value is in a register and the register is not r1 or r2, then |
| // *reg_dest is set to that register. Otherwise the value is put in *reg_dest. |
| static void emit_pre_pop_reg_flexible(emit_t *emit, vtype_kind_t *vtype, int *reg_dest, int not_r1, int not_r2) { |
| stack_info_t *si = peek_stack(emit, 0); |
| if (si->kind == STACK_REG && si->data.u_reg != not_r1 && si->data.u_reg != not_r2) { |
| *vtype = si->vtype; |
| *reg_dest = si->data.u_reg; |
| need_reg_single(emit, *reg_dest, 1); |
| } else { |
| emit_access_stack(emit, 1, vtype, *reg_dest); |
| } |
| adjust_stack(emit, -1); |
| } |
| |
| static void emit_pre_pop_discard(emit_t *emit) { |
| adjust_stack(emit, -1); |
| } |
| |
| static void emit_pre_pop_reg(emit_t *emit, vtype_kind_t *vtype, int reg_dest) { |
| emit_access_stack(emit, 1, vtype, reg_dest); |
| adjust_stack(emit, -1); |
| } |
| |
| static void emit_pre_pop_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb) { |
| emit_pre_pop_reg(emit, vtypea, rega); |
| emit_pre_pop_reg(emit, vtypeb, regb); |
| } |
| |
| static void emit_pre_pop_reg_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb, vtype_kind_t *vtypec, int regc) { |
| emit_pre_pop_reg(emit, vtypea, rega); |
| emit_pre_pop_reg(emit, vtypeb, regb); |
| emit_pre_pop_reg(emit, vtypec, regc); |
| } |
| |
| static void emit_post(emit_t *emit) { |
| (void)emit; |
| } |
| |
| static void emit_post_top_set_vtype(emit_t *emit, vtype_kind_t new_vtype) { |
| stack_info_t *si = &emit->stack_info[emit->stack_size - 1]; |
| si->vtype = new_vtype; |
| } |
| |
| static void emit_post_push_reg(emit_t *emit, vtype_kind_t vtype, int reg) { |
| ensure_extra_stack(emit, 1); |
| stack_info_t *si = &emit->stack_info[emit->stack_size]; |
| si->vtype = vtype; |
| si->kind = STACK_REG; |
| si->data.u_reg = reg; |
| adjust_stack(emit, 1); |
| } |
| |
| static void emit_post_push_imm(emit_t *emit, vtype_kind_t vtype, mp_int_t imm) { |
| ensure_extra_stack(emit, 1); |
| stack_info_t *si = &emit->stack_info[emit->stack_size]; |
| si->vtype = vtype; |
| si->kind = STACK_IMM; |
| si->data.u_imm = imm; |
| adjust_stack(emit, 1); |
| } |
| |
| static void emit_post_push_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb) { |
| emit_post_push_reg(emit, vtypea, rega); |
| emit_post_push_reg(emit, vtypeb, regb); |
| } |
| |
| static void emit_post_push_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc) { |
| emit_post_push_reg(emit, vtypea, rega); |
| emit_post_push_reg(emit, vtypeb, regb); |
| emit_post_push_reg(emit, vtypec, regc); |
| } |
| |
| static void emit_post_push_reg_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc, vtype_kind_t vtyped, int regd) { |
| emit_post_push_reg(emit, vtypea, rega); |
| emit_post_push_reg(emit, vtypeb, regb); |
| emit_post_push_reg(emit, vtypec, regc); |
| emit_post_push_reg(emit, vtyped, regd); |
| } |
| |
| static void emit_call(emit_t *emit, mp_fun_kind_t fun_kind) { |
| need_reg_all(emit); |
| ASM_CALL_IND(emit->as, fun_kind); |
| } |
| |
| static void emit_call_with_imm_arg(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg) { |
| need_reg_all(emit); |
| ASM_MOV_REG_IMM(emit->as, arg_reg, arg_val); |
| ASM_CALL_IND(emit->as, fun_kind); |
| } |
| |
| static void emit_call_with_2_imm_args(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val1, int arg_reg1, mp_int_t arg_val2, int arg_reg2) { |
| need_reg_all(emit); |
| ASM_MOV_REG_IMM(emit->as, arg_reg1, arg_val1); |
| ASM_MOV_REG_IMM(emit->as, arg_reg2, arg_val2); |
| ASM_CALL_IND(emit->as, fun_kind); |
| } |
| |
| static void emit_call_with_qstr_arg(emit_t *emit, mp_fun_kind_t fun_kind, qstr qst, int arg_reg) { |
| need_reg_all(emit); |
| emit_native_mov_reg_qstr(emit, arg_reg, qst); |
| ASM_CALL_IND(emit->as, fun_kind); |
| } |
| |
| // vtype of all n_pop objects is VTYPE_PYOBJ |
| // Will convert any items that are not VTYPE_PYOBJ to this type and put them back on the stack. |
| // If any conversions of non-immediate values are needed, then it uses REG_ARG_1, REG_ARG_2 and REG_RET. |
| // Otherwise, it does not use any temporary registers (but may use reg_dest before loading it with stack pointer). |
| static void emit_get_stack_pointer_to_reg_for_pop(emit_t *emit, mp_uint_t reg_dest, mp_uint_t n_pop) { |
| need_reg_all(emit); |
| |
| // First, store any immediate values to their respective place on the stack. |
| for (mp_uint_t i = 0; i < n_pop; i++) { |
| stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i]; |
| // must push any imm's to stack |
| // must convert them to VTYPE_PYOBJ for viper code |
| if (si->kind == STACK_IMM) { |
| si->kind = STACK_VALUE; |
| si->vtype = load_reg_stack_imm(emit, reg_dest, si, true); |
| emit_native_mov_state_reg(emit, emit->stack_start + emit->stack_size - 1 - i, reg_dest); |
| } |
| |
| // verify that this value is on the stack |
| assert(si->kind == STACK_VALUE); |
| } |
| |
| // Second, convert any non-VTYPE_PYOBJ to that type. |
| for (mp_uint_t i = 0; i < n_pop; i++) { |
| stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i]; |
| if (si->vtype != VTYPE_PYOBJ) { |
| mp_uint_t local_num = emit->stack_start + emit->stack_size - 1 - i; |
| emit_native_mov_reg_state(emit, REG_ARG_1, local_num); |
| emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, si->vtype, REG_ARG_2); // arg2 = type |
| emit_native_mov_state_reg(emit, local_num, REG_RET); |
| si->vtype = VTYPE_PYOBJ; |
| DEBUG_printf(" convert_native_to_obj(local_num=" UINT_FMT ")\n", local_num); |
| } |
| } |
| |
| // Adujust the stack for a pop of n_pop items, and load the stack pointer into reg_dest. |
| adjust_stack(emit, -n_pop); |
| emit_native_mov_reg_state_addr(emit, reg_dest, emit->stack_start + emit->stack_size); |
| } |
| |
| // vtype of all n_push objects is VTYPE_PYOBJ |
| static void emit_get_stack_pointer_to_reg_for_push(emit_t *emit, mp_uint_t reg_dest, mp_uint_t n_push) { |
| need_reg_all(emit); |
| ensure_extra_stack(emit, n_push); |
| for (mp_uint_t i = 0; i < n_push; i++) { |
| emit->stack_info[emit->stack_size + i].kind = STACK_VALUE; |
| emit->stack_info[emit->stack_size + i].vtype = VTYPE_PYOBJ; |
| } |
| emit_native_mov_reg_state_addr(emit, reg_dest, emit->stack_start + emit->stack_size); |
| adjust_stack(emit, n_push); |
| } |
| |
| static void emit_native_push_exc_stack(emit_t *emit, uint label, bool is_finally) { |
| if (emit->exc_stack_size + 1 > emit->exc_stack_alloc) { |
| size_t new_alloc = emit->exc_stack_alloc + 4; |
| emit->exc_stack = m_renew(exc_stack_entry_t, emit->exc_stack, emit->exc_stack_alloc, new_alloc); |
| emit->exc_stack_alloc = new_alloc; |
| } |
| |
| exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size++]; |
| e->label = label; |
| e->is_finally = is_finally; |
| e->unwind_label = UNWIND_LABEL_UNUSED; |
| e->is_active = true; |
| |
| ASM_MOV_REG_PCREL(emit->as, REG_RET, label); |
| ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_RET); |
| } |
| |
| static void emit_native_leave_exc_stack(emit_t *emit, bool start_of_handler) { |
| assert(emit->exc_stack_size > 0); |
| |
| // Get current exception handler and deactivate it |
| exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size - 1]; |
| e->is_active = false; |
| |
| // Find next innermost active exception handler, to restore as current handler |
| for (--e; e >= emit->exc_stack && !e->is_active; --e) { |
| } |
| |
| // Update the PC of the new exception handler |
| if (e < emit->exc_stack) { |
| // No active handler, clear handler PC to zero |
| if (start_of_handler) { |
| // Optimisation: PC is already cleared by global exc handler |
| return; |
| } |
| ASM_XOR_REG_REG(emit->as, REG_RET, REG_RET); |
| } else { |
| // Found new active handler, get its PC |
| ASM_MOV_REG_PCREL(emit->as, REG_RET, e->label); |
| } |
| ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_RET); |
| } |
| |
| static exc_stack_entry_t *emit_native_pop_exc_stack(emit_t *emit) { |
| assert(emit->exc_stack_size > 0); |
| exc_stack_entry_t *e = &emit->exc_stack[--emit->exc_stack_size]; |
| assert(e->is_active == false); |
| return e; |
| } |
| |
| // This function will clobber REG_TEMP0 (and `reg` can be REG_TEMP0). |
| static void emit_load_reg_with_object(emit_t *emit, int reg, mp_obj_t obj) { |
| emit->scope->scope_flags |= MP_SCOPE_FLAG_HASCONSTS; |
| size_t table_off = mp_emit_common_use_const_obj(emit->emit_common, obj); |
| emit_native_mov_reg_state(emit, REG_TEMP0, LOCAL_IDX_FUN_OBJ(emit)); |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_OBJ_FUN_BC_CONTEXT); |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_MODULE_CONTEXT_OBJ_TABLE); |
| ASM_LOAD_REG_REG_OFFSET(emit->as, reg, REG_TEMP0, table_off); |
| } |
| |
| static void emit_load_reg_with_child(emit_t *emit, int reg, mp_raw_code_t *rc) { |
| size_t table_off = mp_emit_common_alloc_const_child(emit->emit_common, rc); |
| emit_native_mov_reg_state(emit, REG_TEMP0, LOCAL_IDX_FUN_OBJ(emit)); |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_OBJ_FUN_BC_CHILD_TABLE); |
| ASM_LOAD_REG_REG_OFFSET(emit->as, reg, REG_TEMP0, table_off); |
| } |
| |
| static void emit_native_label_assign(emit_t *emit, mp_uint_t l) { |
| DEBUG_printf("label_assign(" UINT_FMT ")\n", l); |
| |
| bool is_finally = false; |
| if (emit->exc_stack_size > 0) { |
| exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size - 1]; |
| is_finally = e->is_finally && e->label == l; |
| } |
| |
| if (is_finally) { |
| // Label is at start of finally handler: store TOS into exception slot |
| vtype_kind_t vtype; |
| emit_access_stack(emit, 1, &vtype, REG_TEMP0); |
| ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_TEMP0); |
| } |
| |
| emit_native_pre(emit); |
| // need to commit stack because we can jump here from elsewhere |
| need_stack_settled(emit); |
| mp_asm_base_label_assign(&emit->as->base, l); |
| emit_post(emit); |
| |
| if (is_finally) { |
| // Label is at start of finally handler: pop exception stack |
| emit_native_leave_exc_stack(emit, false); |
| } |
| } |
| |
| static void emit_native_global_exc_entry(emit_t *emit) { |
| // Note: 4 labels are reserved for this function, starting at *emit->label_slot |
| |
| emit->exit_label = *emit->label_slot; |
| |
| if (NEED_GLOBAL_EXC_HANDLER(emit)) { |
| mp_uint_t nlr_label = *emit->label_slot + 1; |
| mp_uint_t start_label = *emit->label_slot + 2; |
| mp_uint_t global_except_label = *emit->label_slot + 3; |
| |
| if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) { |
| // Set new globals |
| emit_native_mov_reg_state(emit, REG_ARG_1, LOCAL_IDX_FUN_OBJ(emit)); |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_1, REG_ARG_1, OFFSETOF_OBJ_FUN_BC_CONTEXT); |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_1, REG_ARG_1, OFFSETOF_MODULE_CONTEXT_GLOBALS); |
| emit_call(emit, MP_F_NATIVE_SWAP_GLOBALS); |
| |
| // Save old globals (or NULL if globals didn't change) |
| emit_native_mov_state_reg(emit, LOCAL_IDX_OLD_GLOBALS(emit), REG_RET); |
| } |
| |
| if (emit->scope->exc_stack_size == 0) { |
| if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) { |
| // Optimisation: if globals didn't change don't push the nlr context |
| ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, start_label, false); |
| } |
| |
| // Wrap everything in an nlr context |
| ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 0); |
| emit_call(emit, MP_F_NLR_PUSH); |
| #if N_NLR_SETJMP |
| ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 2); |
| emit_call(emit, MP_F_SETJMP); |
| #endif |
| ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, start_label, true); |
| } else { |
| // Clear the unwind state |
| ASM_XOR_REG_REG(emit->as, REG_TEMP0, REG_TEMP0); |
| ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_UNWIND(emit), REG_TEMP0); |
| |
| // clear nlr.ret_val, because it's passed to mp_native_raise regardless |
| // of whether there was an exception or not |
| ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_TEMP0); |
| |
| // Put PC of start code block into REG_LOCAL_1 |
| ASM_MOV_REG_PCREL(emit->as, REG_LOCAL_1, start_label); |
| |
| // Wrap everything in an nlr context |
| emit_native_label_assign(emit, nlr_label); |
| ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 0); |
| emit_call(emit, MP_F_NLR_PUSH); |
| #if N_NLR_SETJMP |
| ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 2); |
| emit_call(emit, MP_F_SETJMP); |
| #endif |
| ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, global_except_label, true); |
| |
| // Clear PC of current code block, and jump there to resume execution |
| ASM_XOR_REG_REG(emit->as, REG_TEMP0, REG_TEMP0); |
| ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_TEMP0); |
| ASM_JUMP_REG(emit->as, REG_LOCAL_1); |
| |
| // Global exception handler: check for valid exception handler |
| emit_native_label_assign(emit, global_except_label); |
| ASM_MOV_REG_LOCAL(emit->as, REG_LOCAL_1, LOCAL_IDX_EXC_HANDLER_PC(emit)); |
| ASM_JUMP_IF_REG_NONZERO(emit->as, REG_LOCAL_1, nlr_label, false); |
| } |
| |
| if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) { |
| // Restore old globals |
| emit_native_mov_reg_state(emit, REG_ARG_1, LOCAL_IDX_OLD_GLOBALS(emit)); |
| emit_call(emit, MP_F_NATIVE_SWAP_GLOBALS); |
| } |
| |
| if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { |
| // Store return value in state[0] |
| ASM_MOV_REG_LOCAL(emit->as, REG_TEMP0, LOCAL_IDX_EXC_VAL(emit)); |
| ASM_STORE_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_GENERATOR_STATE, OFFSETOF_CODE_STATE_STATE); |
| |
| // Load return kind |
| ASM_MOV_REG_IMM(emit->as, REG_PARENT_RET, MP_VM_RETURN_EXCEPTION); |
| |
| ASM_EXIT(emit->as); |
| } else { |
| // Re-raise exception out to caller |
| ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit)); |
| emit_call(emit, MP_F_NATIVE_RAISE); |
| } |
| |
| // Label for start of function |
| emit_native_label_assign(emit, start_label); |
| |
| if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { |
| emit_native_mov_reg_state(emit, REG_TEMP0, LOCAL_IDX_GEN_PC(emit)); |
| ASM_JUMP_REG(emit->as, REG_TEMP0); |
| emit->start_offset = mp_asm_base_get_code_pos(&emit->as->base); |
| |
| // This is the first entry of the generator |
| |
| // Check LOCAL_IDX_THROW_VAL for any injected value |
| ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_THROW_VAL(emit)); |
| ASM_MOV_REG_IMM(emit->as, REG_ARG_2, (mp_uint_t)MP_OBJ_NULL); |
| ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_THROW_VAL(emit), REG_ARG_2); |
| emit_call(emit, MP_F_NATIVE_RAISE); |
| } |
| } |
| } |
| |
| static void emit_native_global_exc_exit(emit_t *emit) { |
| // Label for end of function |
| emit_native_label_assign(emit, emit->exit_label); |
| |
| if (NEED_GLOBAL_EXC_HANDLER(emit)) { |
| // Get old globals |
| if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) { |
| emit_native_mov_reg_state(emit, REG_ARG_1, LOCAL_IDX_OLD_GLOBALS(emit)); |
| |
| if (emit->scope->exc_stack_size == 0) { |
| // Optimisation: if globals didn't change then don't restore them and don't do nlr_pop |
| ASM_JUMP_IF_REG_ZERO(emit->as, REG_ARG_1, emit->exit_label + 1, false); |
| } |
| |
| // Restore old globals |
| emit_call(emit, MP_F_NATIVE_SWAP_GLOBALS); |
| } |
| |
| // Pop the nlr context |
| emit_call(emit, MP_F_NLR_POP); |
| |
| if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) { |
| if (emit->scope->exc_stack_size == 0) { |
| // Destination label for above optimisation |
| emit_native_label_assign(emit, emit->exit_label + 1); |
| } |
| } |
| |
| // Load return value |
| ASM_MOV_REG_LOCAL(emit->as, REG_PARENT_RET, LOCAL_IDX_RET_VAL(emit)); |
| } |
| |
| ASM_EXIT(emit->as); |
| } |
| |
| static void emit_native_import_name(emit_t *emit, qstr qst) { |
| DEBUG_printf("import_name %s\n", qstr_str(qst)); |
| |
| // get arguments from stack: arg2 = fromlist, arg3 = level |
| // If using viper types these arguments must be converted to proper objects, and |
| // to accomplish this viper types are turned off for the emit_pre_pop_reg_reg call. |
| bool orig_do_viper_types = emit->do_viper_types; |
| emit->do_viper_types = false; |
| vtype_kind_t vtype_fromlist; |
| vtype_kind_t vtype_level; |
| emit_pre_pop_reg_reg(emit, &vtype_fromlist, REG_ARG_2, &vtype_level, REG_ARG_3); |
| assert(vtype_fromlist == VTYPE_PYOBJ); |
| assert(vtype_level == VTYPE_PYOBJ); |
| emit->do_viper_types = orig_do_viper_types; |
| |
| emit_call_with_qstr_arg(emit, MP_F_IMPORT_NAME, qst, REG_ARG_1); // arg1 = import name |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); |
| } |
| |
| static void emit_native_import_from(emit_t *emit, qstr qst) { |
| DEBUG_printf("import_from %s\n", qstr_str(qst)); |
| emit_native_pre(emit); |
| vtype_kind_t vtype_module; |
| emit_access_stack(emit, 1, &vtype_module, REG_ARG_1); // arg1 = module |
| assert(vtype_module == VTYPE_PYOBJ); |
| emit_call_with_qstr_arg(emit, MP_F_IMPORT_FROM, qst, REG_ARG_2); // arg2 = import name |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); |
| } |
| |
| static void emit_native_import_star(emit_t *emit) { |
| DEBUG_printf("import_star\n"); |
| vtype_kind_t vtype_module; |
| emit_pre_pop_reg(emit, &vtype_module, REG_ARG_1); // arg1 = module |
| assert(vtype_module == VTYPE_PYOBJ); |
| emit_call(emit, MP_F_IMPORT_ALL); |
| emit_post(emit); |
| } |
| |
| static void emit_native_import(emit_t *emit, qstr qst, int kind) { |
| if (kind == MP_EMIT_IMPORT_NAME) { |
| emit_native_import_name(emit, qst); |
| } else if (kind == MP_EMIT_IMPORT_FROM) { |
| emit_native_import_from(emit, qst); |
| } else { |
| emit_native_import_star(emit); |
| } |
| } |
| |
| static void emit_native_load_const_tok(emit_t *emit, mp_token_kind_t tok) { |
| DEBUG_printf("load_const_tok(tok=%u)\n", tok); |
| if (tok == MP_TOKEN_ELLIPSIS) { |
| emit_native_load_const_obj(emit, MP_OBJ_FROM_PTR(&mp_const_ellipsis_obj)); |
| } else { |
| emit_native_pre(emit); |
| if (tok == MP_TOKEN_KW_NONE) { |
| emit_post_push_imm(emit, VTYPE_PTR_NONE, 0); |
| } else { |
| emit_post_push_imm(emit, VTYPE_BOOL, tok == MP_TOKEN_KW_FALSE ? 0 : 1); |
| } |
| } |
| } |
| |
| static void emit_native_load_const_small_int(emit_t *emit, mp_int_t arg) { |
| DEBUG_printf("load_const_small_int(int=" INT_FMT ")\n", arg); |
| emit_native_pre(emit); |
| emit_post_push_imm(emit, VTYPE_INT, arg); |
| } |
| |
| static void emit_native_load_const_str(emit_t *emit, qstr qst) { |
| emit_native_pre(emit); |
| // TODO: Eventually we want to be able to work with raw pointers in viper to |
| // do native array access. For now we just load them as any other object. |
| /* |
| if (emit->do_viper_types) { |
| // load a pointer to the asciiz string? |
| emit_post_push_imm(emit, VTYPE_PTR, (mp_uint_t)qstr_str(qst)); |
| } else |
| */ |
| { |
| need_reg_single(emit, REG_TEMP0, 0); |
| emit_native_mov_reg_qstr_obj(emit, REG_TEMP0, qst); |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_TEMP0); |
| } |
| } |
| |
| static void emit_native_load_const_obj(emit_t *emit, mp_obj_t obj) { |
| emit_native_pre(emit); |
| need_reg_single(emit, REG_TEMP0, 0); |
| emit_load_reg_with_object(emit, REG_TEMP0, obj); |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_TEMP0); |
| } |
| |
| static void emit_native_load_null(emit_t *emit) { |
| emit_native_pre(emit); |
| emit_post_push_imm(emit, VTYPE_PYOBJ, 0); |
| } |
| |
| static void emit_native_load_fast(emit_t *emit, qstr qst, mp_uint_t local_num) { |
| DEBUG_printf("load_fast(%s, " UINT_FMT ")\n", qstr_str(qst), local_num); |
| vtype_kind_t vtype = emit->local_vtype[local_num]; |
| if (vtype == VTYPE_UNBOUND) { |
| EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("local '%q' used before type known"), qst); |
| } |
| emit_native_pre(emit); |
| if (local_num < MAX_REGS_FOR_LOCAL_VARS && CAN_USE_REGS_FOR_LOCALS(emit)) { |
| emit_post_push_reg(emit, vtype, reg_local_table[local_num]); |
| } else { |
| need_reg_single(emit, REG_TEMP0, 0); |
| emit_native_mov_reg_state(emit, REG_TEMP0, LOCAL_IDX_LOCAL_VAR(emit, local_num)); |
| emit_post_push_reg(emit, vtype, REG_TEMP0); |
| } |
| } |
| |
| static void emit_native_load_deref(emit_t *emit, qstr qst, mp_uint_t local_num) { |
| DEBUG_printf("load_deref(%s, " UINT_FMT ")\n", qstr_str(qst), local_num); |
| need_reg_single(emit, REG_RET, 0); |
| emit_native_load_fast(emit, qst, local_num); |
| vtype_kind_t vtype; |
| int reg_base = REG_RET; |
| emit_pre_pop_reg_flexible(emit, &vtype, ®_base, -1, -1); |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_RET, reg_base, 1); |
| // closed over vars are always Python objects |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); |
| } |
| |
| static void emit_native_load_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) { |
| if (kind == MP_EMIT_IDOP_LOCAL_FAST) { |
| emit_native_load_fast(emit, qst, local_num); |
| } else { |
| emit_native_load_deref(emit, qst, local_num); |
| } |
| } |
| |
| static void emit_native_load_global(emit_t *emit, qstr qst, int kind) { |
| MP_STATIC_ASSERT(MP_F_LOAD_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_F_LOAD_NAME); |
| MP_STATIC_ASSERT(MP_F_LOAD_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_F_LOAD_GLOBAL); |
| emit_native_pre(emit); |
| if (kind == MP_EMIT_IDOP_GLOBAL_NAME) { |
| DEBUG_printf("load_name(%s)\n", qstr_str(qst)); |
| } else { |
| DEBUG_printf("load_global(%s)\n", qstr_str(qst)); |
| if (emit->do_viper_types) { |
| // check for builtin casting operators |
| int native_type = mp_native_type_from_qstr(qst); |
| if (native_type >= MP_NATIVE_TYPE_BOOL) { |
| emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, native_type); |
| return; |
| } |
| } |
| } |
| emit_call_with_qstr_arg(emit, MP_F_LOAD_NAME + kind, qst, REG_ARG_1); |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); |
| } |
| |
| static void emit_native_load_attr(emit_t *emit, qstr qst) { |
| // depends on type of subject: |
| // - integer, function, pointer to integers: error |
| // - pointer to structure: get member, quite easy |
| // - Python object: call mp_load_attr, and needs to be typed to convert result |
| vtype_kind_t vtype_base; |
| emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base |
| assert(vtype_base == VTYPE_PYOBJ); |
| emit_call_with_qstr_arg(emit, MP_F_LOAD_ATTR, qst, REG_ARG_2); // arg2 = attribute name |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); |
| } |
| |
| static void emit_native_load_method(emit_t *emit, qstr qst, bool is_super) { |
| DEBUG_printf("load_method(%s, %d)\n", qstr_str(qst), is_super); |
| if (is_super) { |
| emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, 3); // arg2 = dest ptr |
| emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_2, 2); // arg2 = dest ptr |
| emit_call_with_qstr_arg(emit, MP_F_LOAD_SUPER_METHOD, qst, REG_ARG_1); // arg1 = method name |
| } else { |
| vtype_kind_t vtype_base; |
| emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base |
| assert(vtype_base == VTYPE_PYOBJ); |
| emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr |
| emit_call_with_qstr_arg(emit, MP_F_LOAD_METHOD, qst, REG_ARG_2); // arg2 = method name |
| } |
| } |
| |
| static void emit_native_load_build_class(emit_t *emit) { |
| emit_native_pre(emit); |
| emit_call(emit, MP_F_LOAD_BUILD_CLASS); |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); |
| } |
| |
| static void emit_native_load_subscr(emit_t *emit) { |
| DEBUG_printf("load_subscr\n"); |
| // need to compile: base[index] |
| |
| // pop: index, base |
| // optimise case where index is an immediate |
| vtype_kind_t vtype_base = peek_vtype(emit, 1); |
| |
| if (vtype_base == VTYPE_PYOBJ) { |
| // standard Python subscr |
| // TODO factor this implicit cast code with other uses of it |
| vtype_kind_t vtype_index = peek_vtype(emit, 0); |
| if (vtype_index == VTYPE_PYOBJ) { |
| emit_pre_pop_reg(emit, &vtype_index, REG_ARG_2); |
| } else { |
| emit_pre_pop_reg(emit, &vtype_index, REG_ARG_1); |
| emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, vtype_index, REG_ARG_2); // arg2 = type |
| ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET); |
| } |
| emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); |
| emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, (mp_uint_t)MP_OBJ_SENTINEL, REG_ARG_3); |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); |
| } else { |
| // viper load |
| // TODO The different machine architectures have very different |
| // capabilities and requirements for loads, so probably best to |
| // write a completely separate load-optimiser for each one. |
| stack_info_t *top = peek_stack(emit, 0); |
| if (top->vtype == VTYPE_INT && top->kind == STACK_IMM) { |
| // index is an immediate |
| mp_int_t index_value = top->data.u_imm; |
| emit_pre_pop_discard(emit); // discard index |
| int reg_base = REG_ARG_1; |
| int reg_index = REG_ARG_2; |
| emit_pre_pop_reg_flexible(emit, &vtype_base, ®_base, reg_index, reg_index); |
| need_reg_single(emit, REG_RET, 0); |
| switch (vtype_base) { |
| case VTYPE_PTR8: { |
| // pointer to 8-bit memory |
| // TODO optimise to use thumb ldrb r1, [r2, r3] |
| if (index_value != 0) { |
| // index is non-zero |
| #if N_THUMB |
| if (index_value > 0 && index_value < 32) { |
| asm_thumb_ldrb_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value); |
| break; |
| } |
| #elif N_RV32 |
| if (FIT_SIGNED(index_value, 12)) { |
| asm_rv32_opcode_lbu(emit->as, REG_RET, reg_base, index_value); |
| break; |
| } |
| #endif |
| need_reg_single(emit, reg_index, 0); |
| ASM_MOV_REG_IMM(emit->as, reg_index, index_value); |
| ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add index to base |
| reg_base = reg_index; |
| } |
| ASM_LOAD8_REG_REG(emit->as, REG_RET, reg_base); // load from (base+index) |
| break; |
| } |
| case VTYPE_PTR16: { |
| // pointer to 16-bit memory |
| if (index_value != 0) { |
| // index is a non-zero immediate |
| #if N_THUMB |
| if (index_value > 0 && index_value < 32) { |
| asm_thumb_ldrh_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value); |
| break; |
| } |
| #elif N_RV32 |
| if (FIT_SIGNED(index_value, 11)) { |
| asm_rv32_opcode_lhu(emit->as, REG_RET, reg_base, index_value << 1); |
| break; |
| } |
| #endif |
| need_reg_single(emit, reg_index, 0); |
| ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 1); |
| ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 2*index to base |
| reg_base = reg_index; |
| } |
| ASM_LOAD16_REG_REG(emit->as, REG_RET, reg_base); // load from (base+2*index) |
| break; |
| } |
| case VTYPE_PTR32: { |
| // pointer to 32-bit memory |
| if (index_value != 0) { |
| // index is a non-zero immediate |
| #if N_THUMB |
| if (index_value > 0 && index_value < 32) { |
| asm_thumb_ldr_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value); |
| break; |
| } |
| #elif N_RV32 |
| if (FIT_SIGNED(index_value, 10)) { |
| asm_rv32_opcode_lw(emit->as, REG_RET, reg_base, index_value << 2); |
| break; |
| } |
| #endif |
| need_reg_single(emit, reg_index, 0); |
| ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 2); |
| ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 4*index to base |
| reg_base = reg_index; |
| } |
| ASM_LOAD32_REG_REG(emit->as, REG_RET, reg_base); // load from (base+4*index) |
| break; |
| } |
| default: |
| EMIT_NATIVE_VIPER_TYPE_ERROR(emit, |
| MP_ERROR_TEXT("can't load from '%q'"), vtype_to_qstr(vtype_base)); |
| } |
| } else { |
| // index is not an immediate |
| vtype_kind_t vtype_index; |
| int reg_index = REG_ARG_2; |
| emit_pre_pop_reg_flexible(emit, &vtype_index, ®_index, REG_ARG_1, REG_ARG_1); |
| emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); |
| need_reg_single(emit, REG_RET, 0); |
| if (vtype_index != VTYPE_INT && vtype_index != VTYPE_UINT) { |
| EMIT_NATIVE_VIPER_TYPE_ERROR(emit, |
| MP_ERROR_TEXT("can't load with '%q' index"), vtype_to_qstr(vtype_index)); |
| } |
| switch (vtype_base) { |
| case VTYPE_PTR8: { |
| // pointer to 8-bit memory |
| // TODO optimise to use thumb ldrb r1, [r2, r3] |
| ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base |
| ASM_LOAD8_REG_REG(emit->as, REG_RET, REG_ARG_1); // store value to (base+index) |
| break; |
| } |
| case VTYPE_PTR16: { |
| // pointer to 16-bit memory |
| ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base |
| ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base |
| ASM_LOAD16_REG_REG(emit->as, REG_RET, REG_ARG_1); // load from (base+2*index) |
| break; |
| } |
| case VTYPE_PTR32: { |
| // pointer to word-size memory |
| #if N_RV32 |
| asm_rv32_opcode_slli(emit->as, REG_TEMP2, reg_index, 2); |
| asm_rv32_opcode_cadd(emit->as, REG_ARG_1, REG_TEMP2); |
| asm_rv32_opcode_lw(emit->as, REG_RET, REG_ARG_1, 0); |
| break; |
| #endif |
| ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base |
| ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base |
| ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base |
| ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base |
| ASM_LOAD32_REG_REG(emit->as, REG_RET, REG_ARG_1); // load from (base+4*index) |
| break; |
| } |
| default: |
| EMIT_NATIVE_VIPER_TYPE_ERROR(emit, |
| MP_ERROR_TEXT("can't load from '%q'"), vtype_to_qstr(vtype_base)); |
| } |
| } |
| emit_post_push_reg(emit, VTYPE_INT, REG_RET); |
| } |
| } |
| |
| static void emit_native_store_fast(emit_t *emit, qstr qst, mp_uint_t local_num) { |
| vtype_kind_t vtype; |
| if (local_num < MAX_REGS_FOR_LOCAL_VARS && CAN_USE_REGS_FOR_LOCALS(emit)) { |
| emit_pre_pop_reg(emit, &vtype, reg_local_table[local_num]); |
| } else { |
| emit_pre_pop_reg(emit, &vtype, REG_TEMP0); |
| emit_native_mov_state_reg(emit, LOCAL_IDX_LOCAL_VAR(emit, local_num), REG_TEMP0); |
| } |
| emit_post(emit); |
| |
| // check types |
| if (emit->local_vtype[local_num] == VTYPE_UNBOUND) { |
| // first time this local is assigned, so give it a type of the object stored in it |
| emit->local_vtype[local_num] = vtype; |
| } else if (emit->local_vtype[local_num] != vtype) { |
| // type of local is not the same as object stored in it |
| EMIT_NATIVE_VIPER_TYPE_ERROR(emit, |
| MP_ERROR_TEXT("local '%q' has type '%q' but source is '%q'"), |
| qst, vtype_to_qstr(emit->local_vtype[local_num]), vtype_to_qstr(vtype)); |
| } |
| } |
| |
| static void emit_native_store_deref(emit_t *emit, qstr qst, mp_uint_t local_num) { |
| DEBUG_printf("store_deref(%s, " UINT_FMT ")\n", qstr_str(qst), local_num); |
| need_reg_single(emit, REG_TEMP0, 0); |
| need_reg_single(emit, REG_TEMP1, 0); |
| emit_native_load_fast(emit, qst, local_num); |
| vtype_kind_t vtype; |
| int reg_base = REG_TEMP0; |
| emit_pre_pop_reg_flexible(emit, &vtype, ®_base, -1, -1); |
| int reg_src = REG_TEMP1; |
| emit_pre_pop_reg_flexible(emit, &vtype, ®_src, reg_base, reg_base); |
| ASM_STORE_REG_REG_OFFSET(emit->as, reg_src, reg_base, 1); |
| emit_post(emit); |
| } |
| |
| static void emit_native_store_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) { |
| if (kind == MP_EMIT_IDOP_LOCAL_FAST) { |
| emit_native_store_fast(emit, qst, local_num); |
| } else { |
| emit_native_store_deref(emit, qst, local_num); |
| } |
| } |
| |
| static void emit_native_store_global(emit_t *emit, qstr qst, int kind) { |
| MP_STATIC_ASSERT(MP_F_STORE_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_F_STORE_NAME); |
| MP_STATIC_ASSERT(MP_F_STORE_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_F_STORE_GLOBAL); |
| if (kind == MP_EMIT_IDOP_GLOBAL_NAME) { |
| // mp_store_name, but needs conversion of object (maybe have mp_viper_store_name(obj, type)) |
| vtype_kind_t vtype; |
| emit_pre_pop_reg(emit, &vtype, REG_ARG_2); |
| assert(vtype == VTYPE_PYOBJ); |
| } else { |
| vtype_kind_t vtype = peek_vtype(emit, 0); |
| if (vtype == VTYPE_PYOBJ) { |
| emit_pre_pop_reg(emit, &vtype, REG_ARG_2); |
| } else { |
| emit_pre_pop_reg(emit, &vtype, REG_ARG_1); |
| emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, vtype, REG_ARG_2); // arg2 = type |
| ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET); |
| } |
| } |
| emit_call_with_qstr_arg(emit, MP_F_STORE_NAME + kind, qst, REG_ARG_1); // arg1 = name |
| emit_post(emit); |
| } |
| |
| static void emit_native_store_attr(emit_t *emit, qstr qst) { |
| vtype_kind_t vtype_base; |
| vtype_kind_t vtype_val = peek_vtype(emit, 1); |
| if (vtype_val == VTYPE_PYOBJ) { |
| emit_pre_pop_reg_reg(emit, &vtype_base, REG_ARG_1, &vtype_val, REG_ARG_3); // arg1 = base, arg3 = value |
| } else { |
| emit_access_stack(emit, 2, &vtype_val, REG_ARG_1); // arg1 = value |
| emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, vtype_val, REG_ARG_2); // arg2 = type |
| ASM_MOV_REG_REG(emit->as, REG_ARG_3, REG_RET); // arg3 = value (converted) |
| emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base |
| adjust_stack(emit, -1); // pop value |
| } |
| assert(vtype_base == VTYPE_PYOBJ); |
| emit_call_with_qstr_arg(emit, MP_F_STORE_ATTR, qst, REG_ARG_2); // arg2 = attribute name |
| emit_post(emit); |
| } |
| |
| static void emit_native_store_subscr(emit_t *emit) { |
| DEBUG_printf("store_subscr\n"); |
| // need to compile: base[index] = value |
| |
| // pop: index, base, value |
| // optimise case where index is an immediate |
| vtype_kind_t vtype_base = peek_vtype(emit, 1); |
| |
| if (vtype_base == VTYPE_PYOBJ) { |
| // standard Python subscr |
| vtype_kind_t vtype_index = peek_vtype(emit, 0); |
| vtype_kind_t vtype_value = peek_vtype(emit, 2); |
| if (vtype_index != VTYPE_PYOBJ || vtype_value != VTYPE_PYOBJ) { |
| // need to implicitly convert non-objects to objects |
| // TODO do this properly |
| emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_1, 3); |
| adjust_stack(emit, 3); |
| } |
| emit_pre_pop_reg_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1, &vtype_value, REG_ARG_3); |
| emit_call(emit, MP_F_OBJ_SUBSCR); |
| } else { |
| // viper store |
| // TODO The different machine architectures have very different |
| // capabilities and requirements for stores, so probably best to |
| // write a completely separate store-optimiser for each one. |
| stack_info_t *top = peek_stack(emit, 0); |
| if (top->vtype == VTYPE_INT && top->kind == STACK_IMM) { |
| // index is an immediate |
| mp_int_t index_value = top->data.u_imm; |
| emit_pre_pop_discard(emit); // discard index |
| vtype_kind_t vtype_value; |
| int reg_base = REG_ARG_1; |
| int reg_index = REG_ARG_2; |
| int reg_value = REG_ARG_3; |
| emit_pre_pop_reg_flexible(emit, &vtype_base, ®_base, reg_index, reg_value); |
| #if N_X64 || N_X86 |
| // special case: x86 needs byte stores to be from lower 4 regs (REG_ARG_3 is EDX) |
| emit_pre_pop_reg(emit, &vtype_value, reg_value); |
| #else |
| emit_pre_pop_reg_flexible(emit, &vtype_value, ®_value, reg_base, reg_index); |
| #endif |
| if (vtype_value != VTYPE_BOOL && vtype_value != VTYPE_INT && vtype_value != VTYPE_UINT) { |
| EMIT_NATIVE_VIPER_TYPE_ERROR(emit, |
| MP_ERROR_TEXT("can't store '%q'"), vtype_to_qstr(vtype_value)); |
| } |
| switch (vtype_base) { |
| case VTYPE_PTR8: { |
| // pointer to 8-bit memory |
| // TODO optimise to use thumb strb r1, [r2, r3] |
| if (index_value != 0) { |
| // index is non-zero |
| #if N_THUMB |
| if (index_value > 0 && index_value < 32) { |
| asm_thumb_strb_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value); |
| break; |
| } |
| #elif N_RV32 |
| if (FIT_SIGNED(index_value, 12)) { |
| asm_rv32_opcode_sb(emit->as, reg_value, reg_base, index_value); |
| break; |
| } |
| #endif |
| ASM_MOV_REG_IMM(emit->as, reg_index, index_value); |
| #if N_ARM |
| asm_arm_strb_reg_reg_reg(emit->as, reg_value, reg_base, reg_index); |
| return; |
| #endif |
| ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add index to base |
| reg_base = reg_index; |
| } |
| ASM_STORE8_REG_REG(emit->as, reg_value, reg_base); // store value to (base+index) |
| break; |
| } |
| case VTYPE_PTR16: { |
| // pointer to 16-bit memory |
| if (index_value != 0) { |
| // index is a non-zero immediate |
| #if N_THUMB |
| if (index_value > 0 && index_value < 32) { |
| asm_thumb_strh_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value); |
| break; |
| } |
| #elif N_RV32 |
| if (FIT_SIGNED(index_value, 11)) { |
| asm_rv32_opcode_sh(emit->as, reg_value, reg_base, index_value << 1); |
| break; |
| } |
| #endif |
| ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 1); |
| ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 2*index to base |
| reg_base = reg_index; |
| } |
| ASM_STORE16_REG_REG(emit->as, reg_value, reg_base); // store value to (base+2*index) |
| break; |
| } |
| case VTYPE_PTR32: { |
| // pointer to 32-bit memory |
| if (index_value != 0) { |
| // index is a non-zero immediate |
| #if N_THUMB |
| if (index_value > 0 && index_value < 32) { |
| asm_thumb_str_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value); |
| break; |
| } |
| #elif N_RV32 |
| if (FIT_SIGNED(index_value, 10)) { |
| asm_rv32_opcode_sw(emit->as, reg_value, reg_base, index_value << 2); |
| break; |
| } |
| #elif N_ARM |
| ASM_MOV_REG_IMM(emit->as, reg_index, index_value); |
| asm_arm_str_reg_reg_reg(emit->as, reg_value, reg_base, reg_index); |
| return; |
| #endif |
| ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 2); |
| ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 4*index to base |
| reg_base = reg_index; |
| } |
| ASM_STORE32_REG_REG(emit->as, reg_value, reg_base); // store value to (base+4*index) |
| break; |
| } |
| default: |
| EMIT_NATIVE_VIPER_TYPE_ERROR(emit, |
| MP_ERROR_TEXT("can't store to '%q'"), vtype_to_qstr(vtype_base)); |
| } |
| } else { |
| // index is not an immediate |
| vtype_kind_t vtype_index, vtype_value; |
| int reg_index = REG_ARG_2; |
| int reg_value = REG_ARG_3; |
| emit_pre_pop_reg_flexible(emit, &vtype_index, ®_index, REG_ARG_1, reg_value); |
| emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); |
| if (vtype_index != VTYPE_INT && vtype_index != VTYPE_UINT) { |
| EMIT_NATIVE_VIPER_TYPE_ERROR(emit, |
| MP_ERROR_TEXT("can't store with '%q' index"), vtype_to_qstr(vtype_index)); |
| } |
| #if N_X64 || N_X86 |
| // special case: x86 needs byte stores to be from lower 4 regs (REG_ARG_3 is EDX) |
| emit_pre_pop_reg(emit, &vtype_value, reg_value); |
| #else |
| emit_pre_pop_reg_flexible(emit, &vtype_value, ®_value, REG_ARG_1, reg_index); |
| #endif |
| if (vtype_value != VTYPE_BOOL && vtype_value != VTYPE_INT && vtype_value != VTYPE_UINT) { |
| EMIT_NATIVE_VIPER_TYPE_ERROR(emit, |
| MP_ERROR_TEXT("can't store '%q'"), vtype_to_qstr(vtype_value)); |
| } |
| switch (vtype_base) { |
| case VTYPE_PTR8: { |
| // pointer to 8-bit memory |
| // TODO optimise to use thumb strb r1, [r2, r3] |
| #if N_ARM |
| asm_arm_strb_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index); |
| break; |
| #endif |
| ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base |
| ASM_STORE8_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+index) |
| break; |
| } |
| case VTYPE_PTR16: { |
| // pointer to 16-bit memory |
| #if N_ARM |
| asm_arm_strh_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index); |
| break; |
| #endif |
| ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base |
| ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base |
| ASM_STORE16_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+2*index) |
| break; |
| } |
| case VTYPE_PTR32: { |
| // pointer to 32-bit memory |
| #if N_ARM |
| asm_arm_str_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index); |
| break; |
| #elif N_RV32 |
| asm_rv32_opcode_slli(emit->as, REG_TEMP2, reg_index, 2); |
| asm_rv32_opcode_cadd(emit->as, REG_ARG_1, REG_TEMP2); |
| asm_rv32_opcode_sw(emit->as, reg_value, REG_ARG_1, 0); |
| break; |
| #endif |
| ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base |
| ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base |
| ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base |
| ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base |
| ASM_STORE32_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+4*index) |
| break; |
| } |
| default: |
| EMIT_NATIVE_VIPER_TYPE_ERROR(emit, |
| MP_ERROR_TEXT("can't store to '%q'"), vtype_to_qstr(vtype_base)); |
| } |
| } |
| |
| } |
| } |
| |
| static void emit_native_delete_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) { |
| if (kind == MP_EMIT_IDOP_LOCAL_FAST) { |
| // TODO: This is not compliant implementation. We could use MP_OBJ_SENTINEL |
| // to mark deleted vars but then every var would need to be checked on |
| // each access. Very inefficient, so just set value to None to enable GC. |
| emit_native_load_const_tok(emit, MP_TOKEN_KW_NONE); |
| emit_native_store_fast(emit, qst, local_num); |
| } else { |
| // TODO implement me! |
| } |
| } |
| |
| static void emit_native_delete_global(emit_t *emit, qstr qst, int kind) { |
| MP_STATIC_ASSERT(MP_F_DELETE_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_F_DELETE_NAME); |
| MP_STATIC_ASSERT(MP_F_DELETE_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_F_DELETE_GLOBAL); |
| emit_native_pre(emit); |
| emit_call_with_qstr_arg(emit, MP_F_DELETE_NAME + kind, qst, REG_ARG_1); |
| emit_post(emit); |
| } |
| |
| static void emit_native_delete_attr(emit_t *emit, qstr qst) { |
| vtype_kind_t vtype_base; |
| emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base |
| assert(vtype_base == VTYPE_PYOBJ); |
| ASM_XOR_REG_REG(emit->as, REG_ARG_3, REG_ARG_3); // arg3 = value (null for delete) |
| emit_call_with_qstr_arg(emit, MP_F_STORE_ATTR, qst, REG_ARG_2); // arg2 = attribute name |
| emit_post(emit); |
| } |
| |
| static void emit_native_delete_subscr(emit_t *emit) { |
| vtype_kind_t vtype_index, vtype_base; |
| emit_pre_pop_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1); // index, base |
| assert(vtype_index == VTYPE_PYOBJ); |
| assert(vtype_base == VTYPE_PYOBJ); |
| emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, (mp_uint_t)MP_OBJ_NULL, REG_ARG_3); |
| } |
| |
| static void emit_native_subscr(emit_t *emit, int kind) { |
| if (kind == MP_EMIT_SUBSCR_LOAD) { |
| emit_native_load_subscr(emit); |
| } else if (kind == MP_EMIT_SUBSCR_STORE) { |
| emit_native_store_subscr(emit); |
| } else { |
| emit_native_delete_subscr(emit); |
| } |
| } |
| |
| static void emit_native_attr(emit_t *emit, qstr qst, int kind) { |
| if (kind == MP_EMIT_ATTR_LOAD) { |
| emit_native_load_attr(emit, qst); |
| } else if (kind == MP_EMIT_ATTR_STORE) { |
| emit_native_store_attr(emit, qst); |
| } else { |
| emit_native_delete_attr(emit, qst); |
| } |
| } |
| |
| static void emit_native_dup_top(emit_t *emit) { |
| DEBUG_printf("dup_top\n"); |
| vtype_kind_t vtype; |
| int reg = REG_TEMP0; |
| emit_pre_pop_reg_flexible(emit, &vtype, ®, -1, -1); |
| emit_post_push_reg_reg(emit, vtype, reg, vtype, reg); |
| } |
| |
| static void emit_native_dup_top_two(emit_t *emit) { |
| vtype_kind_t vtype0, vtype1; |
| emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1); |
| emit_post_push_reg_reg_reg_reg(emit, vtype1, REG_TEMP1, vtype0, REG_TEMP0, vtype1, REG_TEMP1, vtype0, REG_TEMP0); |
| } |
| |
| static void emit_native_pop_top(emit_t *emit) { |
| DEBUG_printf("pop_top\n"); |
| emit_pre_pop_discard(emit); |
| emit_post(emit); |
| } |
| |
| static void emit_native_rot_two(emit_t *emit) { |
| DEBUG_printf("rot_two\n"); |
| vtype_kind_t vtype0, vtype1; |
| emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1); |
| emit_post_push_reg_reg(emit, vtype0, REG_TEMP0, vtype1, REG_TEMP1); |
| } |
| |
| static void emit_native_rot_three(emit_t *emit) { |
| DEBUG_printf("rot_three\n"); |
| vtype_kind_t vtype0, vtype1, vtype2; |
| emit_pre_pop_reg_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1, &vtype2, REG_TEMP2); |
| emit_post_push_reg_reg_reg(emit, vtype0, REG_TEMP0, vtype2, REG_TEMP2, vtype1, REG_TEMP1); |
| } |
| |
| static void emit_native_jump(emit_t *emit, mp_uint_t label) { |
| DEBUG_printf("jump(label=" UINT_FMT ")\n", label); |
| emit_native_pre(emit); |
| // need to commit stack because we are jumping elsewhere |
| need_stack_settled(emit); |
| ASM_JUMP(emit->as, label); |
| emit_post(emit); |
| mp_asm_base_suppress_code(&emit->as->base); |
| } |
| |
| static void emit_native_jump_helper(emit_t *emit, bool cond, mp_uint_t label, bool pop) { |
| vtype_kind_t vtype = peek_vtype(emit, 0); |
| if (vtype == VTYPE_PYOBJ) { |
| emit_pre_pop_reg(emit, &vtype, REG_ARG_1); |
| if (!pop) { |
| adjust_stack(emit, 1); |
| } |
| emit_call(emit, MP_F_OBJ_IS_TRUE); |
| } else { |
| emit_pre_pop_reg(emit, &vtype, REG_RET); |
| if (!pop) { |
| adjust_stack(emit, 1); |
| } |
| if (!(vtype == VTYPE_BOOL || vtype == VTYPE_INT || vtype == VTYPE_UINT)) { |
| EMIT_NATIVE_VIPER_TYPE_ERROR(emit, |
| MP_ERROR_TEXT("can't implicitly convert '%q' to 'bool'"), vtype_to_qstr(vtype)); |
| } |
| } |
| // For non-pop need to save the vtype so that emit_native_adjust_stack_size |
| // can use it. This is a bit of a hack. |
| if (!pop) { |
| emit->saved_stack_vtype = vtype; |
| } |
| // need to commit stack because we may jump elsewhere |
| need_stack_settled(emit); |
| // Emit the jump |
| if (cond) { |
| ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label, vtype == VTYPE_PYOBJ); |
| } else { |
| ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label, vtype == VTYPE_PYOBJ); |
| } |
| if (!pop) { |
| adjust_stack(emit, -1); |
| } |
| emit_post(emit); |
| } |
| |
| static void emit_native_pop_jump_if(emit_t *emit, bool cond, mp_uint_t label) { |
| DEBUG_printf("pop_jump_if(cond=%u, label=" UINT_FMT ")\n", cond, label); |
| emit_native_jump_helper(emit, cond, label, true); |
| } |
| |
| static void emit_native_jump_if_or_pop(emit_t *emit, bool cond, mp_uint_t label) { |
| DEBUG_printf("jump_if_or_pop(cond=%u, label=" UINT_FMT ")\n", cond, label); |
| emit_native_jump_helper(emit, cond, label, false); |
| } |
| |
| static void emit_native_unwind_jump(emit_t *emit, mp_uint_t label, mp_uint_t except_depth) { |
| if (except_depth > 0) { |
| exc_stack_entry_t *first_finally = NULL; |
| exc_stack_entry_t *prev_finally = NULL; |
| exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size - 1]; |
| for (; except_depth > 0; --except_depth, --e) { |
| if (e->is_finally && e->is_active) { |
| // Found an active finally handler |
| if (first_finally == NULL) { |
| first_finally = e; |
| } |
| if (prev_finally != NULL) { |
| // Mark prev finally as needed to unwind a jump |
| prev_finally->unwind_label = e->label; |
| } |
| prev_finally = e; |
| } |
| } |
| if (prev_finally == NULL) { |
| // No finally, handle the jump ourselves |
| // First, restore the exception handler address for the jump |
| if (e < emit->exc_stack) { |
| ASM_XOR_REG_REG(emit->as, REG_RET, REG_RET); |
| } else { |
| ASM_MOV_REG_PCREL(emit->as, REG_RET, e->label); |
| } |
| ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_RET); |
| } else { |
| // Last finally should do our jump for us |
| // Mark finally as needing to decide the type of jump |
| prev_finally->unwind_label = UNWIND_LABEL_DO_FINAL_UNWIND; |
| ASM_MOV_REG_PCREL(emit->as, REG_RET, label & ~MP_EMIT_BREAK_FROM_FOR); |
| ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_UNWIND(emit), REG_RET); |
| // Cancel any active exception (see also emit_native_pop_except_jump) |
| ASM_MOV_REG_IMM(emit->as, REG_RET, (mp_uint_t)MP_OBJ_NULL); |
| ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_RET); |
| // Jump to the innermost active finally |
| label = first_finally->label; |
| } |
| } |
| emit_native_jump(emit, label & ~MP_EMIT_BREAK_FROM_FOR); |
| } |
| |
| static void emit_native_setup_with(emit_t *emit, mp_uint_t label) { |
| // the context manager is on the top of the stack |
| // stack: (..., ctx_mgr) |
| |
| // get __exit__ method |
| vtype_kind_t vtype; |
| emit_access_stack(emit, 1, &vtype, REG_ARG_1); // arg1 = ctx_mgr |
| assert(vtype == VTYPE_PYOBJ); |
| emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr |
| emit_call_with_qstr_arg(emit, MP_F_LOAD_METHOD, MP_QSTR___exit__, REG_ARG_2); |
| // stack: (..., ctx_mgr, __exit__, self) |
| |
| emit_pre_pop_reg(emit, &vtype, REG_ARG_3); // self |
| emit_pre_pop_reg(emit, &vtype, REG_ARG_2); // __exit__ |
| emit_pre_pop_reg(emit, &vtype, REG_ARG_1); // ctx_mgr |
| emit_post_push_reg(emit, vtype, REG_ARG_2); // __exit__ |
| emit_post_push_reg(emit, vtype, REG_ARG_3); // self |
| // stack: (..., __exit__, self) |
| // REG_ARG_1=ctx_mgr |
| |
| // get __enter__ method |
| emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr |
| emit_call_with_qstr_arg(emit, MP_F_LOAD_METHOD, MP_QSTR___enter__, REG_ARG_2); // arg2 = method name |
| // stack: (..., __exit__, self, __enter__, self) |
| |
| // call __enter__ method |
| emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2); // pointer to items, including meth and self |
| emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 0, REG_ARG_1, 0, REG_ARG_2); |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // push return value of __enter__ |
| // stack: (..., __exit__, self, as_value) |
| |
| // need to commit stack because we may jump elsewhere |
| need_stack_settled(emit); |
| emit_native_push_exc_stack(emit, label, true); |
| |
| emit_native_dup_top(emit); |
| // stack: (..., __exit__, self, as_value, as_value) |
| } |
| |
| static void emit_native_setup_block(emit_t *emit, mp_uint_t label, int kind) { |
| DEBUG_printf("setup_block(%d, %d)\n", (int)label, kind); |
| if (kind == MP_EMIT_SETUP_BLOCK_WITH) { |
| emit_native_setup_with(emit, label); |
| } else { |
| // Set up except and finally |
| emit_native_pre(emit); |
| need_stack_settled(emit); |
| emit_native_push_exc_stack(emit, label, kind == MP_EMIT_SETUP_BLOCK_FINALLY); |
| emit_post(emit); |
| } |
| } |
| |
| static void emit_native_with_cleanup(emit_t *emit, mp_uint_t label) { |
| // Note: 3 labels are reserved for this function, starting at *emit->label_slot |
| |
| // stack: (..., __exit__, self, as_value) |
| emit_native_pre(emit); |
| emit_native_leave_exc_stack(emit, false); |
| adjust_stack(emit, -1); |
| // stack: (..., __exit__, self) |
| |
| // Label for case where __exit__ is called from an unwind jump |
| emit_native_label_assign(emit, *emit->label_slot + 2); |
| |
| // call __exit__ |
| emit_post_push_imm(emit, VTYPE_PTR_NONE, 0); |
| emit_post_push_imm(emit, VTYPE_PTR_NONE, 0); |
| emit_post_push_imm(emit, VTYPE_PTR_NONE, 0); |
| emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 5); |
| emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 3, REG_ARG_1, 0, REG_ARG_2); |
| |
| // Replace exc with None and finish |
| emit_native_jump(emit, *emit->label_slot); |
| |
| // nlr_catch |
| // Don't use emit_native_label_assign because this isn't a real finally label |
| mp_asm_base_label_assign(&emit->as->base, label); |
| |
| // Leave with's exception handler |
| emit_native_leave_exc_stack(emit, true); |
| |
| // Adjust stack counter for: __exit__, self (implicitly discard as_value which is above self) |
| emit_native_adjust_stack_size(emit, 2); |
| // stack: (..., __exit__, self) |
| |
| ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit)); // get exc |
| |
| // Check if exc is MP_OBJ_NULL (i.e. zero) and jump to non-exc handler if it is |
| ASM_JUMP_IF_REG_ZERO(emit->as, REG_ARG_1, *emit->label_slot + 2, false); |
| |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_2, REG_ARG_1, 0); // get type(exc) |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_2); // push type(exc) |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_1); // push exc value |
| emit_post_push_imm(emit, VTYPE_PTR_NONE, 0); // traceback info |
| // Stack: (..., __exit__, self, type(exc), exc, traceback) |
| |
| // call __exit__ method |
| emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 5); |
| emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 3, REG_ARG_1, 0, REG_ARG_2); |
| // Stack: (...) |
| |
| // If REG_RET is true then we need to replace exception with None (swallow exception) |
| if (REG_ARG_1 != REG_RET) { |
| ASM_MOV_REG_REG(emit->as, REG_ARG_1, REG_RET); |
| } |
| emit_call(emit, MP_F_OBJ_IS_TRUE); |
| ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, *emit->label_slot + 1, true); |
| |
| // Replace exception with MP_OBJ_NULL. |
| emit_native_label_assign(emit, *emit->label_slot); |
| ASM_MOV_REG_IMM(emit->as, REG_TEMP0, (mp_uint_t)MP_OBJ_NULL); |
| ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_TEMP0); |
| |
| // end of with cleanup nlr_catch block |
| emit_native_label_assign(emit, *emit->label_slot + 1); |
| |
| // Exception is in nlr_buf.ret_val slot |
| adjust_stack(emit, 1); |
| } |
| |
| #if MICROPY_PY_ASYNC_AWAIT |
| static void emit_native_async_with_setup_finally(emit_t *emit, mp_uint_t label_aexit_no_exc, mp_uint_t label_finally_block, mp_uint_t label_ret_unwind_jump) { |
| // The async-with body has executed and no exception was raised, the execution fell through to this point. |
| // Stack: (..., ctx_mgr) |
| |
| // Insert a dummy value into the stack so the stack has the same layout to execute the code starting at label_aexit_no_exc |
| emit_native_adjust_stack_size(emit, 1); // push dummy value, it won't ever be used |
| emit_native_rot_two(emit); |
| emit_native_load_const_tok(emit, MP_TOKEN_KW_NONE); // to tell end_finally there's no exception |
| emit_native_rot_two(emit); |
| // Stack: (..., <dummy>, None, ctx_mgr) |
| emit_native_jump(emit, label_aexit_no_exc); // jump to code to call __aexit__ |
| emit_native_adjust_stack_size(emit, -1); |
| |
| // Start of "finally" block which is entered via one of: an exception propagating out, a return, an unwind jump. |
| emit_native_label_assign(emit, label_finally_block); |
| |
| // Detect which case we have by the local exception slot holding an exception or not. |
| emit_pre_pop_discard(emit); |
| ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit)); // get exception |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_1); |
| ASM_JUMP_IF_REG_ZERO(emit->as, REG_ARG_1, label_ret_unwind_jump, false); // if not an exception then we have return or unwind jump. |
| } |
| #endif |
| |
| static void emit_native_end_finally(emit_t *emit) { |
| // logic: |
| // exc = pop_stack |
| // if exc == None: pass |
| // else: raise exc |
| // the check if exc is None is done in the MP_F_NATIVE_RAISE stub |
| DEBUG_printf("end_finally\n"); |
| |
| emit_pre_pop_discard(emit); |
| ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit)); |
| emit_call(emit, MP_F_NATIVE_RAISE); |
| |
| // Get state for this finally and see if we need to unwind |
| exc_stack_entry_t *e = emit_native_pop_exc_stack(emit); |
| if (e->unwind_label != UNWIND_LABEL_UNUSED) { |
| ASM_MOV_REG_LOCAL(emit->as, REG_RET, LOCAL_IDX_EXC_HANDLER_UNWIND(emit)); |
| ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, *emit->label_slot, false); |
| if (e->unwind_label == UNWIND_LABEL_DO_FINAL_UNWIND) { |
| ASM_JUMP_REG(emit->as, REG_RET); |
| } else { |
| emit_native_jump(emit, e->unwind_label); |
| } |
| emit_native_label_assign(emit, *emit->label_slot); |
| } |
| |
| emit_post(emit); |
| } |
| |
| static void emit_native_get_iter(emit_t *emit, bool use_stack) { |
| // perhaps the difficult one, as we want to rewrite for loops using native code |
| // in cases where we iterate over a Python object, can we use normal runtime calls? |
| |
| DEBUG_printf("get_iter(%d)\n", use_stack); |
| |
| vtype_kind_t vtype; |
| emit_pre_pop_reg(emit, &vtype, REG_ARG_1); |
| assert(vtype == VTYPE_PYOBJ); |
| if (use_stack) { |
| emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_2, MP_OBJ_ITER_BUF_NSLOTS); |
| emit_call(emit, MP_F_NATIVE_GETITER); |
| } else { |
| // mp_getiter will allocate the iter_buf on the heap |
| ASM_MOV_REG_IMM(emit->as, REG_ARG_2, 0); |
| emit_call(emit, MP_F_NATIVE_GETITER); |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); |
| } |
| } |
| |
| static void emit_native_for_iter(emit_t *emit, mp_uint_t label) { |
| emit_native_pre(emit); |
| emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_1, MP_OBJ_ITER_BUF_NSLOTS); |
| adjust_stack(emit, MP_OBJ_ITER_BUF_NSLOTS); |
| emit_call(emit, MP_F_NATIVE_ITERNEXT); |
| #if MICROPY_DEBUG_MP_OBJ_SENTINELS |
| ASM_MOV_REG_IMM(emit->as, REG_TEMP1, (mp_uint_t)MP_OBJ_STOP_ITERATION); |
| ASM_JUMP_IF_REG_EQ(emit->as, REG_RET, REG_TEMP1, label); |
| #else |
| MP_STATIC_ASSERT(MP_OBJ_STOP_ITERATION == 0); |
| ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label, false); |
| #endif |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); |
| } |
| |
| static void emit_native_for_iter_end(emit_t *emit) { |
| // adjust stack counter (we get here from for_iter ending, which popped the value for us) |
| emit_native_pre(emit); |
| adjust_stack(emit, -MP_OBJ_ITER_BUF_NSLOTS); |
| emit_post(emit); |
| } |
| |
| static void emit_native_pop_except_jump(emit_t *emit, mp_uint_t label, bool within_exc_handler) { |
| if (within_exc_handler) { |
| // Cancel any active exception so subsequent handlers don't see it |
| ASM_MOV_REG_IMM(emit->as, REG_TEMP0, (mp_uint_t)MP_OBJ_NULL); |
| ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_TEMP0); |
| } else { |
| emit_native_leave_exc_stack(emit, false); |
| } |
| emit_native_jump(emit, label); |
| } |
| |
| static void emit_native_unary_op(emit_t *emit, mp_unary_op_t op) { |
| vtype_kind_t vtype = peek_vtype(emit, 0); |
| if (vtype == VTYPE_INT || vtype == VTYPE_UINT) { |
| if (op == MP_UNARY_OP_POSITIVE) { |
| // No-operation, just leave the argument on the stack. |
| } else if (op == MP_UNARY_OP_NEGATIVE) { |
| int reg = REG_RET; |
| emit_pre_pop_reg_flexible(emit, &vtype, ®, reg, reg); |
| ASM_NEG_REG(emit->as, reg); |
| emit_post_push_reg(emit, vtype, reg); |
| } else if (op == MP_UNARY_OP_INVERT) { |
| #ifdef ASM_NOT_REG |
| int reg = REG_RET; |
| emit_pre_pop_reg_flexible(emit, &vtype, ®, reg, reg); |
| ASM_NOT_REG(emit->as, reg); |
| #else |
| int reg = REG_RET; |
| emit_pre_pop_reg_flexible(emit, &vtype, ®, REG_ARG_1, reg); |
| ASM_MOV_REG_IMM(emit->as, REG_ARG_1, -1); |
| ASM_XOR_REG_REG(emit->as, reg, REG_ARG_1); |
| #endif |
| emit_post_push_reg(emit, vtype, reg); |
| } else { |
| EMIT_NATIVE_VIPER_TYPE_ERROR(emit, |
| MP_ERROR_TEXT("'not' not implemented"), mp_binary_op_method_name[op]); |
| } |
| } else if (vtype == VTYPE_PYOBJ) { |
| emit_pre_pop_reg(emit, &vtype, REG_ARG_2); |
| emit_call_with_imm_arg(emit, MP_F_UNARY_OP, op, REG_ARG_1); |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); |
| } else { |
| EMIT_NATIVE_VIPER_TYPE_ERROR(emit, |
| MP_ERROR_TEXT("can't do unary op of '%q'"), vtype_to_qstr(vtype)); |
| } |
| } |
| |
| static void emit_native_binary_op(emit_t *emit, mp_binary_op_t op) { |
| DEBUG_printf("binary_op(" UINT_FMT ")\n", op); |
| vtype_kind_t vtype_lhs = peek_vtype(emit, 1); |
| vtype_kind_t vtype_rhs = peek_vtype(emit, 0); |
| if ((vtype_lhs == VTYPE_INT || vtype_lhs == VTYPE_UINT) |
| && (vtype_rhs == VTYPE_INT || vtype_rhs == VTYPE_UINT)) { |
| // for integers, inplace and normal ops are equivalent, so use just normal ops |
| if (MP_BINARY_OP_INPLACE_OR <= op && op <= MP_BINARY_OP_INPLACE_POWER) { |
| op += MP_BINARY_OP_OR - MP_BINARY_OP_INPLACE_OR; |
| } |
| |
| #if N_X64 || N_X86 |
| // special cases for x86 and shifting |
| if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_RSHIFT) { |
| #if N_X64 |
| emit_pre_pop_reg_reg(emit, &vtype_rhs, ASM_X64_REG_RCX, &vtype_lhs, REG_RET); |
| #else |
| emit_pre_pop_reg_reg(emit, &vtype_rhs, ASM_X86_REG_ECX, &vtype_lhs, REG_RET); |
| #endif |
| if (op == MP_BINARY_OP_LSHIFT) { |
| ASM_LSL_REG(emit->as, REG_RET); |
| } else { |
| if (vtype_lhs == VTYPE_UINT) { |
| ASM_LSR_REG(emit->as, REG_RET); |
| } else { |
| ASM_ASR_REG(emit->as, REG_RET); |
| } |
| } |
| emit_post_push_reg(emit, vtype_lhs, REG_RET); |
| return; |
| } |
| #endif |
| |
| // special cases for floor-divide and module because we dispatch to helper functions |
| if (op == MP_BINARY_OP_FLOOR_DIVIDE || op == MP_BINARY_OP_MODULO) { |
| emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_2, &vtype_lhs, REG_ARG_1); |
| if (vtype_lhs != VTYPE_INT) { |
| EMIT_NATIVE_VIPER_TYPE_ERROR(emit, |
| MP_ERROR_TEXT("div/mod not implemented for uint"), mp_binary_op_method_name[op]); |
| } |
| if (op == MP_BINARY_OP_FLOOR_DIVIDE) { |
| emit_call(emit, MP_F_SMALL_INT_FLOOR_DIVIDE); |
| } else { |
| emit_call(emit, MP_F_SMALL_INT_MODULO); |
| } |
| emit_post_push_reg(emit, VTYPE_INT, REG_RET); |
| return; |
| } |
| |
| int reg_rhs = REG_ARG_3; |
| emit_pre_pop_reg_flexible(emit, &vtype_rhs, ®_rhs, REG_RET, REG_ARG_2); |
| emit_pre_pop_reg(emit, &vtype_lhs, REG_ARG_2); |
| |
| #if !(N_X64 || N_X86) |
| if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_RSHIFT) { |
| if (op == MP_BINARY_OP_LSHIFT) { |
| ASM_LSL_REG_REG(emit->as, REG_ARG_2, reg_rhs); |
| } else { |
| if (vtype_lhs == VTYPE_UINT) { |
| ASM_LSR_REG_REG(emit->as, REG_ARG_2, reg_rhs); |
| } else { |
| ASM_ASR_REG_REG(emit->as, REG_ARG_2, reg_rhs); |
| } |
| } |
| emit_post_push_reg(emit, vtype_lhs, REG_ARG_2); |
| return; |
| } |
| #endif |
| |
| if (op == MP_BINARY_OP_OR) { |
| ASM_OR_REG_REG(emit->as, REG_ARG_2, reg_rhs); |
| emit_post_push_reg(emit, vtype_lhs, REG_ARG_2); |
| } else if (op == MP_BINARY_OP_XOR) { |
| ASM_XOR_REG_REG(emit->as, REG_ARG_2, reg_rhs); |
| emit_post_push_reg(emit, vtype_lhs, REG_ARG_2); |
| } else if (op == MP_BINARY_OP_AND) { |
| ASM_AND_REG_REG(emit->as, REG_ARG_2, reg_rhs); |
| emit_post_push_reg(emit, vtype_lhs, REG_ARG_2); |
| } else if (op == MP_BINARY_OP_ADD) { |
| ASM_ADD_REG_REG(emit->as, REG_ARG_2, reg_rhs); |
| emit_post_push_reg(emit, vtype_lhs, REG_ARG_2); |
| } else if (op == MP_BINARY_OP_SUBTRACT) { |
| ASM_SUB_REG_REG(emit->as, REG_ARG_2, reg_rhs); |
| emit_post_push_reg(emit, vtype_lhs, REG_ARG_2); |
| } else if (op == MP_BINARY_OP_MULTIPLY) { |
| ASM_MUL_REG_REG(emit->as, REG_ARG_2, reg_rhs); |
| emit_post_push_reg(emit, vtype_lhs, REG_ARG_2); |
| } else if (op == MP_BINARY_OP_LESS |
| || op == MP_BINARY_OP_MORE |
| || op == MP_BINARY_OP_EQUAL |
| || op == MP_BINARY_OP_LESS_EQUAL |
| || op == MP_BINARY_OP_MORE_EQUAL |
| || op == MP_BINARY_OP_NOT_EQUAL) { |
| // comparison ops |
| |
| if (vtype_lhs != vtype_rhs) { |
| EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("comparison of int and uint")); |
| } |
| |
| size_t op_idx = op - MP_BINARY_OP_LESS + (vtype_lhs == VTYPE_UINT ? 0 : 6); |
| |
| need_reg_single(emit, REG_RET, 0); |
| #if N_X64 |
| asm_x64_xor_r64_r64(emit->as, REG_RET, REG_RET); |
| asm_x64_cmp_r64_with_r64(emit->as, reg_rhs, REG_ARG_2); |
| static byte ops[6 + 6] = { |
| // unsigned |
| ASM_X64_CC_JB, |
| ASM_X64_CC_JA, |
| ASM_X64_CC_JE, |
| ASM_X64_CC_JBE, |
| ASM_X64_CC_JAE, |
| ASM_X64_CC_JNE, |
| // signed |
| ASM_X64_CC_JL, |
| ASM_X64_CC_JG, |
| ASM_X64_CC_JE, |
| ASM_X64_CC_JLE, |
| ASM_X64_CC_JGE, |
| ASM_X64_CC_JNE, |
| }; |
| asm_x64_setcc_r8(emit->as, ops[op_idx], REG_RET); |
| #elif N_X86 |
| asm_x86_xor_r32_r32(emit->as, REG_RET, REG_RET); |
| asm_x86_cmp_r32_with_r32(emit->as, reg_rhs, REG_ARG_2); |
| static byte ops[6 + 6] = { |
| // unsigned |
| ASM_X86_CC_JB, |
| ASM_X86_CC_JA, |
| ASM_X86_CC_JE, |
| ASM_X86_CC_JBE, |
| ASM_X86_CC_JAE, |
| ASM_X86_CC_JNE, |
| // signed |
| ASM_X86_CC_JL, |
| ASM_X86_CC_JG, |
| ASM_X86_CC_JE, |
| ASM_X86_CC_JLE, |
| ASM_X86_CC_JGE, |
| ASM_X86_CC_JNE, |
| }; |
| asm_x86_setcc_r8(emit->as, ops[op_idx], REG_RET); |
| #elif N_THUMB |
| asm_thumb_cmp_rlo_rlo(emit->as, REG_ARG_2, reg_rhs); |
| if (asm_thumb_allow_armv7m(emit->as)) { |
| static uint16_t ops[6 + 6] = { |
| // unsigned |
| ASM_THUMB_OP_ITE_CC, |
| ASM_THUMB_OP_ITE_HI, |
| ASM_THUMB_OP_ITE_EQ, |
| ASM_THUMB_OP_ITE_LS, |
| ASM_THUMB_OP_ITE_CS, |
| ASM_THUMB_OP_ITE_NE, |
| // signed |
| ASM_THUMB_OP_ITE_LT, |
| ASM_THUMB_OP_ITE_GT, |
| ASM_THUMB_OP_ITE_EQ, |
| ASM_THUMB_OP_ITE_LE, |
| ASM_THUMB_OP_ITE_GE, |
| ASM_THUMB_OP_ITE_NE, |
| }; |
| asm_thumb_op16(emit->as, ops[op_idx]); |
| asm_thumb_mov_rlo_i8(emit->as, REG_RET, 1); |
| asm_thumb_mov_rlo_i8(emit->as, REG_RET, 0); |
| } else { |
| static uint16_t ops[6 + 6] = { |
| // unsigned |
| ASM_THUMB_CC_CC, |
| ASM_THUMB_CC_HI, |
| ASM_THUMB_CC_EQ, |
| ASM_THUMB_CC_LS, |
| ASM_THUMB_CC_CS, |
| ASM_THUMB_CC_NE, |
| // signed |
| ASM_THUMB_CC_LT, |
| ASM_THUMB_CC_GT, |
| ASM_THUMB_CC_EQ, |
| ASM_THUMB_CC_LE, |
| ASM_THUMB_CC_GE, |
| ASM_THUMB_CC_NE, |
| }; |
| asm_thumb_bcc_rel9(emit->as, ops[op_idx], 6); |
| asm_thumb_mov_rlo_i8(emit->as, REG_RET, 0); |
| asm_thumb_b_rel12(emit->as, 4); |
| asm_thumb_mov_rlo_i8(emit->as, REG_RET, 1); |
| } |
| #elif N_ARM |
| asm_arm_cmp_reg_reg(emit->as, REG_ARG_2, reg_rhs); |
| static uint ccs[6 + 6] = { |
| // unsigned |
| ASM_ARM_CC_CC, |
| ASM_ARM_CC_HI, |
| ASM_ARM_CC_EQ, |
| ASM_ARM_CC_LS, |
| ASM_ARM_CC_CS, |
| ASM_ARM_CC_NE, |
| // signed |
| ASM_ARM_CC_LT, |
| ASM_ARM_CC_GT, |
| ASM_ARM_CC_EQ, |
| ASM_ARM_CC_LE, |
| ASM_ARM_CC_GE, |
| ASM_ARM_CC_NE, |
| }; |
| asm_arm_setcc_reg(emit->as, REG_RET, ccs[op_idx]); |
| #elif N_XTENSA || N_XTENSAWIN |
| static uint8_t ccs[6 + 6] = { |
| // unsigned |
| ASM_XTENSA_CC_LTU, |
| 0x80 | ASM_XTENSA_CC_LTU, // for GTU we'll swap args |
| ASM_XTENSA_CC_EQ, |
| 0x80 | ASM_XTENSA_CC_GEU, // for LEU we'll swap args |
| ASM_XTENSA_CC_GEU, |
| ASM_XTENSA_CC_NE, |
| // signed |
| ASM_XTENSA_CC_LT, |
| 0x80 | ASM_XTENSA_CC_LT, // for GT we'll swap args |
| ASM_XTENSA_CC_EQ, |
| 0x80 | ASM_XTENSA_CC_GE, // for LE we'll swap args |
| ASM_XTENSA_CC_GE, |
| ASM_XTENSA_CC_NE, |
| }; |
| uint8_t cc = ccs[op_idx]; |
| if ((cc & 0x80) == 0) { |
| asm_xtensa_setcc_reg_reg_reg(emit->as, cc, REG_RET, REG_ARG_2, reg_rhs); |
| } else { |
| asm_xtensa_setcc_reg_reg_reg(emit->as, cc & ~0x80, REG_RET, reg_rhs, REG_ARG_2); |
| } |
| #elif N_RV32 |
| (void)op_idx; |
| switch (op) { |
| case MP_BINARY_OP_LESS: |
| asm_rv32_meta_comparison_lt(emit->as, REG_ARG_2, reg_rhs, REG_RET, vtype_lhs == VTYPE_UINT); |
| break; |
| |
| case MP_BINARY_OP_MORE: |
| asm_rv32_meta_comparison_lt(emit->as, reg_rhs, REG_ARG_2, REG_RET, vtype_lhs == VTYPE_UINT); |
| break; |
| |
| case MP_BINARY_OP_EQUAL: |
| asm_rv32_meta_comparison_eq(emit->as, REG_ARG_2, reg_rhs, REG_RET); |
| break; |
| |
| case MP_BINARY_OP_LESS_EQUAL: |
| asm_rv32_meta_comparison_le(emit->as, REG_ARG_2, reg_rhs, REG_RET, vtype_lhs == VTYPE_UINT); |
| break; |
| |
| case MP_BINARY_OP_MORE_EQUAL: |
| asm_rv32_meta_comparison_le(emit->as, reg_rhs, REG_ARG_2, REG_RET, vtype_lhs == VTYPE_UINT); |
| break; |
| |
| case MP_BINARY_OP_NOT_EQUAL: |
| asm_rv32_meta_comparison_ne(emit->as, reg_rhs, REG_ARG_2, REG_RET); |
| break; |
| |
| default: |
| break; |
| } |
| #elif N_DEBUG |
| asm_debug_setcc_reg_reg_reg(emit->as, op_idx, REG_RET, REG_ARG_2, reg_rhs); |
| #else |
| #error not implemented |
| #endif |
| emit_post_push_reg(emit, VTYPE_BOOL, REG_RET); |
| } else { |
| // TODO other ops not yet implemented |
| adjust_stack(emit, 1); |
| EMIT_NATIVE_VIPER_TYPE_ERROR(emit, |
| MP_ERROR_TEXT("binary op %q not implemented"), mp_binary_op_method_name[op]); |
| } |
| } else if (vtype_lhs == VTYPE_PYOBJ && vtype_rhs == VTYPE_PYOBJ) { |
| emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_3, &vtype_lhs, REG_ARG_2); |
| bool invert = false; |
| if (op == MP_BINARY_OP_NOT_IN) { |
| invert = true; |
| op = MP_BINARY_OP_IN; |
| } else if (op == MP_BINARY_OP_IS_NOT) { |
| invert = true; |
| op = MP_BINARY_OP_IS; |
| } |
| emit_call_with_imm_arg(emit, MP_F_BINARY_OP, op, REG_ARG_1); |
| if (invert) { |
| ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET); |
| emit_call_with_imm_arg(emit, MP_F_UNARY_OP, MP_UNARY_OP_NOT, REG_ARG_1); |
| } |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); |
| } else { |
| adjust_stack(emit, -1); |
| EMIT_NATIVE_VIPER_TYPE_ERROR(emit, |
| MP_ERROR_TEXT("can't do binary op between '%q' and '%q'"), |
| vtype_to_qstr(vtype_lhs), vtype_to_qstr(vtype_rhs)); |
| } |
| } |
| |
| #if MICROPY_PY_BUILTINS_SLICE |
| static void emit_native_build_slice(emit_t *emit, mp_uint_t n_args); |
| #endif |
| |
| static void emit_native_build(emit_t *emit, mp_uint_t n_args, int kind) { |
| // for viper: call runtime, with types of args |
| // if wrapped in byte_array, or something, allocates memory and fills it |
| MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_TUPLE == MP_F_BUILD_TUPLE); |
| MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_LIST == MP_F_BUILD_LIST); |
| MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_MAP == MP_F_BUILD_MAP); |
| MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_SET == MP_F_BUILD_SET); |
| #if MICROPY_PY_BUILTINS_SLICE |
| if (kind == MP_EMIT_BUILD_SLICE) { |
| emit_native_build_slice(emit, n_args); |
| return; |
| } |
| #endif |
| emit_native_pre(emit); |
| if (kind == MP_EMIT_BUILD_TUPLE || kind == MP_EMIT_BUILD_LIST || kind == MP_EMIT_BUILD_SET) { |
| emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items |
| } |
| emit_call_with_imm_arg(emit, MP_F_BUILD_TUPLE + kind, n_args, REG_ARG_1); |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new tuple/list/map/set |
| } |
| |
| static void emit_native_store_map(emit_t *emit) { |
| vtype_kind_t vtype_key, vtype_value, vtype_map; |
| emit_pre_pop_reg_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3, &vtype_map, REG_ARG_1); // key, value, map |
| assert(vtype_key == VTYPE_PYOBJ); |
| assert(vtype_value == VTYPE_PYOBJ); |
| assert(vtype_map == VTYPE_PYOBJ); |
| emit_call(emit, MP_F_STORE_MAP); |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // map |
| } |
| |
| #if MICROPY_PY_BUILTINS_SLICE |
| static void emit_native_build_slice(emit_t *emit, mp_uint_t n_args) { |
| DEBUG_printf("build_slice %d\n", n_args); |
| if (n_args == 2) { |
| vtype_kind_t vtype_start, vtype_stop; |
| emit_pre_pop_reg_reg(emit, &vtype_stop, REG_ARG_2, &vtype_start, REG_ARG_1); // arg1 = start, arg2 = stop |
| assert(vtype_start == VTYPE_PYOBJ); |
| assert(vtype_stop == VTYPE_PYOBJ); |
| emit_native_mov_reg_const(emit, REG_ARG_3, MP_F_CONST_NONE_OBJ); // arg3 = step |
| } else { |
| assert(n_args == 3); |
| vtype_kind_t vtype_start, vtype_stop, vtype_step; |
| emit_pre_pop_reg_reg_reg(emit, &vtype_step, REG_ARG_3, &vtype_stop, REG_ARG_2, &vtype_start, REG_ARG_1); // arg1 = start, arg2 = stop, arg3 = step |
| assert(vtype_start == VTYPE_PYOBJ); |
| assert(vtype_stop == VTYPE_PYOBJ); |
| assert(vtype_step == VTYPE_PYOBJ); |
| } |
| emit_call(emit, MP_F_NEW_SLICE); |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); |
| } |
| #endif |
| |
| static void emit_native_store_comp(emit_t *emit, scope_kind_t kind, mp_uint_t collection_index) { |
| mp_fun_kind_t f; |
| if (kind == SCOPE_LIST_COMP) { |
| vtype_kind_t vtype_item; |
| emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2); |
| assert(vtype_item == VTYPE_PYOBJ); |
| f = MP_F_LIST_APPEND; |
| #if MICROPY_PY_BUILTINS_SET |
| } else if (kind == SCOPE_SET_COMP) { |
| vtype_kind_t vtype_item; |
| emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2); |
| assert(vtype_item == VTYPE_PYOBJ); |
| f = MP_F_STORE_SET; |
| #endif |
| } else { |
| // SCOPE_DICT_COMP |
| vtype_kind_t vtype_key, vtype_value; |
| emit_pre_pop_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3); |
| assert(vtype_key == VTYPE_PYOBJ); |
| assert(vtype_value == VTYPE_PYOBJ); |
| f = MP_F_STORE_MAP; |
| } |
| vtype_kind_t vtype_collection; |
| emit_access_stack(emit, collection_index, &vtype_collection, REG_ARG_1); |
| assert(vtype_collection == VTYPE_PYOBJ); |
| emit_call(emit, f); |
| emit_post(emit); |
| } |
| |
| static void emit_native_unpack_sequence(emit_t *emit, mp_uint_t n_args) { |
| DEBUG_printf("unpack_sequence %d\n", n_args); |
| vtype_kind_t vtype_base; |
| emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq |
| assert(vtype_base == VTYPE_PYOBJ); |
| emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_args); // arg3 = dest ptr |
| emit_call_with_imm_arg(emit, MP_F_UNPACK_SEQUENCE, n_args, REG_ARG_2); // arg2 = n_args |
| } |
| |
| static void emit_native_unpack_ex(emit_t *emit, mp_uint_t n_left, mp_uint_t n_right) { |
| DEBUG_printf("unpack_ex %d %d\n", n_left, n_right); |
| vtype_kind_t vtype_base; |
| emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq |
| assert(vtype_base == VTYPE_PYOBJ); |
| emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_left + n_right + 1); // arg3 = dest ptr |
| emit_call_with_imm_arg(emit, MP_F_UNPACK_EX, n_left | (n_right << 8), REG_ARG_2); // arg2 = n_left + n_right |
| } |
| |
| static void emit_native_make_function(emit_t *emit, scope_t *scope, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) { |
| // call runtime, with type info for args, or don't support dict/default params, or only support Python objects for them |
| emit_native_pre(emit); |
| emit_native_mov_reg_state(emit, REG_ARG_2, LOCAL_IDX_FUN_OBJ(emit)); |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_2, REG_ARG_2, OFFSETOF_OBJ_FUN_BC_CONTEXT); |
| if (n_pos_defaults == 0 && n_kw_defaults == 0) { |
| need_reg_all(emit); |
| ASM_MOV_REG_IMM(emit->as, REG_ARG_3, 0); |
| } else { |
| emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2); |
| need_reg_all(emit); |
| } |
| emit_load_reg_with_child(emit, REG_ARG_1, scope->raw_code); |
| ASM_CALL_IND(emit->as, MP_F_MAKE_FUNCTION_FROM_PROTO_FUN); |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); |
| } |
| |
| static void emit_native_make_closure(emit_t *emit, scope_t *scope, mp_uint_t n_closed_over, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) { |
| // make function |
| emit_native_pre(emit); |
| emit_native_mov_reg_state(emit, REG_ARG_2, LOCAL_IDX_FUN_OBJ(emit)); |
| ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_2, REG_ARG_2, OFFSETOF_OBJ_FUN_BC_CONTEXT); |
| if (n_pos_defaults == 0 && n_kw_defaults == 0) { |
| need_reg_all(emit); |
| ASM_MOV_REG_IMM(emit->as, REG_ARG_3, 0); |
| } else { |
| emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2 + n_closed_over); |
| adjust_stack(emit, 2 + n_closed_over); |
| need_reg_all(emit); |
| } |
| emit_load_reg_with_child(emit, REG_ARG_1, scope->raw_code); |
| ASM_CALL_IND(emit->as, MP_F_MAKE_FUNCTION_FROM_PROTO_FUN); |
| |
| // make closure |
| #if REG_ARG_1 != REG_RET |
| ASM_MOV_REG_REG(emit->as, REG_ARG_1, REG_RET); |
| #endif |
| ASM_MOV_REG_IMM(emit->as, REG_ARG_2, n_closed_over); |
| emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_closed_over); |
| if (n_pos_defaults != 0 || n_kw_defaults != 0) { |
| adjust_stack(emit, -2); |
| } |
| ASM_CALL_IND(emit->as, MP_F_NEW_CLOSURE); |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); |
| } |
| |
| static void emit_native_call_function(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) { |
| DEBUG_printf("call_function(n_pos=" UINT_FMT ", n_kw=" UINT_FMT ", star_flags=" UINT_FMT ")\n", n_positional, n_keyword, star_flags); |
| |
| // TODO: in viper mode, call special runtime routine with type info for args, |
| // and wanted type info for return, to remove need for boxing/unboxing |
| |
| emit_native_pre(emit); |
| vtype_kind_t vtype_fun = peek_vtype(emit, n_positional + 2 * n_keyword); |
| if (vtype_fun == VTYPE_BUILTIN_CAST) { |
| // casting operator |
| assert(n_positional == 1 && n_keyword == 0); |
| assert(!star_flags); |
| DEBUG_printf(" cast to %d\n", vtype_fun); |
| vtype_kind_t vtype_cast = peek_stack(emit, 1)->data.u_imm; |
| switch (peek_vtype(emit, 0)) { |
| case VTYPE_PYOBJ: { |
| vtype_kind_t vtype; |
| emit_pre_pop_reg(emit, &vtype, REG_ARG_1); |
| emit_pre_pop_discard(emit); |
| emit_call_with_imm_arg(emit, MP_F_CONVERT_OBJ_TO_NATIVE, vtype_cast, REG_ARG_2); // arg2 = type |
| emit_post_push_reg(emit, vtype_cast, REG_RET); |
| break; |
| } |
| case VTYPE_BOOL: |
| case VTYPE_INT: |
| case VTYPE_UINT: |
| case VTYPE_PTR: |
| case VTYPE_PTR8: |
| case VTYPE_PTR16: |
| case VTYPE_PTR32: |
| case VTYPE_PTR_NONE: |
| emit_fold_stack_top(emit, REG_ARG_1); |
| emit_post_top_set_vtype(emit, vtype_cast); |
| break; |
| default: |
| // this can happen when casting a cast: int(int) |
| mp_raise_NotImplementedError(MP_ERROR_TEXT("casting")); |
| } |
| } else { |
| assert(vtype_fun == VTYPE_PYOBJ); |
| if (star_flags) { |
| emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword + 2); // pointer to args |
| emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW_VAR, 0, REG_ARG_1, n_positional | (n_keyword << 8), REG_ARG_2); |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); |
| } else { |
| if (n_positional != 0 || n_keyword != 0) { |
| emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword); // pointer to args |
| } |
| emit_pre_pop_reg(emit, &vtype_fun, REG_ARG_1); // the function |
| emit_call_with_imm_arg(emit, MP_F_NATIVE_CALL_FUNCTION_N_KW, n_positional | (n_keyword << 8), REG_ARG_2); |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); |
| } |
| } |
| } |
| |
| static void emit_native_call_method(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) { |
| DEBUG_printf("call_method(%d, %d, %d)\n", n_positional, n_keyword, star_flags); |
| if (star_flags) { |
| emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword + 3); // pointer to args |
| emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW_VAR, 1, REG_ARG_1, n_positional | (n_keyword << 8), REG_ARG_2); |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); |
| } else { |
| emit_native_pre(emit); |
| emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2 + n_positional + 2 * n_keyword); // pointer to items, including meth and self |
| emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, n_positional, REG_ARG_1, n_keyword, REG_ARG_2); |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); |
| } |
| } |
| |
| static void emit_native_return_value(emit_t *emit) { |
| DEBUG_printf("return_value\n"); |
| |
| if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { |
| // Save pointer to current stack position for caller to access return value |
| emit_get_stack_pointer_to_reg_for_pop(emit, REG_TEMP0, 1); |
| emit_native_mov_state_reg(emit, OFFSETOF_CODE_STATE_SP, REG_TEMP0); |
| |
| // Put return type in return value slot |
| ASM_MOV_REG_IMM(emit->as, REG_TEMP0, MP_VM_RETURN_NORMAL); |
| ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_RET_VAL(emit), REG_TEMP0); |
| |
| // Do the unwinding jump to get to the return handler |
| emit_native_unwind_jump(emit, emit->exit_label, emit->exc_stack_size); |
| return; |
| } |
| |
| if (emit->do_viper_types) { |
| vtype_kind_t return_vtype = emit->scope->scope_flags >> MP_SCOPE_FLAG_VIPERRET_POS; |
| if (peek_vtype(emit, 0) == VTYPE_PTR_NONE) { |
| emit_pre_pop_discard(emit); |
| if (return_vtype == VTYPE_PYOBJ) { |
| emit_native_mov_reg_const(emit, REG_PARENT_RET, MP_F_CONST_NONE_OBJ); |
| } else { |
| ASM_MOV_REG_IMM(emit->as, REG_ARG_1, 0); |
| } |
| } else { |
| vtype_kind_t vtype; |
| emit_pre_pop_reg(emit, &vtype, return_vtype == VTYPE_PYOBJ ? REG_PARENT_RET : REG_ARG_1); |
| if (vtype != return_vtype) { |
| EMIT_NATIVE_VIPER_TYPE_ERROR(emit, |
| MP_ERROR_TEXT("return expected '%q' but got '%q'"), |
| vtype_to_qstr(return_vtype), vtype_to_qstr(vtype)); |
| } |
| } |
| if (return_vtype != VTYPE_PYOBJ) { |
| emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, return_vtype, REG_ARG_2); |
| #if REG_RET != REG_PARENT_RET |
| ASM_MOV_REG_REG(emit->as, REG_PARENT_RET, REG_RET); |
| #endif |
| } |
| } else { |
| vtype_kind_t vtype; |
| emit_pre_pop_reg(emit, &vtype, REG_PARENT_RET); |
| assert(vtype == VTYPE_PYOBJ); |
| } |
| if (NEED_GLOBAL_EXC_HANDLER(emit)) { |
| // Save return value for the global exception handler to use |
| ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_RET_VAL(emit), REG_PARENT_RET); |
| } |
| emit_native_unwind_jump(emit, emit->exit_label, emit->exc_stack_size); |
| } |
| |
| static void emit_native_raise_varargs(emit_t *emit, mp_uint_t n_args) { |
| DEBUG_printf("raise_varargs(%d)\n", n_args); |
| (void)n_args; |
| assert(n_args == 1); |
| vtype_kind_t vtype_exc; |
| emit_pre_pop_reg(emit, &vtype_exc, REG_ARG_1); // arg1 = object to raise |
| if (vtype_exc != VTYPE_PYOBJ) { |
| EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("must raise an object")); |
| } |
| // TODO probably make this 1 call to the runtime (which could even call convert, native_raise(obj, type)) |
| emit_call(emit, MP_F_NATIVE_RAISE); |
| mp_asm_base_suppress_code(&emit->as->base); |
| } |
| |
| static void emit_native_yield(emit_t *emit, int kind) { |
| // Note: 1 (yield) or 3 (yield from) labels are reserved for this function, starting at *emit->label_slot |
| |
| DEBUG_printf("yield(%d)\n", kind); |
| |
| if (emit->do_viper_types) { |
| mp_raise_NotImplementedError(MP_ERROR_TEXT("native yield")); |
| } |
| emit->scope->scope_flags |= MP_SCOPE_FLAG_GENERATOR; |
| |
| need_stack_settled(emit); |
| |
| if (kind == MP_EMIT_YIELD_FROM) { |
| |
| // Top of yield-from loop, conceptually implementing: |
| // for item in generator: |
| // yield item |
| |
| // Jump to start of loop |
| emit_native_jump(emit, *emit->label_slot + 2); |
| |
| // Label for top of loop |
| emit_native_label_assign(emit, *emit->label_slot + 1); |
| } |
| |
| // Save pointer to current stack position for caller to access yielded value |
| emit_get_stack_pointer_to_reg_for_pop(emit, REG_TEMP0, 1); |
| emit_native_mov_state_reg(emit, OFFSETOF_CODE_STATE_SP, REG_TEMP0); |
| |
| // Put return type in return value slot |
| ASM_MOV_REG_IMM(emit->as, REG_TEMP0, MP_VM_RETURN_YIELD); |
| ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_RET_VAL(emit), REG_TEMP0); |
| |
| // Save re-entry PC |
| ASM_MOV_REG_PCREL(emit->as, REG_TEMP0, *emit->label_slot); |
| emit_native_mov_state_reg(emit, LOCAL_IDX_GEN_PC(emit), REG_TEMP0); |
| |
| // Jump to exit handler |
| ASM_JUMP(emit->as, emit->exit_label); |
| |
| // Label re-entry point |
| mp_asm_base_label_assign(&emit->as->base, *emit->label_slot); |
| |
| // Re-open any active exception handler |
| if (emit->exc_stack_size > 0) { |
| // Find innermost active exception handler, to restore as current handler |
| exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size - 1]; |
| for (; e >= emit->exc_stack; --e) { |
| if (e->is_active) { |
| // Found active handler, get its PC |
| ASM_MOV_REG_PCREL(emit->as, REG_RET, e->label); |
| ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_RET); |
| break; |
| } |
| } |
| } |
| |
| emit_native_adjust_stack_size(emit, 1); // send_value |
| |
| if (kind == MP_EMIT_YIELD_VALUE) { |
| // Check LOCAL_IDX_THROW_VAL for any injected value |
| ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_THROW_VAL(emit)); |
| ASM_MOV_REG_IMM(emit->as, REG_ARG_2, (mp_uint_t)MP_OBJ_NULL); |
| ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_THROW_VAL(emit), REG_ARG_2); |
| emit_call(emit, MP_F_NATIVE_RAISE); |
| } else { |
| // Label loop entry |
| emit_native_label_assign(emit, *emit->label_slot + 2); |
| |
| // Get the next item from the delegate generator |
| ASM_MOV_REG_LOCAL(emit->as, REG_ARG_3, LOCAL_IDX_THROW_VAL(emit)); // throw_value |
| ASM_MOV_REG_IMM(emit->as, REG_ARG_2, (mp_uint_t)MP_OBJ_NULL); |
| ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_THROW_VAL(emit), REG_ARG_2); |
| vtype_kind_t vtype; |
| emit_pre_pop_reg(emit, &vtype, REG_ARG_2); // send_value |
| emit_access_stack(emit, 1, &vtype, REG_ARG_1); // generator |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_3); |
| emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 1); // ret_value |
| emit_call(emit, MP_F_NATIVE_YIELD_FROM); |
| |
| // If returned non-zero then generator continues |
| ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, *emit->label_slot + 1, true); |
| |
| // Pop exhausted gen, replace with ret_value |
| emit_native_adjust_stack_size(emit, 1); // ret_value |
| emit_fold_stack_top(emit, REG_ARG_1); |
| } |
| } |
| |
| static void emit_native_start_except_handler(emit_t *emit) { |
| // Protected block has finished so leave the current exception handler |
| emit_native_leave_exc_stack(emit, true); |
| |
| // Get and push nlr_buf.ret_val |
| ASM_MOV_REG_LOCAL(emit->as, REG_TEMP0, LOCAL_IDX_EXC_VAL(emit)); |
| emit_post_push_reg(emit, VTYPE_PYOBJ, REG_TEMP0); |
| } |
| |
| static void emit_native_end_except_handler(emit_t *emit) { |
| } |
| |
| const emit_method_table_t EXPORT_FUN(method_table) = { |
| #if MICROPY_DYNAMIC_COMPILER |
| EXPORT_FUN(new), |
| EXPORT_FUN(free), |
| #endif |
| |
| emit_native_start_pass, |
| emit_native_end_pass, |
| emit_native_adjust_stack_size, |
| emit_native_set_source_line, |
| |
| { |
| emit_native_load_local, |
| emit_native_load_global, |
| }, |
| { |
| emit_native_store_local, |
| emit_native_store_global, |
| }, |
| { |
| emit_native_delete_local, |
| emit_native_delete_global, |
| }, |
| |
| emit_native_label_assign, |
| emit_native_import, |
| emit_native_load_const_tok, |
| emit_native_load_const_small_int, |
| emit_native_load_const_str, |
| emit_native_load_const_obj, |
| emit_native_load_null, |
| emit_native_load_method, |
| emit_native_load_build_class, |
| emit_native_subscr, |
| emit_native_attr, |
| emit_native_dup_top, |
| emit_native_dup_top_two, |
| emit_native_pop_top, |
| emit_native_rot_two, |
| emit_native_rot_three, |
| emit_native_jump, |
| emit_native_pop_jump_if, |
| emit_native_jump_if_or_pop, |
| emit_native_unwind_jump, |
| emit_native_setup_block, |
| emit_native_with_cleanup, |
| #if MICROPY_PY_ASYNC_AWAIT |
| emit_native_async_with_setup_finally, |
| #endif |
| emit_native_end_finally, |
| emit_native_get_iter, |
| emit_native_for_iter, |
| emit_native_for_iter_end, |
| emit_native_pop_except_jump, |
| emit_native_unary_op, |
| emit_native_binary_op, |
| emit_native_build, |
| emit_native_store_map, |
| emit_native_store_comp, |
| emit_native_unpack_sequence, |
| emit_native_unpack_ex, |
| emit_native_make_function, |
| emit_native_make_closure, |
| emit_native_call_function, |
| emit_native_call_method, |
| emit_native_return_value, |
| emit_native_raise_varargs, |
| emit_native_yield, |
| |
| emit_native_start_except_handler, |
| emit_native_end_except_handler, |
| }; |
| |
| #endif |