| /* |
| * This file is part of the Micro Python project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdint.h> |
| #include <string.h> |
| |
| #include "py/obj.h" |
| #include "py/runtime.h" |
| #include "lib/oofatfs/ff.h" |
| #include "extmod/vfs_fat.h" |
| |
| #include "systick.h" |
| #include "led.h" |
| #include "flash.h" |
| #include "storage.h" |
| #include "irq.h" |
| |
| #if defined(MICROPY_HW_SPIFLASH_SIZE_BITS) |
| #define USE_INTERNAL (0) |
| #else |
| #define USE_INTERNAL (1) |
| #endif |
| |
| #if USE_INTERNAL |
| |
| #if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) |
| |
| #define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k |
| #define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of CCM |
| #define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1 |
| #define FLASH_MEM_SEG1_NUM_BLOCKS (224) // sectors 1,2,3,4: 16k+16k+16k+64k=112k |
| |
| // enable this to get an extra 64k of storage (uses the last sector of the flash) |
| #if 0 |
| #define FLASH_MEM_SEG2_START_ADDR (0x080e0000) // sector 11 |
| #define FLASH_MEM_SEG2_NUM_BLOCKS (128) // sector 11: 128k |
| #endif |
| |
| #elif defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F446xx) |
| |
| STATIC byte flash_cache_mem[0x4000] __attribute__((aligned(4))); // 16k |
| #define CACHE_MEM_START_ADDR (&flash_cache_mem[0]) |
| #define FLASH_SECTOR_SIZE_MAX (0x4000) // 16k max due to size of cache buffer |
| #define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1 |
| #define FLASH_MEM_SEG1_NUM_BLOCKS (128) // sectors 1,2,3,4: 16k+16k+16k+16k(of 64k)=64k |
| |
| #elif defined(STM32F429xx) |
| |
| #define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k |
| #define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of CCM |
| #define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1 |
| #define FLASH_MEM_SEG1_NUM_BLOCKS (224) // sectors 1,2,3,4: 16k+16k+16k+64k=112k |
| |
| #elif defined(STM32F439xx) |
| |
| #define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k |
| #define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of CCM |
| #define FLASH_MEM_SEG1_START_ADDR (0x08100000) // sector 12 |
| #define FLASH_MEM_SEG1_NUM_BLOCKS (384) // sectors 12,13,14,15,16,17: 16k+16k+16k+16k+64k+64k(of 128k)=192k |
| #define FLASH_MEM_SEG2_START_ADDR (0x08140000) // sector 18 |
| #define FLASH_MEM_SEG2_NUM_BLOCKS (128) // sector 18: 64k(of 128k) |
| |
| #elif defined(STM32F746xx) || defined(STM32F767xx) || defined(STM32F769xx) |
| |
| // The STM32F746 doesn't really have CCRAM, so we use the 64K DTCM for this. |
| |
| #define CACHE_MEM_START_ADDR (0x20000000) // DTCM data RAM, 64k |
| #define FLASH_SECTOR_SIZE_MAX (0x08000) // 32k max |
| #define FLASH_MEM_SEG1_START_ADDR (0x08008000) // sector 1 |
| #define FLASH_MEM_SEG1_NUM_BLOCKS (192) // sectors 1,2,3: 32k+32k+32=96k |
| |
| #elif defined(STM32L476xx) |
| |
| extern uint8_t _flash_fs_start; |
| extern uint8_t _flash_fs_end; |
| |
| // The STM32L476 doesn't have CCRAM, so we use the 32K SRAM2 for this. |
| #define CACHE_MEM_START_ADDR (0x10000000) // SRAM2 data RAM, 32k |
| #define FLASH_SECTOR_SIZE_MAX (0x00800) // 2k max |
| #define FLASH_MEM_SEG1_START_ADDR ((long)&_flash_fs_start) |
| #define FLASH_MEM_SEG1_NUM_BLOCKS ((&_flash_fs_end - &_flash_fs_start) / 512) |
| |
| #else |
| #error "no storage support for this MCU" |
| #endif |
| |
| #if !defined(FLASH_MEM_SEG2_START_ADDR) |
| #define FLASH_MEM_SEG2_START_ADDR (0) // no second segment |
| #define FLASH_MEM_SEG2_NUM_BLOCKS (0) // no second segment |
| #endif |
| |
| #define FLASH_PART1_START_BLOCK (0x100) |
| #define FLASH_PART1_NUM_BLOCKS (FLASH_MEM_SEG1_NUM_BLOCKS + FLASH_MEM_SEG2_NUM_BLOCKS) |
| |
| #define FLASH_FLAG_DIRTY (1) |
| #define FLASH_FLAG_FORCE_WRITE (2) |
| #define FLASH_FLAG_ERASED (4) |
| static bool flash_is_initialised = false; |
| static __IO uint8_t flash_flags = 0; |
| static uint32_t flash_cache_sector_id; |
| static uint32_t flash_cache_sector_start; |
| static uint32_t flash_cache_sector_size; |
| static uint32_t flash_tick_counter_last_write; |
| |
| static void flash_cache_flush(void) { |
| if (flash_flags & FLASH_FLAG_DIRTY) { |
| flash_flags |= FLASH_FLAG_FORCE_WRITE; |
| while (flash_flags & FLASH_FLAG_DIRTY) { |
| NVIC->STIR = FLASH_IRQn; |
| } |
| } |
| } |
| |
| static uint8_t *flash_cache_get_addr_for_write(uint32_t flash_addr) { |
| uint32_t flash_sector_start; |
| uint32_t flash_sector_size; |
| uint32_t flash_sector_id = flash_get_sector_info(flash_addr, &flash_sector_start, &flash_sector_size); |
| if (flash_sector_size > FLASH_SECTOR_SIZE_MAX) { |
| flash_sector_size = FLASH_SECTOR_SIZE_MAX; |
| } |
| if (flash_cache_sector_id != flash_sector_id) { |
| flash_cache_flush(); |
| memcpy((void*)CACHE_MEM_START_ADDR, (const void*)flash_sector_start, flash_sector_size); |
| flash_cache_sector_id = flash_sector_id; |
| flash_cache_sector_start = flash_sector_start; |
| flash_cache_sector_size = flash_sector_size; |
| } |
| flash_flags |= FLASH_FLAG_DIRTY; |
| led_state(PYB_LED_RED, 1); // indicate a dirty cache with LED on |
| flash_tick_counter_last_write = HAL_GetTick(); |
| return (uint8_t*)CACHE_MEM_START_ADDR + flash_addr - flash_sector_start; |
| } |
| |
| static uint8_t *flash_cache_get_addr_for_read(uint32_t flash_addr) { |
| uint32_t flash_sector_start; |
| uint32_t flash_sector_size; |
| uint32_t flash_sector_id = flash_get_sector_info(flash_addr, &flash_sector_start, &flash_sector_size); |
| if (flash_cache_sector_id == flash_sector_id) { |
| // in cache, copy from there |
| return (uint8_t*)CACHE_MEM_START_ADDR + flash_addr - flash_sector_start; |
| } |
| // not in cache, copy straight from flash |
| return (uint8_t*)flash_addr; |
| } |
| |
| #else |
| |
| #include "drivers/memory/spiflash.h" |
| #include "genhdr/pins.h" |
| |
| #define FLASH_PART1_START_BLOCK (0x100) |
| #define FLASH_PART1_NUM_BLOCKS (MICROPY_HW_SPIFLASH_SIZE_BITS / 8 / FLASH_BLOCK_SIZE) |
| |
| static bool flash_is_initialised = false; |
| |
| STATIC const mp_spiflash_t spiflash = { |
| .cs = &MICROPY_HW_SPIFLASH_CS, |
| .spi = { |
| .base = {&mp_machine_soft_spi_type}, |
| .delay_half = MICROPY_PY_MACHINE_SPI_MIN_DELAY, |
| .polarity = 0, |
| .phase = 0, |
| .sck = &MICROPY_HW_SPIFLASH_SCK, |
| .mosi = &MICROPY_HW_SPIFLASH_MOSI, |
| .miso = &MICROPY_HW_SPIFLASH_MISO, |
| }, |
| }; |
| |
| #endif |
| |
| void storage_init(void) { |
| if (!flash_is_initialised) { |
| #if USE_INTERNAL |
| flash_flags = 0; |
| flash_cache_sector_id = 0; |
| flash_tick_counter_last_write = 0; |
| #else |
| mp_spiflash_init((mp_spiflash_t*)&spiflash); |
| #endif |
| flash_is_initialised = true; |
| } |
| |
| #if USE_INTERNAL |
| // Enable the flash IRQ, which is used to also call our storage IRQ handler |
| // It needs to go at a higher priority than all those components that rely on |
| // the flash storage (eg higher than USB MSC). |
| HAL_NVIC_SetPriority(FLASH_IRQn, IRQ_PRI_FLASH, IRQ_SUBPRI_FLASH); |
| HAL_NVIC_EnableIRQ(FLASH_IRQn); |
| #endif |
| } |
| |
| uint32_t storage_get_block_size(void) { |
| return FLASH_BLOCK_SIZE; |
| } |
| |
| uint32_t storage_get_block_count(void) { |
| return FLASH_PART1_START_BLOCK + FLASH_PART1_NUM_BLOCKS; |
| } |
| |
| void storage_irq_handler(void) { |
| #if USE_INTERNAL |
| |
| if (!(flash_flags & FLASH_FLAG_DIRTY)) { |
| return; |
| } |
| |
| // This code uses interrupts to erase the flash |
| /* |
| if (flash_erase_state == 0) { |
| flash_erase_it(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4); |
| flash_erase_state = 1; |
| return; |
| } |
| |
| if (flash_erase_state == 1) { |
| // wait for erase |
| // TODO add timeout |
| #define flash_erase_done() (__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY) == RESET) |
| if (!flash_erase_done()) { |
| return; |
| } |
| flash_erase_state = 2; |
| } |
| */ |
| |
| // This code erases the flash directly, waiting for it to finish |
| if (!(flash_flags & FLASH_FLAG_ERASED)) { |
| flash_erase(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4); |
| flash_flags |= FLASH_FLAG_ERASED; |
| return; |
| } |
| |
| // If not a forced write, wait at least 5 seconds after last write to flush |
| // On file close and flash unmount we get a forced write, so we can afford to wait a while |
| if ((flash_flags & FLASH_FLAG_FORCE_WRITE) || sys_tick_has_passed(flash_tick_counter_last_write, 5000)) { |
| // sync the cache RAM buffer by writing it to the flash page |
| flash_write(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4); |
| // clear the flash flags now that we have a clean cache |
| flash_flags = 0; |
| // indicate a clean cache with LED off |
| led_state(PYB_LED_RED, 0); |
| } |
| |
| #endif |
| } |
| |
| void storage_flush(void) { |
| #if USE_INTERNAL |
| flash_cache_flush(); |
| #endif |
| } |
| |
| static void build_partition(uint8_t *buf, int boot, int type, uint32_t start_block, uint32_t num_blocks) { |
| buf[0] = boot; |
| |
| if (num_blocks == 0) { |
| buf[1] = 0; |
| buf[2] = 0; |
| buf[3] = 0; |
| } else { |
| buf[1] = 0xff; |
| buf[2] = 0xff; |
| buf[3] = 0xff; |
| } |
| |
| buf[4] = type; |
| |
| if (num_blocks == 0) { |
| buf[5] = 0; |
| buf[6] = 0; |
| buf[7] = 0; |
| } else { |
| buf[5] = 0xff; |
| buf[6] = 0xff; |
| buf[7] = 0xff; |
| } |
| |
| buf[8] = start_block; |
| buf[9] = start_block >> 8; |
| buf[10] = start_block >> 16; |
| buf[11] = start_block >> 24; |
| |
| buf[12] = num_blocks; |
| buf[13] = num_blocks >> 8; |
| buf[14] = num_blocks >> 16; |
| buf[15] = num_blocks >> 24; |
| } |
| |
| #if USE_INTERNAL |
| |
| static uint32_t convert_block_to_flash_addr(uint32_t block) { |
| if (FLASH_PART1_START_BLOCK <= block && block < FLASH_PART1_START_BLOCK + FLASH_PART1_NUM_BLOCKS) { |
| // a block in partition 1 |
| block -= FLASH_PART1_START_BLOCK; |
| if (block < FLASH_MEM_SEG1_NUM_BLOCKS) { |
| return FLASH_MEM_SEG1_START_ADDR + block * FLASH_BLOCK_SIZE; |
| } else if (block < FLASH_MEM_SEG1_NUM_BLOCKS + FLASH_MEM_SEG2_NUM_BLOCKS) { |
| return FLASH_MEM_SEG2_START_ADDR + (block - FLASH_MEM_SEG1_NUM_BLOCKS) * FLASH_BLOCK_SIZE; |
| } |
| // can add more flash segments here if needed, following above pattern |
| } |
| // bad block |
| return -1; |
| } |
| |
| #endif |
| |
| bool storage_read_block(uint8_t *dest, uint32_t block) { |
| //printf("RD %u\n", block); |
| if (block == 0) { |
| // fake the MBR so we can decide on our own partition table |
| |
| for (int i = 0; i < 446; i++) { |
| dest[i] = 0; |
| } |
| |
| build_partition(dest + 446, 0, 0x01 /* FAT12 */, FLASH_PART1_START_BLOCK, FLASH_PART1_NUM_BLOCKS); |
| build_partition(dest + 462, 0, 0, 0, 0); |
| build_partition(dest + 478, 0, 0, 0, 0); |
| build_partition(dest + 494, 0, 0, 0, 0); |
| |
| dest[510] = 0x55; |
| dest[511] = 0xaa; |
| |
| return true; |
| |
| } else { |
| #if USE_INTERNAL |
| |
| // non-MBR block, get data from flash memory, possibly via cache |
| uint32_t flash_addr = convert_block_to_flash_addr(block); |
| if (flash_addr == -1) { |
| // bad block number |
| return false; |
| } |
| uint8_t *src = flash_cache_get_addr_for_read(flash_addr); |
| memcpy(dest, src, FLASH_BLOCK_SIZE); |
| return true; |
| |
| #else |
| |
| // non-MBR block, get data from SPI flash |
| |
| if (block < FLASH_PART1_START_BLOCK || block >= FLASH_PART1_START_BLOCK + FLASH_PART1_NUM_BLOCKS) { |
| // bad block number |
| return false; |
| } |
| |
| // we must disable USB irqs to prevent MSC contention with SPI flash |
| uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS); |
| |
| mp_spiflash_read((mp_spiflash_t*)&spiflash, |
| (block - FLASH_PART1_START_BLOCK) * FLASH_BLOCK_SIZE, FLASH_BLOCK_SIZE, dest); |
| |
| restore_irq_pri(basepri); |
| |
| return true; |
| |
| #endif |
| } |
| } |
| |
| bool storage_write_block(const uint8_t *src, uint32_t block) { |
| //printf("WR %u\n", block); |
| if (block == 0) { |
| // can't write MBR, but pretend we did |
| return true; |
| |
| } else { |
| #if USE_INTERNAL |
| |
| // non-MBR block, copy to cache |
| uint32_t flash_addr = convert_block_to_flash_addr(block); |
| if (flash_addr == -1) { |
| // bad block number |
| return false; |
| } |
| uint8_t *dest = flash_cache_get_addr_for_write(flash_addr); |
| memcpy(dest, src, FLASH_BLOCK_SIZE); |
| return true; |
| |
| #else |
| |
| // non-MBR block, write to SPI flash |
| |
| if (block < FLASH_PART1_START_BLOCK || block >= FLASH_PART1_START_BLOCK + FLASH_PART1_NUM_BLOCKS) { |
| // bad block number |
| return false; |
| } |
| |
| // we must disable USB irqs to prevent MSC contention with SPI flash |
| uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS); |
| |
| int ret = mp_spiflash_write((mp_spiflash_t*)&spiflash, |
| (block - FLASH_PART1_START_BLOCK) * FLASH_BLOCK_SIZE, FLASH_BLOCK_SIZE, src); |
| |
| restore_irq_pri(basepri); |
| |
| return ret == 0; |
| |
| #endif |
| } |
| } |
| |
| mp_uint_t storage_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) { |
| for (size_t i = 0; i < num_blocks; i++) { |
| if (!storage_read_block(dest + i * FLASH_BLOCK_SIZE, block_num + i)) { |
| return 1; // error |
| } |
| } |
| return 0; // success |
| } |
| |
| mp_uint_t storage_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) { |
| for (size_t i = 0; i < num_blocks; i++) { |
| if (!storage_write_block(src + i * FLASH_BLOCK_SIZE, block_num + i)) { |
| return 1; // error |
| } |
| } |
| return 0; // success |
| } |
| |
| /******************************************************************************/ |
| // MicroPython bindings |
| // |
| // Expose the flash as an object with the block protocol. |
| |
| // there is a singleton Flash object |
| STATIC const mp_obj_base_t pyb_flash_obj = {&pyb_flash_type}; |
| |
| STATIC mp_obj_t pyb_flash_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
| // check arguments |
| mp_arg_check_num(n_args, n_kw, 0, 0, false); |
| |
| // return singleton object |
| return (mp_obj_t)&pyb_flash_obj; |
| } |
| |
| STATIC mp_obj_t pyb_flash_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) { |
| mp_buffer_info_t bufinfo; |
| mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE); |
| mp_uint_t ret = storage_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE); |
| return MP_OBJ_NEW_SMALL_INT(ret); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_flash_readblocks_obj, pyb_flash_readblocks); |
| |
| STATIC mp_obj_t pyb_flash_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) { |
| mp_buffer_info_t bufinfo; |
| mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ); |
| mp_uint_t ret = storage_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE); |
| return MP_OBJ_NEW_SMALL_INT(ret); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_flash_writeblocks_obj, pyb_flash_writeblocks); |
| |
| STATIC mp_obj_t pyb_flash_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) { |
| mp_int_t cmd = mp_obj_get_int(cmd_in); |
| switch (cmd) { |
| case BP_IOCTL_INIT: storage_init(); return MP_OBJ_NEW_SMALL_INT(0); |
| case BP_IOCTL_DEINIT: storage_flush(); return MP_OBJ_NEW_SMALL_INT(0); // TODO properly |
| case BP_IOCTL_SYNC: storage_flush(); return MP_OBJ_NEW_SMALL_INT(0); |
| case BP_IOCTL_SEC_COUNT: return MP_OBJ_NEW_SMALL_INT(storage_get_block_count()); |
| case BP_IOCTL_SEC_SIZE: return MP_OBJ_NEW_SMALL_INT(storage_get_block_size()); |
| default: return mp_const_none; |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_flash_ioctl_obj, pyb_flash_ioctl); |
| |
| STATIC const mp_rom_map_elem_t pyb_flash_locals_dict_table[] = { |
| { MP_ROM_QSTR(MP_QSTR_readblocks), MP_ROM_PTR(&pyb_flash_readblocks_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_writeblocks), MP_ROM_PTR(&pyb_flash_writeblocks_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&pyb_flash_ioctl_obj) }, |
| }; |
| |
| STATIC MP_DEFINE_CONST_DICT(pyb_flash_locals_dict, pyb_flash_locals_dict_table); |
| |
| const mp_obj_type_t pyb_flash_type = { |
| { &mp_type_type }, |
| .name = MP_QSTR_Flash, |
| .make_new = pyb_flash_make_new, |
| .locals_dict = (mp_obj_dict_t*)&pyb_flash_locals_dict, |
| }; |
| |
| void pyb_flash_init_vfs(fs_user_mount_t *vfs) { |
| vfs->base.type = &mp_fat_vfs_type; |
| vfs->flags |= FSUSER_NATIVE | FSUSER_HAVE_IOCTL; |
| vfs->fatfs.drv = vfs; |
| vfs->fatfs.part = 1; // flash filesystem lives on first partition |
| vfs->readblocks[0] = (mp_obj_t)&pyb_flash_readblocks_obj; |
| vfs->readblocks[1] = (mp_obj_t)&pyb_flash_obj; |
| vfs->readblocks[2] = (mp_obj_t)storage_read_blocks; // native version |
| vfs->writeblocks[0] = (mp_obj_t)&pyb_flash_writeblocks_obj; |
| vfs->writeblocks[1] = (mp_obj_t)&pyb_flash_obj; |
| vfs->writeblocks[2] = (mp_obj_t)storage_write_blocks; // native version |
| vfs->u.ioctl[0] = (mp_obj_t)&pyb_flash_ioctl_obj; |
| vfs->u.ioctl[1] = (mp_obj_t)&pyb_flash_obj; |
| } |