| /* |
| * This file is part of the Micro Python project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdio.h> |
| #include <stdint.h> |
| #include <string.h> |
| |
| #include "py/runtime.h" |
| #include "timer.h" |
| #include "dac.h" |
| #include "dma.h" |
| #include "pin.h" |
| #include "genhdr/pins.h" |
| |
| /// \moduleref pyb |
| /// \class DAC - digital to analog conversion |
| /// |
| /// The DAC is used to output analog values (a specific voltage) on pin X5 or pin X6. |
| /// The voltage will be between 0 and 3.3V. |
| /// |
| /// *This module will undergo changes to the API.* |
| /// |
| /// Example usage: |
| /// |
| /// from pyb import DAC |
| /// |
| /// dac = DAC(1) # create DAC 1 on pin X5 |
| /// dac.write(128) # write a value to the DAC (makes X5 1.65V) |
| /// |
| /// To output a continuous sine-wave: |
| /// |
| /// import math |
| /// from pyb import DAC |
| /// |
| /// # create a buffer containing a sine-wave |
| /// buf = bytearray(100) |
| /// for i in range(len(buf)): |
| /// buf[i] = 128 + int(127 * math.sin(2 * math.pi * i / len(buf))) |
| /// |
| /// # output the sine-wave at 400Hz |
| /// dac = DAC(1) |
| /// dac.write_timed(buf, 400 * len(buf), mode=DAC.CIRCULAR) |
| |
| #if defined(MICROPY_HW_ENABLE_DAC) && MICROPY_HW_ENABLE_DAC |
| |
| STATIC DAC_HandleTypeDef DAC_Handle; |
| |
| void dac_init(void) { |
| memset(&DAC_Handle, 0, sizeof DAC_Handle); |
| DAC_Handle.Instance = DAC; |
| DAC_Handle.State = HAL_DAC_STATE_RESET; |
| HAL_DAC_Init(&DAC_Handle); |
| } |
| |
| #if defined(TIM6) |
| STATIC void TIM6_Config(uint freq) { |
| // Init TIM6 at the required frequency (in Hz) |
| TIM_HandleTypeDef *tim = timer_tim6_init(freq); |
| |
| // TIM6 TRGO selection |
| TIM_MasterConfigTypeDef config; |
| config.MasterOutputTrigger = TIM_TRGO_UPDATE; |
| config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; |
| HAL_TIMEx_MasterConfigSynchronization(tim, &config); |
| |
| // TIM6 start counter |
| HAL_TIM_Base_Start(tim); |
| } |
| #endif |
| |
| STATIC uint32_t TIMx_Config(mp_obj_t timer) { |
| // TRGO selection to trigger DAC |
| TIM_HandleTypeDef *tim = pyb_timer_get_handle(timer); |
| TIM_MasterConfigTypeDef config; |
| config.MasterOutputTrigger = TIM_TRGO_UPDATE; |
| config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; |
| HAL_TIMEx_MasterConfigSynchronization(tim, &config); |
| |
| // work out the trigger channel (only certain ones are supported) |
| if (tim->Instance == TIM2) { |
| return DAC_TRIGGER_T2_TRGO; |
| } else if (tim->Instance == TIM4) { |
| return DAC_TRIGGER_T4_TRGO; |
| } else if (tim->Instance == TIM5) { |
| return DAC_TRIGGER_T5_TRGO; |
| #if defined(TIM6) |
| } else if (tim->Instance == TIM6) { |
| return DAC_TRIGGER_T6_TRGO; |
| #endif |
| #if defined(TIM7) |
| } else if (tim->Instance == TIM7) { |
| return DAC_TRIGGER_T7_TRGO; |
| #endif |
| #if defined(TIM8) |
| } else if (tim->Instance == TIM8) { |
| return DAC_TRIGGER_T8_TRGO; |
| #endif |
| } else { |
| nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "Timer does not support DAC triggering")); |
| } |
| } |
| |
| /******************************************************************************/ |
| // Micro Python bindings |
| |
| typedef enum { |
| DAC_STATE_RESET, |
| DAC_STATE_WRITE_SINGLE, |
| DAC_STATE_BUILTIN_WAVEFORM, |
| DAC_STATE_DMA_WAVEFORM, // should be last enum since we use space beyond it |
| } pyb_dac_state_t; |
| |
| typedef struct _pyb_dac_obj_t { |
| mp_obj_base_t base; |
| uint32_t dac_channel; // DAC_CHANNEL_1 or DAC_CHANNEL_2 |
| const dma_descr_t *tx_dma_descr; |
| uint16_t pin; // GPIO_PIN_4 or GPIO_PIN_5 |
| uint8_t bits; // 8 or 12 |
| uint8_t state; |
| } pyb_dac_obj_t; |
| |
| STATIC mp_obj_t pyb_dac_init_helper(pyb_dac_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { |
| static const mp_arg_t allowed_args[] = { |
| { MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} }, |
| }; |
| |
| // parse args |
| mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; |
| mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); |
| |
| // GPIO configuration |
| GPIO_InitTypeDef GPIO_InitStructure; |
| GPIO_InitStructure.Pin = self->pin; |
| GPIO_InitStructure.Mode = GPIO_MODE_ANALOG; |
| GPIO_InitStructure.Pull = GPIO_NOPULL; |
| HAL_GPIO_Init(GPIOA, &GPIO_InitStructure); |
| |
| // DAC peripheral clock |
| #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7) |
| __DAC_CLK_ENABLE(); |
| #elif defined(MCU_SERIES_L4) |
| __HAL_RCC_DAC1_CLK_ENABLE(); |
| #else |
| #error Unsupported Processor |
| #endif |
| |
| // stop anything already going on |
| __DMA1_CLK_ENABLE(); |
| DMA_HandleTypeDef DMA_Handle; |
| /* Get currently configured dma */ |
| dma_init_handle(&DMA_Handle, self->tx_dma_descr, (void*)NULL); |
| // Need to deinit DMA first |
| DMA_Handle.State = HAL_DMA_STATE_READY; |
| HAL_DMA_DeInit(&DMA_Handle); |
| |
| HAL_DAC_Stop(&DAC_Handle, self->dac_channel); |
| if ((self->dac_channel == DAC_CHANNEL_1 && DAC_Handle.DMA_Handle1 != NULL) |
| || (self->dac_channel == DAC_CHANNEL_2 && DAC_Handle.DMA_Handle2 != NULL)) { |
| HAL_DAC_Stop_DMA(&DAC_Handle, self->dac_channel); |
| } |
| |
| // set bit resolution |
| if (args[0].u_int == 8 || args[0].u_int == 12) { |
| self->bits = args[0].u_int; |
| } else { |
| mp_raise_ValueError("unsupported bits"); |
| } |
| |
| // reset state of DAC |
| self->state = DAC_STATE_RESET; |
| |
| return mp_const_none; |
| } |
| |
| // create the dac object |
| // currently support either DAC1 on X5 (id = 1) or DAC2 on X6 (id = 2) |
| |
| /// \classmethod \constructor(port) |
| /// Construct a new DAC object. |
| /// |
| /// `port` can be a pin object, or an integer (1 or 2). |
| /// DAC(1) is on pin X5 and DAC(2) is on pin X6. |
| STATIC mp_obj_t pyb_dac_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
| // check arguments |
| mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); |
| |
| // get pin/channel to output on |
| mp_int_t dac_id; |
| if (MP_OBJ_IS_INT(args[0])) { |
| dac_id = mp_obj_get_int(args[0]); |
| } else { |
| const pin_obj_t *pin = pin_find(args[0]); |
| if (pin == &pin_A4) { |
| dac_id = 1; |
| } else if (pin == &pin_A5) { |
| dac_id = 2; |
| } else { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Pin(%q) doesn't have DAC capabilities", pin->name)); |
| } |
| } |
| |
| pyb_dac_obj_t *dac = m_new_obj(pyb_dac_obj_t); |
| dac->base.type = &pyb_dac_type; |
| |
| if (dac_id == 1) { |
| dac->pin = GPIO_PIN_4; |
| dac->dac_channel = DAC_CHANNEL_1; |
| dac->tx_dma_descr = &dma_DAC_1_TX; |
| } else if (dac_id == 2) { |
| dac->pin = GPIO_PIN_5; |
| dac->dac_channel = DAC_CHANNEL_2; |
| dac->tx_dma_descr = &dma_DAC_2_TX; |
| } else { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "DAC(%d) doesn't exist", dac_id)); |
| } |
| |
| // configure the peripheral |
| mp_map_t kw_args; |
| mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); |
| pyb_dac_init_helper(dac, n_args - 1, args + 1, &kw_args); |
| |
| // return object |
| return dac; |
| } |
| |
| STATIC mp_obj_t pyb_dac_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| return pyb_dac_init_helper(args[0], n_args - 1, args + 1, kw_args); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_dac_init_obj, 1, pyb_dac_init); |
| |
| /// \method deinit() |
| /// Turn off the DAC, enable other use of pin. |
| STATIC mp_obj_t pyb_dac_deinit(mp_obj_t self_in) { |
| pyb_dac_obj_t *self = self_in; |
| if (self->dac_channel == DAC_CHANNEL_1) { |
| DAC_Handle.Instance->CR &= ~DAC_CR_EN1; |
| DAC_Handle.Instance->CR |= DAC_CR_BOFF1; |
| } else { |
| DAC_Handle.Instance->CR &= ~DAC_CR_EN2; |
| DAC_Handle.Instance->CR |= DAC_CR_BOFF2; |
| } |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_dac_deinit_obj, pyb_dac_deinit); |
| |
| #if defined(TIM6) |
| /// \method noise(freq) |
| /// Generate a pseudo-random noise signal. A new random sample is written |
| /// to the DAC output at the given frequency. |
| STATIC mp_obj_t pyb_dac_noise(mp_obj_t self_in, mp_obj_t freq) { |
| pyb_dac_obj_t *self = self_in; |
| |
| // set TIM6 to trigger the DAC at the given frequency |
| TIM6_Config(mp_obj_get_int(freq)); |
| |
| if (self->state != DAC_STATE_BUILTIN_WAVEFORM) { |
| // configure DAC to trigger via TIM6 |
| DAC_ChannelConfTypeDef config; |
| config.DAC_Trigger = DAC_TRIGGER_T6_TRGO; |
| config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; |
| HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel); |
| self->state = DAC_STATE_BUILTIN_WAVEFORM; |
| } |
| |
| // set noise wave generation |
| HAL_DACEx_NoiseWaveGenerate(&DAC_Handle, self->dac_channel, DAC_LFSRUNMASK_BITS10_0); |
| HAL_DAC_SetValue(&DAC_Handle, self->dac_channel, DAC_ALIGN_12B_L, 0x7ff0); |
| HAL_DAC_Start(&DAC_Handle, self->dac_channel); |
| |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_noise_obj, pyb_dac_noise); |
| #endif |
| |
| #if defined(TIM6) |
| /// \method triangle(freq) |
| /// Generate a triangle wave. The value on the DAC output changes at |
| /// the given frequency, and the frequence of the repeating triangle wave |
| /// itself is 256 (or 1024, need to check) times smaller. |
| STATIC mp_obj_t pyb_dac_triangle(mp_obj_t self_in, mp_obj_t freq) { |
| pyb_dac_obj_t *self = self_in; |
| |
| // set TIM6 to trigger the DAC at the given frequency |
| TIM6_Config(mp_obj_get_int(freq)); |
| |
| if (self->state != DAC_STATE_BUILTIN_WAVEFORM) { |
| // configure DAC to trigger via TIM6 |
| DAC_ChannelConfTypeDef config; |
| config.DAC_Trigger = DAC_TRIGGER_T6_TRGO; |
| config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; |
| HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel); |
| self->state = DAC_STATE_BUILTIN_WAVEFORM; |
| } |
| |
| // set triangle wave generation |
| HAL_DACEx_TriangleWaveGenerate(&DAC_Handle, self->dac_channel, DAC_TRIANGLEAMPLITUDE_1023); |
| HAL_DAC_SetValue(&DAC_Handle, self->dac_channel, DAC_ALIGN_12B_R, 0x100); |
| HAL_DAC_Start(&DAC_Handle, self->dac_channel); |
| |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_triangle_obj, pyb_dac_triangle); |
| #endif |
| |
| /// \method write(value) |
| /// Direct access to the DAC output (8 bit only at the moment). |
| STATIC mp_obj_t pyb_dac_write(mp_obj_t self_in, mp_obj_t val) { |
| pyb_dac_obj_t *self = self_in; |
| |
| if (self->state != DAC_STATE_WRITE_SINGLE) { |
| DAC_ChannelConfTypeDef config; |
| config.DAC_Trigger = DAC_TRIGGER_NONE; |
| config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_DISABLE; |
| HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel); |
| self->state = DAC_STATE_WRITE_SINGLE; |
| } |
| |
| // DAC output is always 12-bit at the hardware level, and we provide support |
| // for multiple bit "resolutions" simply by shifting the input value. |
| HAL_DAC_SetValue(&DAC_Handle, self->dac_channel, DAC_ALIGN_12B_R, |
| mp_obj_get_int(val) << (12 - self->bits)); |
| |
| HAL_DAC_Start(&DAC_Handle, self->dac_channel); |
| |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_write_obj, pyb_dac_write); |
| |
| #if defined(TIM6) |
| /// \method write_timed(data, freq, *, mode=DAC.NORMAL) |
| /// Initiates a burst of RAM to DAC using a DMA transfer. |
| /// The input data is treated as an array of bytes (8 bit data). |
| /// |
| /// `freq` can be an integer specifying the frequency to write the DAC |
| /// samples at, using Timer(6). Or it can be an already-initialised |
| /// Timer object which is used to trigger the DAC sample. Valid timers |
| /// are 2, 4, 5, 6, 7 and 8. |
| /// |
| /// `mode` can be `DAC.NORMAL` or `DAC.CIRCULAR`. |
| /// |
| // TODO add callback argument, to call when transfer is finished |
| // TODO add double buffer argument |
| // |
| // TODO reconsider API, eg: write_trig(data, *, trig=None, loop=False) |
| // Then trigger can be timer (preinitialised with desired freq) or pin (extint9), |
| // and we can reuse the same timer for both DACs (and maybe also ADC) without |
| // setting the freq twice. |
| // Can still do 1-liner: dac.write_trig(buf, trig=Timer(6, freq=100), loop=True) |
| mp_obj_t pyb_dac_write_timed(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { |
| static const mp_arg_t allowed_args[] = { |
| { MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, |
| { MP_QSTR_freq, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, |
| { MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DMA_NORMAL} }, |
| }; |
| |
| // parse args |
| pyb_dac_obj_t *self = pos_args[0]; |
| mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; |
| mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); |
| |
| // get the data to write |
| mp_buffer_info_t bufinfo; |
| mp_get_buffer_raise(args[0].u_obj, &bufinfo, MP_BUFFER_READ); |
| |
| uint32_t dac_trigger; |
| if (mp_obj_is_integer(args[1].u_obj)) { |
| // set TIM6 to trigger the DAC at the given frequency |
| TIM6_Config(mp_obj_get_int(args[1].u_obj)); |
| dac_trigger = DAC_TRIGGER_T6_TRGO; |
| } else { |
| // set the supplied timer to trigger the DAC (timer should be initialised) |
| dac_trigger = TIMx_Config(args[1].u_obj); |
| } |
| |
| __DMA1_CLK_ENABLE(); |
| |
| DMA_HandleTypeDef DMA_Handle; |
| /* Get currently configured dma */ |
| dma_init_handle(&DMA_Handle, self->tx_dma_descr, (void*)NULL); |
| /* |
| DMA_Cmd(DMA_Handle->Instance, DISABLE); |
| while (DMA_GetCmdStatus(DMA_Handle->Instance) != DISABLE) { |
| } |
| |
| DAC_Cmd(self->dac_channel, DISABLE); |
| */ |
| |
| /* |
| // DAC channel configuration |
| DAC_InitTypeDef DAC_InitStructure; |
| DAC_InitStructure.DAC_Trigger = DAC_Trigger_T7_TRGO; |
| DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None; |
| DAC_InitStructure.DAC_LFSRUnmask_TriangleAmplitude = DAC_TriangleAmplitude_1; // unused, but need to set it to a valid value |
| DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable; |
| DAC_Init(self->dac_channel, &DAC_InitStructure); |
| */ |
| |
| // Need to deinit DMA first |
| DMA_Handle.State = HAL_DMA_STATE_READY; |
| HAL_DMA_DeInit(&DMA_Handle); |
| |
| if (self->bits == 8) { |
| DMA_Handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; |
| DMA_Handle.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; |
| } else { |
| DMA_Handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD; |
| DMA_Handle.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD; |
| } |
| DMA_Handle.Init.Mode = args[2].u_int; |
| HAL_DMA_Init(&DMA_Handle); |
| |
| if (self->dac_channel == DAC_CHANNEL_1) { |
| __HAL_LINKDMA(&DAC_Handle, DMA_Handle1, DMA_Handle); |
| } else { |
| __HAL_LINKDMA(&DAC_Handle, DMA_Handle2, DMA_Handle); |
| } |
| |
| DAC_Handle.Instance = DAC; |
| DAC_Handle.State = HAL_DAC_STATE_RESET; |
| HAL_DAC_Init(&DAC_Handle); |
| |
| if (self->state != DAC_STATE_DMA_WAVEFORM + dac_trigger) { |
| DAC_ChannelConfTypeDef config; |
| config.DAC_Trigger = dac_trigger; |
| config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; |
| HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel); |
| self->state = DAC_STATE_DMA_WAVEFORM + dac_trigger; |
| } |
| |
| if (self->bits == 8) { |
| HAL_DAC_Start_DMA(&DAC_Handle, self->dac_channel, |
| (uint32_t*)bufinfo.buf, bufinfo.len, DAC_ALIGN_8B_R); |
| } else { |
| HAL_DAC_Start_DMA(&DAC_Handle, self->dac_channel, |
| (uint32_t*)bufinfo.buf, bufinfo.len / 2, DAC_ALIGN_12B_R); |
| } |
| |
| /* |
| // enable DMA stream |
| DMA_Cmd(DMA_Handle->Instance, ENABLE); |
| while (DMA_GetCmdStatus(DMA_Handle->Instance) == DISABLE) { |
| } |
| |
| // enable DAC channel |
| DAC_Cmd(self->dac_channel, ENABLE); |
| |
| // enable DMA for DAC channel |
| DAC_DMACmd(self->dac_channel, ENABLE); |
| */ |
| |
| //printf("DMA: %p %lu\n", bufinfo.buf, bufinfo.len); |
| |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_dac_write_timed_obj, 1, pyb_dac_write_timed); |
| #endif |
| |
| STATIC const mp_rom_map_elem_t pyb_dac_locals_dict_table[] = { |
| // instance methods |
| { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_dac_init_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_dac_deinit_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&pyb_dac_write_obj) }, |
| #if defined(TIM6) |
| { MP_ROM_QSTR(MP_QSTR_noise), MP_ROM_PTR(&pyb_dac_noise_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_triangle), MP_ROM_PTR(&pyb_dac_triangle_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_write_timed), MP_ROM_PTR(&pyb_dac_write_timed_obj) }, |
| #endif |
| |
| // class constants |
| { MP_ROM_QSTR(MP_QSTR_NORMAL), MP_ROM_INT(DMA_NORMAL) }, |
| { MP_ROM_QSTR(MP_QSTR_CIRCULAR), MP_ROM_INT(DMA_CIRCULAR) }, |
| }; |
| |
| STATIC MP_DEFINE_CONST_DICT(pyb_dac_locals_dict, pyb_dac_locals_dict_table); |
| |
| const mp_obj_type_t pyb_dac_type = { |
| { &mp_type_type }, |
| .name = MP_QSTR_DAC, |
| .make_new = pyb_dac_make_new, |
| .locals_dict = (mp_obj_dict_t*)&pyb_dac_locals_dict, |
| }; |
| |
| #endif // MICROPY_HW_ENABLE_DAC |