| /* |
| * This file is part of the MicroPython project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdlib.h> |
| #include <assert.h> |
| #include <string.h> |
| |
| #include "py/parsenum.h" |
| #include "py/smallint.h" |
| #include "py/objint.h" |
| #include "py/objstr.h" |
| #include "py/runtime.h" |
| #include "py/binary.h" |
| |
| #if MICROPY_PY_BUILTINS_FLOAT |
| #include <math.h> |
| #endif |
| |
| // This dispatcher function is expected to be independent of the implementation of long int |
| STATIC mp_obj_t mp_obj_int_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
| (void)type_in; |
| mp_arg_check_num(n_args, n_kw, 0, 2, false); |
| |
| switch (n_args) { |
| case 0: |
| return MP_OBJ_NEW_SMALL_INT(0); |
| |
| case 1: |
| if (MP_OBJ_IS_INT(args[0])) { |
| // already an int (small or long), just return it |
| return args[0]; |
| } else if (MP_OBJ_IS_STR_OR_BYTES(args[0])) { |
| // a string, parse it |
| size_t l; |
| const char *s = mp_obj_str_get_data(args[0], &l); |
| return mp_parse_num_integer(s, l, 0, NULL); |
| #if MICROPY_PY_BUILTINS_FLOAT |
| } else if (mp_obj_is_float(args[0])) { |
| return mp_obj_new_int_from_float(mp_obj_float_get(args[0])); |
| #endif |
| } else { |
| // try to convert to small int (eg from bool) |
| return MP_OBJ_NEW_SMALL_INT(mp_obj_get_int(args[0])); |
| } |
| |
| case 2: |
| default: { |
| // should be a string, parse it |
| // TODO proper error checking of argument types |
| size_t l; |
| const char *s = mp_obj_str_get_data(args[0], &l); |
| return mp_parse_num_integer(s, l, mp_obj_get_int(args[1]), NULL); |
| } |
| } |
| } |
| |
| #if MICROPY_PY_BUILTINS_FLOAT |
| |
| typedef enum { |
| MP_FP_CLASS_FIT_SMALLINT, |
| MP_FP_CLASS_FIT_LONGINT, |
| MP_FP_CLASS_OVERFLOW |
| } mp_fp_as_int_class_t; |
| |
| STATIC mp_fp_as_int_class_t mp_classify_fp_as_int(mp_float_t val) { |
| union { |
| mp_float_t f; |
| #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT |
| uint32_t i; |
| #elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE |
| uint32_t i[2]; |
| #endif |
| } u = {val}; |
| |
| uint32_t e; |
| #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT |
| e = u.i; |
| #elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE |
| e = u.i[MP_ENDIANNESS_LITTLE]; |
| #endif |
| #define MP_FLOAT_SIGN_SHIFT_I32 ((MP_FLOAT_FRAC_BITS + MP_FLOAT_EXP_BITS) % 32) |
| #define MP_FLOAT_EXP_SHIFT_I32 (MP_FLOAT_FRAC_BITS % 32) |
| |
| if (e & (1U << MP_FLOAT_SIGN_SHIFT_I32)) { |
| #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE |
| e |= u.i[MP_ENDIANNESS_BIG] != 0; |
| #endif |
| if ((e & ~(1 << MP_FLOAT_SIGN_SHIFT_I32)) == 0) { |
| // handle case of -0 (when sign is set but rest of bits are zero) |
| e = 0; |
| } else { |
| e += ((1 << MP_FLOAT_EXP_BITS) - 1) << MP_FLOAT_EXP_SHIFT_I32; |
| } |
| } else { |
| e &= ~((1 << MP_FLOAT_EXP_SHIFT_I32) - 1); |
| } |
| // 8 * sizeof(uintptr_t) counts the number of bits for a small int |
| // TODO provide a way to configure this properly |
| if (e <= ((8 * sizeof(uintptr_t) + MP_FLOAT_EXP_BIAS - 3) << MP_FLOAT_EXP_SHIFT_I32)) { |
| return MP_FP_CLASS_FIT_SMALLINT; |
| } |
| #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG |
| if (e <= (((sizeof(long long) * BITS_PER_BYTE) + MP_FLOAT_EXP_BIAS - 2) << MP_FLOAT_EXP_SHIFT_I32)) { |
| return MP_FP_CLASS_FIT_LONGINT; |
| } |
| #endif |
| #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ |
| return MP_FP_CLASS_FIT_LONGINT; |
| #else |
| return MP_FP_CLASS_OVERFLOW; |
| #endif |
| } |
| #undef MP_FLOAT_SIGN_SHIFT_I32 |
| #undef MP_FLOAT_EXP_SHIFT_I32 |
| |
| mp_obj_t mp_obj_new_int_from_float(mp_float_t val) { |
| int cl = fpclassify(val); |
| if (cl == FP_INFINITE) { |
| nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "can't convert inf to int")); |
| } else if (cl == FP_NAN) { |
| mp_raise_ValueError("can't convert NaN to int"); |
| } else { |
| mp_fp_as_int_class_t icl = mp_classify_fp_as_int(val); |
| if (icl == MP_FP_CLASS_FIT_SMALLINT) { |
| return MP_OBJ_NEW_SMALL_INT((mp_int_t)val); |
| #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ |
| } else { |
| mp_obj_int_t *o = mp_obj_int_new_mpz(); |
| mpz_set_from_float(&o->mpz, val); |
| return MP_OBJ_FROM_PTR(o); |
| } |
| #else |
| #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG |
| } else if (icl == MP_FP_CLASS_FIT_LONGINT) { |
| return mp_obj_new_int_from_ll((long long)val); |
| #endif |
| } else { |
| mp_raise_ValueError("float too big"); |
| } |
| #endif |
| } |
| } |
| |
| #endif |
| |
| #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG |
| typedef mp_longint_impl_t fmt_int_t; |
| typedef unsigned long long fmt_uint_t; |
| #else |
| typedef mp_int_t fmt_int_t; |
| typedef mp_uint_t fmt_uint_t; |
| #endif |
| |
| void mp_obj_int_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { |
| (void)kind; |
| // The size of this buffer is rather arbitrary. If it's not large |
| // enough, a dynamic one will be allocated. |
| char stack_buf[sizeof(fmt_int_t) * 4]; |
| char *buf = stack_buf; |
| size_t buf_size = sizeof(stack_buf); |
| size_t fmt_size; |
| |
| char *str = mp_obj_int_formatted(&buf, &buf_size, &fmt_size, self_in, 10, NULL, '\0', '\0'); |
| mp_print_str(print, str); |
| |
| if (buf != stack_buf) { |
| m_del(char, buf, buf_size); |
| } |
| } |
| |
| STATIC const uint8_t log_base2_floor[] = { |
| 0, 1, 1, 2, |
| 2, 2, 2, 3, |
| 3, 3, 3, 3, |
| 3, 3, 3, 4, |
| /* if needed, these are the values for higher bases |
| 4, 4, 4, 4, |
| 4, 4, 4, 4, |
| 4, 4, 4, 4, |
| 4, 4, 4, 5 |
| */ |
| }; |
| |
| size_t mp_int_format_size(size_t num_bits, int base, const char *prefix, char comma) { |
| assert(2 <= base && base <= 16); |
| size_t num_digits = num_bits / log_base2_floor[base - 1] + 1; |
| size_t num_commas = comma ? num_digits / 3 : 0; |
| size_t prefix_len = prefix ? strlen(prefix) : 0; |
| return num_digits + num_commas + prefix_len + 2; // +1 for sign, +1 for null byte |
| } |
| |
| // This routine expects you to pass in a buffer and size (in *buf and *buf_size). |
| // If, for some reason, this buffer is too small, then it will allocate a |
| // buffer and return the allocated buffer and size in *buf and *buf_size. It |
| // is the callers responsibility to free this allocated buffer. |
| // |
| // The resulting formatted string will be returned from this function and the |
| // formatted size will be in *fmt_size. |
| char *mp_obj_int_formatted(char **buf, size_t *buf_size, size_t *fmt_size, mp_const_obj_t self_in, |
| int base, const char *prefix, char base_char, char comma) { |
| fmt_int_t num; |
| if (MP_OBJ_IS_SMALL_INT(self_in)) { |
| // A small int; get the integer value to format. |
| num = MP_OBJ_SMALL_INT_VALUE(self_in); |
| #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE |
| } else if (MP_OBJ_IS_TYPE(self_in, &mp_type_int)) { |
| // Not a small int. |
| #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG |
| const mp_obj_int_t *self = self_in; |
| // Get the value to format; mp_obj_get_int truncates to mp_int_t. |
| num = self->val; |
| #else |
| // Delegate to the implementation for the long int. |
| return mp_obj_int_formatted_impl(buf, buf_size, fmt_size, self_in, base, prefix, base_char, comma); |
| #endif |
| #endif |
| } else { |
| // Not an int. |
| **buf = '\0'; |
| *fmt_size = 0; |
| return *buf; |
| } |
| |
| char sign = '\0'; |
| if (num < 0) { |
| num = -num; |
| sign = '-'; |
| } |
| |
| size_t needed_size = mp_int_format_size(sizeof(fmt_int_t) * 8, base, prefix, comma); |
| if (needed_size > *buf_size) { |
| *buf = m_new(char, needed_size); |
| *buf_size = needed_size; |
| } |
| char *str = *buf; |
| |
| char *b = str + needed_size; |
| *(--b) = '\0'; |
| char *last_comma = b; |
| |
| if (num == 0) { |
| *(--b) = '0'; |
| } else { |
| do { |
| // The cast to fmt_uint_t is because num is positive and we want unsigned arithmetic |
| int c = (fmt_uint_t)num % base; |
| num = (fmt_uint_t)num / base; |
| if (c >= 10) { |
| c += base_char - 10; |
| } else { |
| c += '0'; |
| } |
| *(--b) = c; |
| if (comma && num != 0 && b > str && (last_comma - b) == 3) { |
| *(--b) = comma; |
| last_comma = b; |
| } |
| } |
| while (b > str && num != 0); |
| } |
| if (prefix) { |
| size_t prefix_len = strlen(prefix); |
| char *p = b - prefix_len; |
| if (p > str) { |
| b = p; |
| while (*prefix) { |
| *p++ = *prefix++; |
| } |
| } |
| } |
| if (sign && b > str) { |
| *(--b) = sign; |
| } |
| *fmt_size = *buf + needed_size - b - 1; |
| |
| return b; |
| } |
| |
| #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE |
| |
| int mp_obj_int_sign(mp_obj_t self_in) { |
| mp_int_t val = mp_obj_get_int(self_in); |
| if (val < 0) { |
| return -1; |
| } else if (val > 0) { |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| // This is called for operations on SMALL_INT that are not handled by mp_unary_op |
| mp_obj_t mp_obj_int_unary_op(mp_unary_op_t op, mp_obj_t o_in) { |
| return MP_OBJ_NULL; // op not supported |
| } |
| |
| // This is called for operations on SMALL_INT that are not handled by mp_binary_op |
| mp_obj_t mp_obj_int_binary_op(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) { |
| return mp_obj_int_binary_op_extra_cases(op, lhs_in, rhs_in); |
| } |
| |
| // This is called only with strings whose value doesn't fit in SMALL_INT |
| mp_obj_t mp_obj_new_int_from_str_len(const char **str, size_t len, bool neg, unsigned int base) { |
| mp_raise_msg(&mp_type_OverflowError, "long int not supported in this build"); |
| return mp_const_none; |
| } |
| |
| // This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT) |
| mp_obj_t mp_obj_new_int_from_ll(long long val) { |
| mp_raise_msg(&mp_type_OverflowError, "small int overflow"); |
| return mp_const_none; |
| } |
| |
| // This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT) |
| mp_obj_t mp_obj_new_int_from_ull(unsigned long long val) { |
| mp_raise_msg(&mp_type_OverflowError, "small int overflow"); |
| return mp_const_none; |
| } |
| |
| mp_obj_t mp_obj_new_int_from_uint(mp_uint_t value) { |
| // SMALL_INT accepts only signed numbers, so make sure the input |
| // value fits completely in the small-int positive range. |
| if ((value & ~MP_SMALL_INT_POSITIVE_MASK) == 0) { |
| return MP_OBJ_NEW_SMALL_INT(value); |
| } |
| mp_raise_msg(&mp_type_OverflowError, "small int overflow"); |
| return mp_const_none; |
| } |
| |
| mp_obj_t mp_obj_new_int(mp_int_t value) { |
| if (MP_SMALL_INT_FITS(value)) { |
| return MP_OBJ_NEW_SMALL_INT(value); |
| } |
| mp_raise_msg(&mp_type_OverflowError, "small int overflow"); |
| return mp_const_none; |
| } |
| |
| mp_int_t mp_obj_int_get_truncated(mp_const_obj_t self_in) { |
| return MP_OBJ_SMALL_INT_VALUE(self_in); |
| } |
| |
| mp_int_t mp_obj_int_get_checked(mp_const_obj_t self_in) { |
| return MP_OBJ_SMALL_INT_VALUE(self_in); |
| } |
| |
| #endif // MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE |
| |
| // This dispatcher function is expected to be independent of the implementation of long int |
| // It handles the extra cases for integer-like arithmetic |
| mp_obj_t mp_obj_int_binary_op_extra_cases(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) { |
| if (rhs_in == mp_const_false) { |
| // false acts as 0 |
| return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(0)); |
| } else if (rhs_in == mp_const_true) { |
| // true acts as 0 |
| return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(1)); |
| } else if (op == MP_BINARY_OP_MULTIPLY) { |
| if (MP_OBJ_IS_STR(rhs_in) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_bytes) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_list)) { |
| // multiply is commutative for these types, so delegate to them |
| return mp_binary_op(op, rhs_in, lhs_in); |
| } |
| } |
| return MP_OBJ_NULL; // op not supported |
| } |
| |
| // this is a classmethod |
| STATIC mp_obj_t int_from_bytes(size_t n_args, const mp_obj_t *args) { |
| // TODO: Support signed param (assumes signed=False at the moment) |
| (void)n_args; |
| |
| // get the buffer info |
| mp_buffer_info_t bufinfo; |
| mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_READ); |
| |
| const byte* buf = (const byte*)bufinfo.buf; |
| int delta = 1; |
| if (args[2] == MP_OBJ_NEW_QSTR(MP_QSTR_little)) { |
| buf += bufinfo.len - 1; |
| delta = -1; |
| } |
| |
| mp_uint_t value = 0; |
| size_t len = bufinfo.len; |
| for (; len--; buf += delta) { |
| #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE |
| if (value > (MP_SMALL_INT_MAX >> 8)) { |
| // Result will overflow a small-int so construct a big-int |
| return mp_obj_int_from_bytes_impl(args[2] != MP_OBJ_NEW_QSTR(MP_QSTR_little), bufinfo.len, bufinfo.buf); |
| } |
| #endif |
| value = (value << 8) | *buf; |
| } |
| return mp_obj_new_int_from_uint(value); |
| } |
| |
| STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_from_bytes_fun_obj, 3, 4, int_from_bytes); |
| STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(int_from_bytes_obj, MP_ROM_PTR(&int_from_bytes_fun_obj)); |
| |
| STATIC mp_obj_t int_to_bytes(size_t n_args, const mp_obj_t *args) { |
| // TODO: Support signed param (assumes signed=False) |
| (void)n_args; |
| |
| mp_int_t len = mp_obj_get_int(args[1]); |
| if (len < 0) { |
| mp_raise_ValueError(NULL); |
| } |
| bool big_endian = args[2] != MP_OBJ_NEW_QSTR(MP_QSTR_little); |
| |
| vstr_t vstr; |
| vstr_init_len(&vstr, len); |
| byte *data = (byte*)vstr.buf; |
| memset(data, 0, len); |
| |
| #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE |
| if (!MP_OBJ_IS_SMALL_INT(args[0])) { |
| mp_obj_int_to_bytes_impl(args[0], big_endian, len, data); |
| } else |
| #endif |
| { |
| mp_int_t val = MP_OBJ_SMALL_INT_VALUE(args[0]); |
| size_t l = MIN((size_t)len, sizeof(val)); |
| mp_binary_set_int(l, big_endian, data + (big_endian ? (len - l) : 0), val); |
| } |
| |
| return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_to_bytes_obj, 3, 4, int_to_bytes); |
| |
| STATIC const mp_rom_map_elem_t int_locals_dict_table[] = { |
| { MP_ROM_QSTR(MP_QSTR_from_bytes), MP_ROM_PTR(&int_from_bytes_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_to_bytes), MP_ROM_PTR(&int_to_bytes_obj) }, |
| }; |
| |
| STATIC MP_DEFINE_CONST_DICT(int_locals_dict, int_locals_dict_table); |
| |
| const mp_obj_type_t mp_type_int = { |
| { &mp_type_type }, |
| .name = MP_QSTR_int, |
| .print = mp_obj_int_print, |
| .make_new = mp_obj_int_make_new, |
| .unary_op = mp_obj_int_unary_op, |
| .binary_op = mp_obj_int_binary_op, |
| .locals_dict = (mp_obj_dict_t*)&int_locals_dict, |
| }; |