| /* |
| * This file is part of the MicroPython project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * Copyright (c) 2014 Paul Sokolovsky |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <string.h> |
| #include <assert.h> |
| |
| #include "py/objtuple.h" |
| #include "py/objfun.h" |
| #include "py/runtime.h" |
| #include "py/bc.h" |
| #include "py/stackctrl.h" |
| |
| #if MICROPY_DEBUG_VERBOSE // print debugging info |
| #define DEBUG_PRINT (1) |
| #else // don't print debugging info |
| #define DEBUG_PRINT (0) |
| #define DEBUG_printf(...) (void)0 |
| #endif |
| |
| // Note: the "name" entry in mp_obj_type_t for a function type must be |
| // MP_QSTR_function because it is used to determine if an object is of generic |
| // function type. |
| |
| /******************************************************************************/ |
| /* builtin functions */ |
| |
| STATIC mp_obj_t fun_builtin_0_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
| (void)args; |
| assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_0)); |
| mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in); |
| mp_arg_check_num(n_args, n_kw, 0, 0, false); |
| return self->fun._0(); |
| } |
| |
| const mp_obj_type_t mp_type_fun_builtin_0 = { |
| { &mp_type_type }, |
| .name = MP_QSTR_function, |
| .call = fun_builtin_0_call, |
| .unary_op = mp_generic_unary_op, |
| }; |
| |
| STATIC mp_obj_t fun_builtin_1_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
| assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_1)); |
| mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in); |
| mp_arg_check_num(n_args, n_kw, 1, 1, false); |
| return self->fun._1(args[0]); |
| } |
| |
| const mp_obj_type_t mp_type_fun_builtin_1 = { |
| { &mp_type_type }, |
| .name = MP_QSTR_function, |
| .call = fun_builtin_1_call, |
| .unary_op = mp_generic_unary_op, |
| }; |
| |
| STATIC mp_obj_t fun_builtin_2_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
| assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_2)); |
| mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in); |
| mp_arg_check_num(n_args, n_kw, 2, 2, false); |
| return self->fun._2(args[0], args[1]); |
| } |
| |
| const mp_obj_type_t mp_type_fun_builtin_2 = { |
| { &mp_type_type }, |
| .name = MP_QSTR_function, |
| .call = fun_builtin_2_call, |
| .unary_op = mp_generic_unary_op, |
| }; |
| |
| STATIC mp_obj_t fun_builtin_3_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
| assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_3)); |
| mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in); |
| mp_arg_check_num(n_args, n_kw, 3, 3, false); |
| return self->fun._3(args[0], args[1], args[2]); |
| } |
| |
| const mp_obj_type_t mp_type_fun_builtin_3 = { |
| { &mp_type_type }, |
| .name = MP_QSTR_function, |
| .call = fun_builtin_3_call, |
| .unary_op = mp_generic_unary_op, |
| }; |
| |
| STATIC mp_obj_t fun_builtin_var_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
| assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_var)); |
| mp_obj_fun_builtin_var_t *self = MP_OBJ_TO_PTR(self_in); |
| |
| // check number of arguments |
| mp_arg_check_num(n_args, n_kw, self->n_args_min, self->n_args_max, self->is_kw); |
| |
| if (self->is_kw) { |
| // function allows keywords |
| |
| // we create a map directly from the given args array |
| mp_map_t kw_args; |
| mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); |
| |
| return self->fun.kw(n_args, args, &kw_args); |
| |
| } else { |
| // function takes a variable number of arguments, but no keywords |
| |
| return self->fun.var(n_args, args); |
| } |
| } |
| |
| const mp_obj_type_t mp_type_fun_builtin_var = { |
| { &mp_type_type }, |
| .name = MP_QSTR_function, |
| .call = fun_builtin_var_call, |
| .unary_op = mp_generic_unary_op, |
| }; |
| |
| /******************************************************************************/ |
| /* byte code functions */ |
| |
| qstr mp_obj_code_get_name(const byte *code_info) { |
| code_info = mp_decode_uint_skip(code_info); // skip code_info_size entry |
| #if MICROPY_PERSISTENT_CODE |
| return code_info[0] | (code_info[1] << 8); |
| #else |
| return mp_decode_uint_value(code_info); |
| #endif |
| } |
| |
| #if MICROPY_EMIT_NATIVE |
| STATIC const mp_obj_type_t mp_type_fun_native; |
| #endif |
| |
| qstr mp_obj_fun_get_name(mp_const_obj_t fun_in) { |
| const mp_obj_fun_bc_t *fun = MP_OBJ_TO_PTR(fun_in); |
| #if MICROPY_EMIT_NATIVE |
| if (fun->base.type == &mp_type_fun_native) { |
| // TODO native functions don't have name stored |
| return MP_QSTR_; |
| } |
| #endif |
| |
| const byte *bc = fun->bytecode; |
| bc = mp_decode_uint_skip(bc); // skip n_state |
| bc = mp_decode_uint_skip(bc); // skip n_exc_stack |
| bc++; // skip scope_params |
| bc++; // skip n_pos_args |
| bc++; // skip n_kwonly_args |
| bc++; // skip n_def_pos_args |
| return mp_obj_code_get_name(bc); |
| } |
| |
| #if MICROPY_CPYTHON_COMPAT |
| STATIC void fun_bc_print(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind) { |
| (void)kind; |
| mp_obj_fun_bc_t *o = MP_OBJ_TO_PTR(o_in); |
| mp_printf(print, "<function %q at 0x%p>", mp_obj_fun_get_name(o_in), o); |
| } |
| #endif |
| |
| #if DEBUG_PRINT |
| STATIC void dump_args(const mp_obj_t *a, size_t sz) { |
| DEBUG_printf("%p: ", a); |
| for (size_t i = 0; i < sz; i++) { |
| DEBUG_printf("%p ", a[i]); |
| } |
| DEBUG_printf("\n"); |
| } |
| #else |
| #define dump_args(...) (void)0 |
| #endif |
| |
| // With this macro you can tune the maximum number of function state bytes |
| // that will be allocated on the stack. Any function that needs more |
| // than this will try to use the heap, with fallback to stack allocation. |
| #define VM_MAX_STATE_ON_STACK (11 * sizeof(mp_uint_t)) |
| |
| // Set this to 1 to enable a simple stack overflow check. |
| #define VM_DETECT_STACK_OVERFLOW (0) |
| |
| #define DECODE_CODESTATE_SIZE(bytecode, n_state_out_var, state_size_out_var) \ |
| { \ |
| /* bytecode prelude: state size and exception stack size */ \ |
| n_state_out_var = mp_decode_uint_value(bytecode); \ |
| size_t n_exc_stack = mp_decode_uint_value(mp_decode_uint_skip(bytecode)); \ |
| \ |
| n_state += VM_DETECT_STACK_OVERFLOW; \ |
| \ |
| /* state size in bytes */ \ |
| state_size_out_var = n_state * sizeof(mp_obj_t) + n_exc_stack * sizeof(mp_exc_stack_t); \ |
| } |
| |
| #define INIT_CODESTATE(code_state, _fun_bc, n_args, n_kw, args) \ |
| code_state->fun_bc = _fun_bc; \ |
| code_state->ip = 0; \ |
| mp_setup_code_state(code_state, n_args, n_kw, args); \ |
| code_state->old_globals = mp_globals_get(); |
| |
| #if MICROPY_STACKLESS |
| mp_code_state_t *mp_obj_fun_bc_prepare_codestate(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
| MP_STACK_CHECK(); |
| mp_obj_fun_bc_t *self = MP_OBJ_TO_PTR(self_in); |
| |
| size_t n_state, state_size; |
| DECODE_CODESTATE_SIZE(self->bytecode, n_state, state_size); |
| |
| mp_code_state_t *code_state; |
| #if MICROPY_ENABLE_PYSTACK |
| code_state = mp_pystack_alloc(sizeof(mp_code_state_t) + state_size); |
| #else |
| // If we use m_new_obj_var(), then on no memory, MemoryError will be |
| // raised. But this is not correct exception for a function call, |
| // RuntimeError should be raised instead. So, we use m_new_obj_var_maybe(), |
| // return NULL, then vm.c takes the needed action (either raise |
| // RuntimeError or fallback to stack allocation). |
| code_state = m_new_obj_var_maybe(mp_code_state_t, byte, state_size); |
| if (!code_state) { |
| return NULL; |
| } |
| #endif |
| |
| INIT_CODESTATE(code_state, self, n_args, n_kw, args); |
| |
| // execute the byte code with the correct globals context |
| mp_globals_set(self->globals); |
| |
| return code_state; |
| } |
| #endif |
| |
| STATIC mp_obj_t fun_bc_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
| MP_STACK_CHECK(); |
| |
| DEBUG_printf("Input n_args: " UINT_FMT ", n_kw: " UINT_FMT "\n", n_args, n_kw); |
| DEBUG_printf("Input pos args: "); |
| dump_args(args, n_args); |
| DEBUG_printf("Input kw args: "); |
| dump_args(args + n_args, n_kw * 2); |
| mp_obj_fun_bc_t *self = MP_OBJ_TO_PTR(self_in); |
| DEBUG_printf("Func n_def_args: %d\n", self->n_def_args); |
| |
| size_t n_state, state_size; |
| DECODE_CODESTATE_SIZE(self->bytecode, n_state, state_size); |
| |
| // allocate state for locals and stack |
| mp_code_state_t *code_state = NULL; |
| #if MICROPY_ENABLE_PYSTACK |
| code_state = mp_pystack_alloc(sizeof(mp_code_state_t) + state_size); |
| #else |
| if (state_size > VM_MAX_STATE_ON_STACK) { |
| code_state = m_new_obj_var_maybe(mp_code_state_t, byte, state_size); |
| } |
| if (code_state == NULL) { |
| code_state = alloca(sizeof(mp_code_state_t) + state_size); |
| state_size = 0; // indicate that we allocated using alloca |
| } |
| #endif |
| |
| INIT_CODESTATE(code_state, self, n_args, n_kw, args); |
| |
| // execute the byte code with the correct globals context |
| mp_globals_set(self->globals); |
| mp_vm_return_kind_t vm_return_kind = mp_execute_bytecode(code_state, MP_OBJ_NULL); |
| mp_globals_set(code_state->old_globals); |
| |
| #if VM_DETECT_STACK_OVERFLOW |
| if (vm_return_kind == MP_VM_RETURN_NORMAL) { |
| if (code_state->sp < code_state->state) { |
| printf("VM stack underflow: " INT_FMT "\n", code_state->sp - code_state->state); |
| assert(0); |
| } |
| } |
| // We can't check the case when an exception is returned in state[n_state - 1] |
| // and there are no arguments, because in this case our detection slot may have |
| // been overwritten by the returned exception (which is allowed). |
| if (!(vm_return_kind == MP_VM_RETURN_EXCEPTION && self->n_pos_args + self->n_kwonly_args == 0)) { |
| // Just check to see that we have at least 1 null object left in the state. |
| bool overflow = true; |
| for (size_t i = 0; i < n_state - self->n_pos_args - self->n_kwonly_args; i++) { |
| if (code_state->state[i] == MP_OBJ_NULL) { |
| overflow = false; |
| break; |
| } |
| } |
| if (overflow) { |
| printf("VM stack overflow state=%p n_state+1=" UINT_FMT "\n", code_state->state, n_state); |
| assert(0); |
| } |
| } |
| #endif |
| |
| mp_obj_t result; |
| if (vm_return_kind == MP_VM_RETURN_NORMAL) { |
| // return value is in *sp |
| result = *code_state->sp; |
| } else { |
| // must be an exception because normal functions can't yield |
| assert(vm_return_kind == MP_VM_RETURN_EXCEPTION); |
| // return value is in fastn[0]==state[n_state - 1] |
| result = code_state->state[n_state - 1]; |
| } |
| |
| #if MICROPY_ENABLE_PYSTACK |
| mp_pystack_free(code_state); |
| #else |
| // free the state if it was allocated on the heap |
| if (state_size != 0) { |
| m_del_var(mp_code_state_t, byte, state_size, code_state); |
| } |
| #endif |
| |
| if (vm_return_kind == MP_VM_RETURN_NORMAL) { |
| return result; |
| } else { // MP_VM_RETURN_EXCEPTION |
| nlr_raise(result); |
| } |
| } |
| |
| #if MICROPY_PY_FUNCTION_ATTRS |
| STATIC void fun_bc_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { |
| if (dest[0] != MP_OBJ_NULL) { |
| // not load attribute |
| return; |
| } |
| if (attr == MP_QSTR___name__) { |
| dest[0] = MP_OBJ_NEW_QSTR(mp_obj_fun_get_name(self_in)); |
| } |
| } |
| #endif |
| |
| const mp_obj_type_t mp_type_fun_bc = { |
| { &mp_type_type }, |
| .name = MP_QSTR_function, |
| #if MICROPY_CPYTHON_COMPAT |
| .print = fun_bc_print, |
| #endif |
| .call = fun_bc_call, |
| .unary_op = mp_generic_unary_op, |
| #if MICROPY_PY_FUNCTION_ATTRS |
| .attr = fun_bc_attr, |
| #endif |
| }; |
| |
| mp_obj_t mp_obj_new_fun_bc(mp_obj_t def_args_in, mp_obj_t def_kw_args, const byte *code, const mp_uint_t *const_table) { |
| size_t n_def_args = 0; |
| size_t n_extra_args = 0; |
| mp_obj_tuple_t *def_args = MP_OBJ_TO_PTR(def_args_in); |
| if (def_args_in != MP_OBJ_NULL) { |
| assert(MP_OBJ_IS_TYPE(def_args_in, &mp_type_tuple)); |
| n_def_args = def_args->len; |
| n_extra_args = def_args->len; |
| } |
| if (def_kw_args != MP_OBJ_NULL) { |
| n_extra_args += 1; |
| } |
| mp_obj_fun_bc_t *o = m_new_obj_var(mp_obj_fun_bc_t, mp_obj_t, n_extra_args); |
| o->base.type = &mp_type_fun_bc; |
| o->globals = mp_globals_get(); |
| o->bytecode = code; |
| o->const_table = const_table; |
| if (def_args != NULL) { |
| memcpy(o->extra_args, def_args->items, n_def_args * sizeof(mp_obj_t)); |
| } |
| if (def_kw_args != MP_OBJ_NULL) { |
| o->extra_args[n_def_args] = def_kw_args; |
| } |
| return MP_OBJ_FROM_PTR(o); |
| } |
| |
| /******************************************************************************/ |
| /* native functions */ |
| |
| #if MICROPY_EMIT_NATIVE |
| |
| STATIC mp_obj_t fun_native_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
| MP_STACK_CHECK(); |
| mp_obj_fun_bc_t *self = self_in; |
| mp_call_fun_t fun = MICROPY_MAKE_POINTER_CALLABLE((void*)self->bytecode); |
| return fun(self_in, n_args, n_kw, args); |
| } |
| |
| STATIC const mp_obj_type_t mp_type_fun_native = { |
| { &mp_type_type }, |
| .name = MP_QSTR_function, |
| .call = fun_native_call, |
| .unary_op = mp_generic_unary_op, |
| }; |
| |
| mp_obj_t mp_obj_new_fun_native(mp_obj_t def_args_in, mp_obj_t def_kw_args, const void *fun_data, const mp_uint_t *const_table) { |
| mp_obj_fun_bc_t *o = mp_obj_new_fun_bc(def_args_in, def_kw_args, (const byte*)fun_data, const_table); |
| o->base.type = &mp_type_fun_native; |
| return o; |
| } |
| |
| #endif // MICROPY_EMIT_NATIVE |
| |
| /******************************************************************************/ |
| /* viper functions */ |
| |
| #if MICROPY_EMIT_NATIVE |
| |
| typedef struct _mp_obj_fun_viper_t { |
| mp_obj_base_t base; |
| size_t n_args; |
| void *fun_data; // GC must be able to trace this pointer |
| mp_uint_t type_sig; |
| } mp_obj_fun_viper_t; |
| |
| typedef mp_uint_t (*viper_fun_0_t)(void); |
| typedef mp_uint_t (*viper_fun_1_t)(mp_uint_t); |
| typedef mp_uint_t (*viper_fun_2_t)(mp_uint_t, mp_uint_t); |
| typedef mp_uint_t (*viper_fun_3_t)(mp_uint_t, mp_uint_t, mp_uint_t); |
| typedef mp_uint_t (*viper_fun_4_t)(mp_uint_t, mp_uint_t, mp_uint_t, mp_uint_t); |
| |
| STATIC mp_obj_t fun_viper_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
| mp_obj_fun_viper_t *self = self_in; |
| |
| mp_arg_check_num(n_args, n_kw, self->n_args, self->n_args, false); |
| |
| void *fun = MICROPY_MAKE_POINTER_CALLABLE(self->fun_data); |
| |
| mp_uint_t ret; |
| if (n_args == 0) { |
| ret = ((viper_fun_0_t)fun)(); |
| } else if (n_args == 1) { |
| ret = ((viper_fun_1_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 4)); |
| } else if (n_args == 2) { |
| ret = ((viper_fun_2_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 4), mp_convert_obj_to_native(args[1], self->type_sig >> 8)); |
| } else if (n_args == 3) { |
| ret = ((viper_fun_3_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 4), mp_convert_obj_to_native(args[1], self->type_sig >> 8), mp_convert_obj_to_native(args[2], self->type_sig >> 12)); |
| } else { |
| // compiler allows at most 4 arguments |
| assert(n_args == 4); |
| ret = ((viper_fun_4_t)fun)( |
| mp_convert_obj_to_native(args[0], self->type_sig >> 4), |
| mp_convert_obj_to_native(args[1], self->type_sig >> 8), |
| mp_convert_obj_to_native(args[2], self->type_sig >> 12), |
| mp_convert_obj_to_native(args[3], self->type_sig >> 16) |
| ); |
| } |
| |
| return mp_convert_native_to_obj(ret, self->type_sig); |
| } |
| |
| STATIC const mp_obj_type_t mp_type_fun_viper = { |
| { &mp_type_type }, |
| .name = MP_QSTR_function, |
| .call = fun_viper_call, |
| .unary_op = mp_generic_unary_op, |
| }; |
| |
| mp_obj_t mp_obj_new_fun_viper(size_t n_args, void *fun_data, mp_uint_t type_sig) { |
| mp_obj_fun_viper_t *o = m_new_obj(mp_obj_fun_viper_t); |
| o->base.type = &mp_type_fun_viper; |
| o->n_args = n_args; |
| o->fun_data = fun_data; |
| o->type_sig = type_sig; |
| return o; |
| } |
| |
| #endif // MICROPY_EMIT_NATIVE |
| |
| /******************************************************************************/ |
| /* inline assembler functions */ |
| |
| #if MICROPY_EMIT_INLINE_ASM |
| |
| typedef struct _mp_obj_fun_asm_t { |
| mp_obj_base_t base; |
| size_t n_args; |
| void *fun_data; // GC must be able to trace this pointer |
| mp_uint_t type_sig; |
| } mp_obj_fun_asm_t; |
| |
| typedef mp_uint_t (*inline_asm_fun_0_t)(void); |
| typedef mp_uint_t (*inline_asm_fun_1_t)(mp_uint_t); |
| typedef mp_uint_t (*inline_asm_fun_2_t)(mp_uint_t, mp_uint_t); |
| typedef mp_uint_t (*inline_asm_fun_3_t)(mp_uint_t, mp_uint_t, mp_uint_t); |
| typedef mp_uint_t (*inline_asm_fun_4_t)(mp_uint_t, mp_uint_t, mp_uint_t, mp_uint_t); |
| |
| // convert a MicroPython object to a sensible value for inline asm |
| STATIC mp_uint_t convert_obj_for_inline_asm(mp_obj_t obj) { |
| // TODO for byte_array, pass pointer to the array |
| if (MP_OBJ_IS_SMALL_INT(obj)) { |
| return MP_OBJ_SMALL_INT_VALUE(obj); |
| } else if (obj == mp_const_none) { |
| return 0; |
| } else if (obj == mp_const_false) { |
| return 0; |
| } else if (obj == mp_const_true) { |
| return 1; |
| } else if (MP_OBJ_IS_TYPE(obj, &mp_type_int)) { |
| return mp_obj_int_get_truncated(obj); |
| } else if (MP_OBJ_IS_STR(obj)) { |
| // pointer to the string (it's probably constant though!) |
| size_t l; |
| return (mp_uint_t)mp_obj_str_get_data(obj, &l); |
| } else { |
| mp_obj_type_t *type = mp_obj_get_type(obj); |
| if (0) { |
| #if MICROPY_PY_BUILTINS_FLOAT |
| } else if (type == &mp_type_float) { |
| // convert float to int (could also pass in float registers) |
| return (mp_int_t)mp_obj_float_get(obj); |
| #endif |
| } else if (type == &mp_type_tuple || type == &mp_type_list) { |
| // pointer to start of tuple (could pass length, but then could use len(x) for that) |
| size_t len; |
| mp_obj_t *items; |
| mp_obj_get_array(obj, &len, &items); |
| return (mp_uint_t)items; |
| } else { |
| mp_buffer_info_t bufinfo; |
| if (mp_get_buffer(obj, &bufinfo, MP_BUFFER_WRITE)) { |
| // supports the buffer protocol, return a pointer to the data |
| return (mp_uint_t)bufinfo.buf; |
| } else { |
| // just pass along a pointer to the object |
| return (mp_uint_t)obj; |
| } |
| } |
| } |
| } |
| |
| STATIC mp_obj_t fun_asm_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
| mp_obj_fun_asm_t *self = self_in; |
| |
| mp_arg_check_num(n_args, n_kw, self->n_args, self->n_args, false); |
| |
| void *fun = MICROPY_MAKE_POINTER_CALLABLE(self->fun_data); |
| |
| mp_uint_t ret; |
| if (n_args == 0) { |
| ret = ((inline_asm_fun_0_t)fun)(); |
| } else if (n_args == 1) { |
| ret = ((inline_asm_fun_1_t)fun)(convert_obj_for_inline_asm(args[0])); |
| } else if (n_args == 2) { |
| ret = ((inline_asm_fun_2_t)fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1])); |
| } else if (n_args == 3) { |
| ret = ((inline_asm_fun_3_t)fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[2])); |
| } else { |
| // compiler allows at most 4 arguments |
| assert(n_args == 4); |
| ret = ((inline_asm_fun_4_t)fun)( |
| convert_obj_for_inline_asm(args[0]), |
| convert_obj_for_inline_asm(args[1]), |
| convert_obj_for_inline_asm(args[2]), |
| convert_obj_for_inline_asm(args[3]) |
| ); |
| } |
| |
| return mp_convert_native_to_obj(ret, self->type_sig); |
| } |
| |
| STATIC const mp_obj_type_t mp_type_fun_asm = { |
| { &mp_type_type }, |
| .name = MP_QSTR_function, |
| .call = fun_asm_call, |
| .unary_op = mp_generic_unary_op, |
| }; |
| |
| mp_obj_t mp_obj_new_fun_asm(size_t n_args, void *fun_data, mp_uint_t type_sig) { |
| mp_obj_fun_asm_t *o = m_new_obj(mp_obj_fun_asm_t); |
| o->base.type = &mp_type_fun_asm; |
| o->n_args = n_args; |
| o->fun_data = fun_data; |
| o->type_sig = type_sig; |
| return o; |
| } |
| |
| #endif // MICROPY_EMIT_INLINE_ASM |