| /* |
| * This file is part of the MicroPython project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "py/builtin.h" |
| |
| #if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_BUILTINS_COMPLEX && MICROPY_PY_CMATH |
| |
| #include <math.h> |
| |
| // phase(z): returns the phase of the number z in the range (-pi, +pi] |
| STATIC mp_obj_t mp_cmath_phase(mp_obj_t z_obj) { |
| mp_float_t real, imag; |
| mp_obj_get_complex(z_obj, &real, &imag); |
| return mp_obj_new_float(MICROPY_FLOAT_C_FUN(atan2)(imag, real)); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_phase_obj, mp_cmath_phase); |
| |
| // polar(z): returns the polar form of z as a tuple |
| STATIC mp_obj_t mp_cmath_polar(mp_obj_t z_obj) { |
| mp_float_t real, imag; |
| mp_obj_get_complex(z_obj, &real, &imag); |
| mp_obj_t tuple[2] = { |
| mp_obj_new_float(MICROPY_FLOAT_C_FUN(sqrt)(real*real + imag*imag)), |
| mp_obj_new_float(MICROPY_FLOAT_C_FUN(atan2)(imag, real)), |
| }; |
| return mp_obj_new_tuple(2, tuple); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_polar_obj, mp_cmath_polar); |
| |
| // rect(r, phi): returns the complex number with modulus r and phase phi |
| STATIC mp_obj_t mp_cmath_rect(mp_obj_t r_obj, mp_obj_t phi_obj) { |
| mp_float_t r = mp_obj_get_float(r_obj); |
| mp_float_t phi = mp_obj_get_float(phi_obj); |
| return mp_obj_new_complex(r * MICROPY_FLOAT_C_FUN(cos)(phi), r * MICROPY_FLOAT_C_FUN(sin)(phi)); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_cmath_rect_obj, mp_cmath_rect); |
| |
| // exp(z): return the exponential of z |
| STATIC mp_obj_t mp_cmath_exp(mp_obj_t z_obj) { |
| mp_float_t real, imag; |
| mp_obj_get_complex(z_obj, &real, &imag); |
| mp_float_t exp_real = MICROPY_FLOAT_C_FUN(exp)(real); |
| return mp_obj_new_complex(exp_real * MICROPY_FLOAT_C_FUN(cos)(imag), exp_real * MICROPY_FLOAT_C_FUN(sin)(imag)); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_exp_obj, mp_cmath_exp); |
| |
| // log(z): return the natural logarithm of z, with branch cut along the negative real axis |
| // TODO can take second argument, being the base |
| STATIC mp_obj_t mp_cmath_log(mp_obj_t z_obj) { |
| mp_float_t real, imag; |
| mp_obj_get_complex(z_obj, &real, &imag); |
| return mp_obj_new_complex(0.5 * MICROPY_FLOAT_C_FUN(log)(real*real + imag*imag), MICROPY_FLOAT_C_FUN(atan2)(imag, real)); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log_obj, mp_cmath_log); |
| |
| #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS |
| // log10(z): return the base-10 logarithm of z, with branch cut along the negative real axis |
| STATIC mp_obj_t mp_cmath_log10(mp_obj_t z_obj) { |
| mp_float_t real, imag; |
| mp_obj_get_complex(z_obj, &real, &imag); |
| return mp_obj_new_complex(0.5 * MICROPY_FLOAT_C_FUN(log10)(real*real + imag*imag), 0.4342944819032518 * MICROPY_FLOAT_C_FUN(atan2)(imag, real)); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log10_obj, mp_cmath_log10); |
| #endif |
| |
| // sqrt(z): return the square-root of z |
| STATIC mp_obj_t mp_cmath_sqrt(mp_obj_t z_obj) { |
| mp_float_t real, imag; |
| mp_obj_get_complex(z_obj, &real, &imag); |
| mp_float_t sqrt_abs = MICROPY_FLOAT_C_FUN(pow)(real*real + imag*imag, 0.25); |
| mp_float_t theta = 0.5 * MICROPY_FLOAT_C_FUN(atan2)(imag, real); |
| return mp_obj_new_complex(sqrt_abs * MICROPY_FLOAT_C_FUN(cos)(theta), sqrt_abs * MICROPY_FLOAT_C_FUN(sin)(theta)); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sqrt_obj, mp_cmath_sqrt); |
| |
| // cos(z): return the cosine of z |
| STATIC mp_obj_t mp_cmath_cos(mp_obj_t z_obj) { |
| mp_float_t real, imag; |
| mp_obj_get_complex(z_obj, &real, &imag); |
| return mp_obj_new_complex(MICROPY_FLOAT_C_FUN(cos)(real) * MICROPY_FLOAT_C_FUN(cosh)(imag), -MICROPY_FLOAT_C_FUN(sin)(real) * MICROPY_FLOAT_C_FUN(sinh)(imag)); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_cos_obj, mp_cmath_cos); |
| |
| // sin(z): return the sine of z |
| STATIC mp_obj_t mp_cmath_sin(mp_obj_t z_obj) { |
| mp_float_t real, imag; |
| mp_obj_get_complex(z_obj, &real, &imag); |
| return mp_obj_new_complex(MICROPY_FLOAT_C_FUN(sin)(real) * MICROPY_FLOAT_C_FUN(cosh)(imag), MICROPY_FLOAT_C_FUN(cos)(real) * MICROPY_FLOAT_C_FUN(sinh)(imag)); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sin_obj, mp_cmath_sin); |
| |
| STATIC const mp_rom_map_elem_t mp_module_cmath_globals_table[] = { |
| { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_cmath) }, |
| { MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e }, |
| { MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi }, |
| { MP_ROM_QSTR(MP_QSTR_phase), MP_ROM_PTR(&mp_cmath_phase_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_polar), MP_ROM_PTR(&mp_cmath_polar_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_rect), MP_ROM_PTR(&mp_cmath_rect_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_cmath_exp_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_cmath_log_obj) }, |
| #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS |
| { MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_cmath_log10_obj) }, |
| #endif |
| { MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_cmath_sqrt_obj) }, |
| //{ MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_cmath_acos_obj) }, |
| //{ MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_cmath_asin_obj) }, |
| //{ MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_cmath_atan_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_cmath_cos_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_cmath_sin_obj) }, |
| //{ MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_cmath_tan_obj) }, |
| //{ MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_cmath_acosh_obj) }, |
| //{ MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_cmath_asinh_obj) }, |
| //{ MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_cmath_atanh_obj) }, |
| //{ MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_cmath_cosh_obj) }, |
| //{ MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_cmath_sinh_obj) }, |
| //{ MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_cmath_tanh_obj) }, |
| //{ MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_cmath_isfinite_obj) }, |
| //{ MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_cmath_isinf_obj) }, |
| //{ MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_cmath_isnan_obj) }, |
| }; |
| |
| STATIC MP_DEFINE_CONST_DICT(mp_module_cmath_globals, mp_module_cmath_globals_table); |
| |
| const mp_obj_module_t mp_module_cmath = { |
| .base = { &mp_type_module }, |
| .globals = (mp_obj_dict_t*)&mp_module_cmath_globals, |
| }; |
| |
| #endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_CMATH |