| /* |
| * This file is part of the MicroPython project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include "py/gc.h" |
| #include "py/runtime.h" |
| |
| #if MICROPY_ENABLE_GC |
| |
| #if MICROPY_DEBUG_VERBOSE // print debugging info |
| #define DEBUG_PRINT (1) |
| #define DEBUG_printf DEBUG_printf |
| #else // don't print debugging info |
| #define DEBUG_PRINT (0) |
| #define DEBUG_printf(...) (void)0 |
| #endif |
| |
| // make this 1 to dump the heap each time it changes |
| #define EXTENSIVE_HEAP_PROFILING (0) |
| |
| // make this 1 to zero out swept memory to more eagerly |
| // detect untraced object still in use |
| #define CLEAR_ON_SWEEP (0) |
| |
| #define WORDS_PER_BLOCK ((MICROPY_BYTES_PER_GC_BLOCK) / BYTES_PER_WORD) |
| #define BYTES_PER_BLOCK (MICROPY_BYTES_PER_GC_BLOCK) |
| |
| // ATB = allocation table byte |
| // 0b00 = FREE -- free block |
| // 0b01 = HEAD -- head of a chain of blocks |
| // 0b10 = TAIL -- in the tail of a chain of blocks |
| // 0b11 = MARK -- marked head block |
| |
| #define AT_FREE (0) |
| #define AT_HEAD (1) |
| #define AT_TAIL (2) |
| #define AT_MARK (3) |
| |
| #define BLOCKS_PER_ATB (4) |
| #define ATB_MASK_0 (0x03) |
| #define ATB_MASK_1 (0x0c) |
| #define ATB_MASK_2 (0x30) |
| #define ATB_MASK_3 (0xc0) |
| |
| #define ATB_0_IS_FREE(a) (((a) & ATB_MASK_0) == 0) |
| #define ATB_1_IS_FREE(a) (((a) & ATB_MASK_1) == 0) |
| #define ATB_2_IS_FREE(a) (((a) & ATB_MASK_2) == 0) |
| #define ATB_3_IS_FREE(a) (((a) & ATB_MASK_3) == 0) |
| |
| #define BLOCK_SHIFT(block) (2 * ((block) & (BLOCKS_PER_ATB - 1))) |
| #define ATB_GET_KIND(block) ((MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] >> BLOCK_SHIFT(block)) & 3) |
| #define ATB_ANY_TO_FREE(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] &= (~(AT_MARK << BLOCK_SHIFT(block))); } while (0) |
| #define ATB_FREE_TO_HEAD(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_HEAD << BLOCK_SHIFT(block)); } while (0) |
| #define ATB_FREE_TO_TAIL(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_TAIL << BLOCK_SHIFT(block)); } while (0) |
| #define ATB_HEAD_TO_MARK(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_MARK << BLOCK_SHIFT(block)); } while (0) |
| #define ATB_MARK_TO_HEAD(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] &= (~(AT_TAIL << BLOCK_SHIFT(block))); } while (0) |
| |
| #define BLOCK_FROM_PTR(ptr) (((byte*)(ptr) - MP_STATE_MEM(gc_pool_start)) / BYTES_PER_BLOCK) |
| #define PTR_FROM_BLOCK(block) (((block) * BYTES_PER_BLOCK + (uintptr_t)MP_STATE_MEM(gc_pool_start))) |
| #define ATB_FROM_BLOCK(bl) ((bl) / BLOCKS_PER_ATB) |
| |
| #if MICROPY_ENABLE_FINALISER |
| // FTB = finaliser table byte |
| // if set, then the corresponding block may have a finaliser |
| |
| #define BLOCKS_PER_FTB (8) |
| |
| #define FTB_GET(block) ((MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] >> ((block) & 7)) & 1) |
| #define FTB_SET(block) do { MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] |= (1 << ((block) & 7)); } while (0) |
| #define FTB_CLEAR(block) do { MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] &= (~(1 << ((block) & 7))); } while (0) |
| #endif |
| |
| #if MICROPY_PY_THREAD && !MICROPY_PY_THREAD_GIL |
| #define GC_ENTER() mp_thread_mutex_lock(&MP_STATE_MEM(gc_mutex), 1) |
| #define GC_EXIT() mp_thread_mutex_unlock(&MP_STATE_MEM(gc_mutex)) |
| #else |
| #define GC_ENTER() |
| #define GC_EXIT() |
| #endif |
| |
| // TODO waste less memory; currently requires that all entries in alloc_table have a corresponding block in pool |
| void gc_init(void *start, void *end) { |
| // align end pointer on block boundary |
| end = (void*)((uintptr_t)end & (~(BYTES_PER_BLOCK - 1))); |
| DEBUG_printf("Initializing GC heap: %p..%p = " UINT_FMT " bytes\n", start, end, (byte*)end - (byte*)start); |
| |
| // calculate parameters for GC (T=total, A=alloc table, F=finaliser table, P=pool; all in bytes): |
| // T = A + F + P |
| // F = A * BLOCKS_PER_ATB / BLOCKS_PER_FTB |
| // P = A * BLOCKS_PER_ATB * BYTES_PER_BLOCK |
| // => T = A * (1 + BLOCKS_PER_ATB / BLOCKS_PER_FTB + BLOCKS_PER_ATB * BYTES_PER_BLOCK) |
| size_t total_byte_len = (byte*)end - (byte*)start; |
| #if MICROPY_ENABLE_FINALISER |
| MP_STATE_MEM(gc_alloc_table_byte_len) = total_byte_len * BITS_PER_BYTE / (BITS_PER_BYTE + BITS_PER_BYTE * BLOCKS_PER_ATB / BLOCKS_PER_FTB + BITS_PER_BYTE * BLOCKS_PER_ATB * BYTES_PER_BLOCK); |
| #else |
| MP_STATE_MEM(gc_alloc_table_byte_len) = total_byte_len / (1 + BITS_PER_BYTE / 2 * BYTES_PER_BLOCK); |
| #endif |
| |
| MP_STATE_MEM(gc_alloc_table_start) = (byte*)start; |
| |
| #if MICROPY_ENABLE_FINALISER |
| size_t gc_finaliser_table_byte_len = (MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB + BLOCKS_PER_FTB - 1) / BLOCKS_PER_FTB; |
| MP_STATE_MEM(gc_finaliser_table_start) = MP_STATE_MEM(gc_alloc_table_start) + MP_STATE_MEM(gc_alloc_table_byte_len); |
| #endif |
| |
| size_t gc_pool_block_len = MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; |
| MP_STATE_MEM(gc_pool_start) = (byte*)end - gc_pool_block_len * BYTES_PER_BLOCK; |
| MP_STATE_MEM(gc_pool_end) = end; |
| |
| #if MICROPY_ENABLE_FINALISER |
| assert(MP_STATE_MEM(gc_pool_start) >= MP_STATE_MEM(gc_finaliser_table_start) + gc_finaliser_table_byte_len); |
| #endif |
| |
| // clear ATBs |
| memset(MP_STATE_MEM(gc_alloc_table_start), 0, MP_STATE_MEM(gc_alloc_table_byte_len)); |
| |
| #if MICROPY_ENABLE_FINALISER |
| // clear FTBs |
| memset(MP_STATE_MEM(gc_finaliser_table_start), 0, gc_finaliser_table_byte_len); |
| #endif |
| |
| // set last free ATB index to start of heap |
| MP_STATE_MEM(gc_last_free_atb_index) = 0; |
| |
| // unlock the GC |
| MP_STATE_MEM(gc_lock_depth) = 0; |
| |
| // allow auto collection |
| MP_STATE_MEM(gc_auto_collect_enabled) = 1; |
| |
| #if MICROPY_GC_ALLOC_THRESHOLD |
| // by default, maxuint for gc threshold, effectively turning gc-by-threshold off |
| MP_STATE_MEM(gc_alloc_threshold) = (size_t)-1; |
| MP_STATE_MEM(gc_alloc_amount) = 0; |
| #endif |
| |
| #if MICROPY_PY_THREAD |
| mp_thread_mutex_init(&MP_STATE_MEM(gc_mutex)); |
| #endif |
| |
| DEBUG_printf("GC layout:\n"); |
| DEBUG_printf(" alloc table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", MP_STATE_MEM(gc_alloc_table_start), MP_STATE_MEM(gc_alloc_table_byte_len), MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB); |
| #if MICROPY_ENABLE_FINALISER |
| DEBUG_printf(" finaliser table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", MP_STATE_MEM(gc_finaliser_table_start), gc_finaliser_table_byte_len, gc_finaliser_table_byte_len * BLOCKS_PER_FTB); |
| #endif |
| DEBUG_printf(" pool at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", MP_STATE_MEM(gc_pool_start), gc_pool_block_len * BYTES_PER_BLOCK, gc_pool_block_len); |
| } |
| |
| void gc_lock(void) { |
| GC_ENTER(); |
| MP_STATE_MEM(gc_lock_depth)++; |
| GC_EXIT(); |
| } |
| |
| void gc_unlock(void) { |
| GC_ENTER(); |
| MP_STATE_MEM(gc_lock_depth)--; |
| GC_EXIT(); |
| } |
| |
| bool gc_is_locked(void) { |
| return MP_STATE_MEM(gc_lock_depth) != 0; |
| } |
| |
| // ptr should be of type void* |
| #define VERIFY_PTR(ptr) ( \ |
| ((uintptr_t)(ptr) & (BYTES_PER_BLOCK - 1)) == 0 /* must be aligned on a block */ \ |
| && ptr >= (void*)MP_STATE_MEM(gc_pool_start) /* must be above start of pool */ \ |
| && ptr < (void*)MP_STATE_MEM(gc_pool_end) /* must be below end of pool */ \ |
| ) |
| |
| #ifndef TRACE_MARK |
| #if DEBUG_PRINT |
| #define TRACE_MARK(block, ptr) DEBUG_printf("gc_mark(%p)\n", ptr) |
| #else |
| #define TRACE_MARK(block, ptr) |
| #endif |
| #endif |
| |
| // ptr should be of type void* |
| #define VERIFY_MARK_AND_PUSH(ptr) \ |
| do { \ |
| if (VERIFY_PTR(ptr)) { \ |
| size_t _block = BLOCK_FROM_PTR(ptr); \ |
| if (ATB_GET_KIND(_block) == AT_HEAD) { \ |
| /* an unmarked head, mark it, and push it on gc stack */ \ |
| TRACE_MARK(_block, ptr); \ |
| ATB_HEAD_TO_MARK(_block); \ |
| if (MP_STATE_MEM(gc_sp) < &MP_STATE_MEM(gc_stack)[MICROPY_ALLOC_GC_STACK_SIZE]) { \ |
| *MP_STATE_MEM(gc_sp)++ = _block; \ |
| } else { \ |
| MP_STATE_MEM(gc_stack_overflow) = 1; \ |
| } \ |
| } \ |
| } \ |
| } while (0) |
| |
| STATIC void gc_drain_stack(void) { |
| while (MP_STATE_MEM(gc_sp) > MP_STATE_MEM(gc_stack)) { |
| // pop the next block off the stack |
| size_t block = *--MP_STATE_MEM(gc_sp); |
| |
| // work out number of consecutive blocks in the chain starting with this one |
| size_t n_blocks = 0; |
| do { |
| n_blocks += 1; |
| } while (ATB_GET_KIND(block + n_blocks) == AT_TAIL); |
| |
| // check this block's children |
| void **ptrs = (void**)PTR_FROM_BLOCK(block); |
| for (size_t i = n_blocks * BYTES_PER_BLOCK / sizeof(void*); i > 0; i--, ptrs++) { |
| void *ptr = *ptrs; |
| VERIFY_MARK_AND_PUSH(ptr); |
| } |
| } |
| } |
| |
| STATIC void gc_deal_with_stack_overflow(void) { |
| while (MP_STATE_MEM(gc_stack_overflow)) { |
| MP_STATE_MEM(gc_stack_overflow) = 0; |
| MP_STATE_MEM(gc_sp) = MP_STATE_MEM(gc_stack); |
| |
| // scan entire memory looking for blocks which have been marked but not their children |
| for (size_t block = 0; block < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; block++) { |
| // trace (again) if mark bit set |
| if (ATB_GET_KIND(block) == AT_MARK) { |
| *MP_STATE_MEM(gc_sp)++ = block; |
| gc_drain_stack(); |
| } |
| } |
| } |
| } |
| |
| STATIC void gc_sweep(void) { |
| #if MICROPY_PY_GC_COLLECT_RETVAL |
| MP_STATE_MEM(gc_collected) = 0; |
| #endif |
| // free unmarked heads and their tails |
| int free_tail = 0; |
| for (size_t block = 0; block < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; block++) { |
| switch (ATB_GET_KIND(block)) { |
| case AT_HEAD: |
| #if MICROPY_ENABLE_FINALISER |
| if (FTB_GET(block)) { |
| mp_obj_base_t *obj = (mp_obj_base_t*)PTR_FROM_BLOCK(block); |
| if (obj->type != NULL) { |
| // if the object has a type then see if it has a __del__ method |
| mp_obj_t dest[2]; |
| mp_load_method_maybe(MP_OBJ_FROM_PTR(obj), MP_QSTR___del__, dest); |
| if (dest[0] != MP_OBJ_NULL) { |
| // load_method returned a method, execute it in a protected environment |
| #if MICROPY_ENABLE_SCHEDULER |
| mp_sched_lock(); |
| #endif |
| mp_call_function_1_protected(dest[0], dest[1]); |
| #if MICROPY_ENABLE_SCHEDULER |
| mp_sched_unlock(); |
| #endif |
| } |
| } |
| // clear finaliser flag |
| FTB_CLEAR(block); |
| } |
| #endif |
| free_tail = 1; |
| DEBUG_printf("gc_sweep(%p)\n", PTR_FROM_BLOCK(block)); |
| #if MICROPY_PY_GC_COLLECT_RETVAL |
| MP_STATE_MEM(gc_collected)++; |
| #endif |
| // fall through to free the head |
| |
| case AT_TAIL: |
| if (free_tail) { |
| ATB_ANY_TO_FREE(block); |
| #if CLEAR_ON_SWEEP |
| memset((void*)PTR_FROM_BLOCK(block), 0, BYTES_PER_BLOCK); |
| #endif |
| } |
| break; |
| |
| case AT_MARK: |
| ATB_MARK_TO_HEAD(block); |
| free_tail = 0; |
| break; |
| } |
| } |
| } |
| |
| void gc_collect_start(void) { |
| GC_ENTER(); |
| MP_STATE_MEM(gc_lock_depth)++; |
| #if MICROPY_GC_ALLOC_THRESHOLD |
| MP_STATE_MEM(gc_alloc_amount) = 0; |
| #endif |
| MP_STATE_MEM(gc_stack_overflow) = 0; |
| MP_STATE_MEM(gc_sp) = MP_STATE_MEM(gc_stack); |
| |
| // Trace root pointers. This relies on the root pointers being organised |
| // correctly in the mp_state_ctx structure. We scan nlr_top, dict_locals, |
| // dict_globals, then the root pointer section of mp_state_vm. |
| void **ptrs = (void**)(void*)&mp_state_ctx; |
| gc_collect_root(ptrs, offsetof(mp_state_ctx_t, vm.qstr_last_chunk) / sizeof(void*)); |
| |
| #if MICROPY_ENABLE_PYSTACK |
| // Trace root pointers from the Python stack. |
| ptrs = (void**)(void*)MP_STATE_THREAD(pystack_start); |
| gc_collect_root(ptrs, (MP_STATE_THREAD(pystack_cur) - MP_STATE_THREAD(pystack_start)) / sizeof(void*)); |
| #endif |
| } |
| |
| void gc_collect_root(void **ptrs, size_t len) { |
| for (size_t i = 0; i < len; i++) { |
| void *ptr = ptrs[i]; |
| VERIFY_MARK_AND_PUSH(ptr); |
| gc_drain_stack(); |
| } |
| } |
| |
| void gc_collect_end(void) { |
| gc_deal_with_stack_overflow(); |
| gc_sweep(); |
| MP_STATE_MEM(gc_last_free_atb_index) = 0; |
| MP_STATE_MEM(gc_lock_depth)--; |
| GC_EXIT(); |
| } |
| |
| void gc_info(gc_info_t *info) { |
| GC_ENTER(); |
| info->total = MP_STATE_MEM(gc_pool_end) - MP_STATE_MEM(gc_pool_start); |
| info->used = 0; |
| info->free = 0; |
| info->max_free = 0; |
| info->num_1block = 0; |
| info->num_2block = 0; |
| info->max_block = 0; |
| bool finish = false; |
| for (size_t block = 0, len = 0, len_free = 0; !finish;) { |
| size_t kind = ATB_GET_KIND(block); |
| switch (kind) { |
| case AT_FREE: |
| info->free += 1; |
| len_free += 1; |
| len = 0; |
| break; |
| |
| case AT_HEAD: |
| info->used += 1; |
| len = 1; |
| break; |
| |
| case AT_TAIL: |
| info->used += 1; |
| len += 1; |
| break; |
| |
| case AT_MARK: |
| // shouldn't happen |
| break; |
| } |
| |
| block++; |
| finish = (block == MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB); |
| // Get next block type if possible |
| if (!finish) { |
| kind = ATB_GET_KIND(block); |
| } |
| |
| if (finish || kind == AT_FREE || kind == AT_HEAD) { |
| if (len == 1) { |
| info->num_1block += 1; |
| } else if (len == 2) { |
| info->num_2block += 1; |
| } |
| if (len > info->max_block) { |
| info->max_block = len; |
| } |
| if (finish || kind == AT_HEAD) { |
| if (len_free > info->max_free) { |
| info->max_free = len_free; |
| } |
| len_free = 0; |
| } |
| } |
| } |
| |
| info->used *= BYTES_PER_BLOCK; |
| info->free *= BYTES_PER_BLOCK; |
| GC_EXIT(); |
| } |
| |
| void *gc_alloc(size_t n_bytes, bool has_finaliser) { |
| size_t n_blocks = ((n_bytes + BYTES_PER_BLOCK - 1) & (~(BYTES_PER_BLOCK - 1))) / BYTES_PER_BLOCK; |
| DEBUG_printf("gc_alloc(" UINT_FMT " bytes -> " UINT_FMT " blocks)\n", n_bytes, n_blocks); |
| |
| // check for 0 allocation |
| if (n_blocks == 0) { |
| return NULL; |
| } |
| |
| GC_ENTER(); |
| |
| // check if GC is locked |
| if (MP_STATE_MEM(gc_lock_depth) > 0) { |
| GC_EXIT(); |
| return NULL; |
| } |
| |
| size_t i; |
| size_t end_block; |
| size_t start_block; |
| size_t n_free = 0; |
| int collected = !MP_STATE_MEM(gc_auto_collect_enabled); |
| |
| #if MICROPY_GC_ALLOC_THRESHOLD |
| if (!collected && MP_STATE_MEM(gc_alloc_amount) >= MP_STATE_MEM(gc_alloc_threshold)) { |
| GC_EXIT(); |
| gc_collect(); |
| GC_ENTER(); |
| } |
| #endif |
| |
| for (;;) { |
| |
| // look for a run of n_blocks available blocks |
| for (i = MP_STATE_MEM(gc_last_free_atb_index); i < MP_STATE_MEM(gc_alloc_table_byte_len); i++) { |
| byte a = MP_STATE_MEM(gc_alloc_table_start)[i]; |
| if (ATB_0_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 0; goto found; } } else { n_free = 0; } |
| if (ATB_1_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 1; goto found; } } else { n_free = 0; } |
| if (ATB_2_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 2; goto found; } } else { n_free = 0; } |
| if (ATB_3_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 3; goto found; } } else { n_free = 0; } |
| } |
| |
| GC_EXIT(); |
| // nothing found! |
| if (collected) { |
| return NULL; |
| } |
| DEBUG_printf("gc_alloc(" UINT_FMT "): no free mem, triggering GC\n", n_bytes); |
| gc_collect(); |
| collected = 1; |
| GC_ENTER(); |
| } |
| |
| // found, ending at block i inclusive |
| found: |
| // get starting and end blocks, both inclusive |
| end_block = i; |
| start_block = i - n_free + 1; |
| |
| // Set last free ATB index to block after last block we found, for start of |
| // next scan. To reduce fragmentation, we only do this if we were looking |
| // for a single free block, which guarantees that there are no free blocks |
| // before this one. Also, whenever we free or shink a block we must check |
| // if this index needs adjusting (see gc_realloc and gc_free). |
| if (n_free == 1) { |
| MP_STATE_MEM(gc_last_free_atb_index) = (i + 1) / BLOCKS_PER_ATB; |
| } |
| |
| // mark first block as used head |
| ATB_FREE_TO_HEAD(start_block); |
| |
| // mark rest of blocks as used tail |
| // TODO for a run of many blocks can make this more efficient |
| for (size_t bl = start_block + 1; bl <= end_block; bl++) { |
| ATB_FREE_TO_TAIL(bl); |
| } |
| |
| // get pointer to first block |
| // we must create this pointer before unlocking the GC so a collection can find it |
| void *ret_ptr = (void*)(MP_STATE_MEM(gc_pool_start) + start_block * BYTES_PER_BLOCK); |
| DEBUG_printf("gc_alloc(%p)\n", ret_ptr); |
| |
| #if MICROPY_GC_ALLOC_THRESHOLD |
| MP_STATE_MEM(gc_alloc_amount) += n_blocks; |
| #endif |
| |
| GC_EXIT(); |
| |
| #if MICROPY_GC_CONSERVATIVE_CLEAR |
| // be conservative and zero out all the newly allocated blocks |
| memset((byte*)ret_ptr, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK); |
| #else |
| // zero out the additional bytes of the newly allocated blocks |
| // This is needed because the blocks may have previously held pointers |
| // to the heap and will not be set to something else if the caller |
| // doesn't actually use the entire block. As such they will continue |
| // to point to the heap and may prevent other blocks from being reclaimed. |
| memset((byte*)ret_ptr + n_bytes, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK - n_bytes); |
| #endif |
| |
| #if MICROPY_ENABLE_FINALISER |
| if (has_finaliser) { |
| // clear type pointer in case it is never set |
| ((mp_obj_base_t*)ret_ptr)->type = NULL; |
| // set mp_obj flag only if it has a finaliser |
| GC_ENTER(); |
| FTB_SET(start_block); |
| GC_EXIT(); |
| } |
| #else |
| (void)has_finaliser; |
| #endif |
| |
| #if EXTENSIVE_HEAP_PROFILING |
| gc_dump_alloc_table(); |
| #endif |
| |
| return ret_ptr; |
| } |
| |
| /* |
| void *gc_alloc(mp_uint_t n_bytes) { |
| return _gc_alloc(n_bytes, false); |
| } |
| |
| void *gc_alloc_with_finaliser(mp_uint_t n_bytes) { |
| return _gc_alloc(n_bytes, true); |
| } |
| */ |
| |
| // force the freeing of a piece of memory |
| // TODO: freeing here does not call finaliser |
| void gc_free(void *ptr) { |
| GC_ENTER(); |
| if (MP_STATE_MEM(gc_lock_depth) > 0) { |
| // TODO how to deal with this error? |
| GC_EXIT(); |
| return; |
| } |
| |
| DEBUG_printf("gc_free(%p)\n", ptr); |
| |
| if (ptr == NULL) { |
| GC_EXIT(); |
| } else { |
| // get the GC block number corresponding to this pointer |
| assert(VERIFY_PTR(ptr)); |
| size_t block = BLOCK_FROM_PTR(ptr); |
| assert(ATB_GET_KIND(block) == AT_HEAD); |
| |
| #if MICROPY_ENABLE_FINALISER |
| FTB_CLEAR(block); |
| #endif |
| |
| // set the last_free pointer to this block if it's earlier in the heap |
| if (block / BLOCKS_PER_ATB < MP_STATE_MEM(gc_last_free_atb_index)) { |
| MP_STATE_MEM(gc_last_free_atb_index) = block / BLOCKS_PER_ATB; |
| } |
| |
| // free head and all of its tail blocks |
| do { |
| ATB_ANY_TO_FREE(block); |
| block += 1; |
| } while (ATB_GET_KIND(block) == AT_TAIL); |
| |
| GC_EXIT(); |
| |
| #if EXTENSIVE_HEAP_PROFILING |
| gc_dump_alloc_table(); |
| #endif |
| } |
| } |
| |
| size_t gc_nbytes(const void *ptr) { |
| GC_ENTER(); |
| if (VERIFY_PTR(ptr)) { |
| size_t block = BLOCK_FROM_PTR(ptr); |
| if (ATB_GET_KIND(block) == AT_HEAD) { |
| // work out number of consecutive blocks in the chain starting with this on |
| size_t n_blocks = 0; |
| do { |
| n_blocks += 1; |
| } while (ATB_GET_KIND(block + n_blocks) == AT_TAIL); |
| GC_EXIT(); |
| return n_blocks * BYTES_PER_BLOCK; |
| } |
| } |
| |
| // invalid pointer |
| GC_EXIT(); |
| return 0; |
| } |
| |
| #if 0 |
| // old, simple realloc that didn't expand memory in place |
| void *gc_realloc(void *ptr, mp_uint_t n_bytes) { |
| mp_uint_t n_existing = gc_nbytes(ptr); |
| if (n_bytes <= n_existing) { |
| return ptr; |
| } else { |
| bool has_finaliser; |
| if (ptr == NULL) { |
| has_finaliser = false; |
| } else { |
| #if MICROPY_ENABLE_FINALISER |
| has_finaliser = FTB_GET(BLOCK_FROM_PTR((mp_uint_t)ptr)); |
| #else |
| has_finaliser = false; |
| #endif |
| } |
| void *ptr2 = gc_alloc(n_bytes, has_finaliser); |
| if (ptr2 == NULL) { |
| return ptr2; |
| } |
| memcpy(ptr2, ptr, n_existing); |
| gc_free(ptr); |
| return ptr2; |
| } |
| } |
| |
| #else // Alternative gc_realloc impl |
| |
| void *gc_realloc(void *ptr_in, size_t n_bytes, bool allow_move) { |
| // check for pure allocation |
| if (ptr_in == NULL) { |
| return gc_alloc(n_bytes, false); |
| } |
| |
| // check for pure free |
| if (n_bytes == 0) { |
| gc_free(ptr_in); |
| return NULL; |
| } |
| |
| void *ptr = ptr_in; |
| |
| GC_ENTER(); |
| |
| if (MP_STATE_MEM(gc_lock_depth) > 0) { |
| GC_EXIT(); |
| return NULL; |
| } |
| |
| // get the GC block number corresponding to this pointer |
| assert(VERIFY_PTR(ptr)); |
| size_t block = BLOCK_FROM_PTR(ptr); |
| assert(ATB_GET_KIND(block) == AT_HEAD); |
| |
| // compute number of new blocks that are requested |
| size_t new_blocks = (n_bytes + BYTES_PER_BLOCK - 1) / BYTES_PER_BLOCK; |
| |
| // Get the total number of consecutive blocks that are already allocated to |
| // this chunk of memory, and then count the number of free blocks following |
| // it. Stop if we reach the end of the heap, or if we find enough extra |
| // free blocks to satisfy the realloc. Note that we need to compute the |
| // total size of the existing memory chunk so we can correctly and |
| // efficiently shrink it (see below for shrinking code). |
| size_t n_free = 0; |
| size_t n_blocks = 1; // counting HEAD block |
| size_t max_block = MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; |
| for (size_t bl = block + n_blocks; bl < max_block; bl++) { |
| byte block_type = ATB_GET_KIND(bl); |
| if (block_type == AT_TAIL) { |
| n_blocks++; |
| continue; |
| } |
| if (block_type == AT_FREE) { |
| n_free++; |
| if (n_blocks + n_free >= new_blocks) { |
| // stop as soon as we find enough blocks for n_bytes |
| break; |
| } |
| continue; |
| } |
| break; |
| } |
| |
| // return original ptr if it already has the requested number of blocks |
| if (new_blocks == n_blocks) { |
| GC_EXIT(); |
| return ptr_in; |
| } |
| |
| // check if we can shrink the allocated area |
| if (new_blocks < n_blocks) { |
| // free unneeded tail blocks |
| for (size_t bl = block + new_blocks, count = n_blocks - new_blocks; count > 0; bl++, count--) { |
| ATB_ANY_TO_FREE(bl); |
| } |
| |
| // set the last_free pointer to end of this block if it's earlier in the heap |
| if ((block + new_blocks) / BLOCKS_PER_ATB < MP_STATE_MEM(gc_last_free_atb_index)) { |
| MP_STATE_MEM(gc_last_free_atb_index) = (block + new_blocks) / BLOCKS_PER_ATB; |
| } |
| |
| GC_EXIT(); |
| |
| #if EXTENSIVE_HEAP_PROFILING |
| gc_dump_alloc_table(); |
| #endif |
| |
| return ptr_in; |
| } |
| |
| // check if we can expand in place |
| if (new_blocks <= n_blocks + n_free) { |
| // mark few more blocks as used tail |
| for (size_t bl = block + n_blocks; bl < block + new_blocks; bl++) { |
| assert(ATB_GET_KIND(bl) == AT_FREE); |
| ATB_FREE_TO_TAIL(bl); |
| } |
| |
| GC_EXIT(); |
| |
| #if MICROPY_GC_CONSERVATIVE_CLEAR |
| // be conservative and zero out all the newly allocated blocks |
| memset((byte*)ptr_in + n_blocks * BYTES_PER_BLOCK, 0, (new_blocks - n_blocks) * BYTES_PER_BLOCK); |
| #else |
| // zero out the additional bytes of the newly allocated blocks (see comment above in gc_alloc) |
| memset((byte*)ptr_in + n_bytes, 0, new_blocks * BYTES_PER_BLOCK - n_bytes); |
| #endif |
| |
| #if EXTENSIVE_HEAP_PROFILING |
| gc_dump_alloc_table(); |
| #endif |
| |
| return ptr_in; |
| } |
| |
| #if MICROPY_ENABLE_FINALISER |
| bool ftb_state = FTB_GET(block); |
| #else |
| bool ftb_state = false; |
| #endif |
| |
| GC_EXIT(); |
| |
| if (!allow_move) { |
| // not allowed to move memory block so return failure |
| return NULL; |
| } |
| |
| // can't resize inplace; try to find a new contiguous chain |
| void *ptr_out = gc_alloc(n_bytes, ftb_state); |
| |
| // check that the alloc succeeded |
| if (ptr_out == NULL) { |
| return NULL; |
| } |
| |
| DEBUG_printf("gc_realloc(%p -> %p)\n", ptr_in, ptr_out); |
| memcpy(ptr_out, ptr_in, n_blocks * BYTES_PER_BLOCK); |
| gc_free(ptr_in); |
| return ptr_out; |
| } |
| #endif // Alternative gc_realloc impl |
| |
| void gc_dump_info(void) { |
| gc_info_t info; |
| gc_info(&info); |
| mp_printf(&mp_plat_print, "GC: total: %u, used: %u, free: %u\n", |
| (uint)info.total, (uint)info.used, (uint)info.free); |
| mp_printf(&mp_plat_print, " No. of 1-blocks: %u, 2-blocks: %u, max blk sz: %u, max free sz: %u\n", |
| (uint)info.num_1block, (uint)info.num_2block, (uint)info.max_block, (uint)info.max_free); |
| } |
| |
| void gc_dump_alloc_table(void) { |
| GC_ENTER(); |
| static const size_t DUMP_BYTES_PER_LINE = 64; |
| #if !EXTENSIVE_HEAP_PROFILING |
| // When comparing heap output we don't want to print the starting |
| // pointer of the heap because it changes from run to run. |
| mp_printf(&mp_plat_print, "GC memory layout; from %p:", MP_STATE_MEM(gc_pool_start)); |
| #endif |
| for (size_t bl = 0; bl < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; bl++) { |
| if (bl % DUMP_BYTES_PER_LINE == 0) { |
| // a new line of blocks |
| { |
| // check if this line contains only free blocks |
| size_t bl2 = bl; |
| while (bl2 < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB && ATB_GET_KIND(bl2) == AT_FREE) { |
| bl2++; |
| } |
| if (bl2 - bl >= 2 * DUMP_BYTES_PER_LINE) { |
| // there are at least 2 lines containing only free blocks, so abbreviate their printing |
| mp_printf(&mp_plat_print, "\n (%u lines all free)", (uint)(bl2 - bl) / DUMP_BYTES_PER_LINE); |
| bl = bl2 & (~(DUMP_BYTES_PER_LINE - 1)); |
| if (bl >= MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB) { |
| // got to end of heap |
| break; |
| } |
| } |
| } |
| // print header for new line of blocks |
| // (the cast to uint32_t is for 16-bit ports) |
| //mp_printf(&mp_plat_print, "\n%05x: ", (uint)(PTR_FROM_BLOCK(bl) & (uint32_t)0xfffff)); |
| mp_printf(&mp_plat_print, "\n%05x: ", (uint)((bl * BYTES_PER_BLOCK) & (uint32_t)0xfffff)); |
| } |
| int c = ' '; |
| switch (ATB_GET_KIND(bl)) { |
| case AT_FREE: c = '.'; break; |
| /* this prints out if the object is reachable from BSS or STACK (for unix only) |
| case AT_HEAD: { |
| c = 'h'; |
| void **ptrs = (void**)(void*)&mp_state_ctx; |
| mp_uint_t len = offsetof(mp_state_ctx_t, vm.stack_top) / sizeof(mp_uint_t); |
| for (mp_uint_t i = 0; i < len; i++) { |
| mp_uint_t ptr = (mp_uint_t)ptrs[i]; |
| if (VERIFY_PTR(ptr) && BLOCK_FROM_PTR(ptr) == bl) { |
| c = 'B'; |
| break; |
| } |
| } |
| if (c == 'h') { |
| ptrs = (void**)&c; |
| len = ((mp_uint_t)MP_STATE_THREAD(stack_top) - (mp_uint_t)&c) / sizeof(mp_uint_t); |
| for (mp_uint_t i = 0; i < len; i++) { |
| mp_uint_t ptr = (mp_uint_t)ptrs[i]; |
| if (VERIFY_PTR(ptr) && BLOCK_FROM_PTR(ptr) == bl) { |
| c = 'S'; |
| break; |
| } |
| } |
| } |
| break; |
| } |
| */ |
| /* this prints the uPy object type of the head block */ |
| case AT_HEAD: { |
| void **ptr = (void**)(MP_STATE_MEM(gc_pool_start) + bl * BYTES_PER_BLOCK); |
| if (*ptr == &mp_type_tuple) { c = 'T'; } |
| else if (*ptr == &mp_type_list) { c = 'L'; } |
| else if (*ptr == &mp_type_dict) { c = 'D'; } |
| else if (*ptr == &mp_type_str || *ptr == &mp_type_bytes) { c = 'S'; } |
| #if MICROPY_PY_BUILTINS_BYTEARRAY |
| else if (*ptr == &mp_type_bytearray) { c = 'A'; } |
| #endif |
| #if MICROPY_PY_ARRAY |
| else if (*ptr == &mp_type_array) { c = 'A'; } |
| #endif |
| #if MICROPY_PY_BUILTINS_FLOAT |
| else if (*ptr == &mp_type_float) { c = 'F'; } |
| #endif |
| else if (*ptr == &mp_type_fun_bc) { c = 'B'; } |
| else if (*ptr == &mp_type_module) { c = 'M'; } |
| else { |
| c = 'h'; |
| #if 0 |
| // This code prints "Q" for qstr-pool data, and "q" for qstr-str |
| // data. It can be useful to see how qstrs are being allocated, |
| // but is disabled by default because it is very slow. |
| for (qstr_pool_t *pool = MP_STATE_VM(last_pool); c == 'h' && pool != NULL; pool = pool->prev) { |
| if ((qstr_pool_t*)ptr == pool) { |
| c = 'Q'; |
| break; |
| } |
| for (const byte **q = pool->qstrs, **q_top = pool->qstrs + pool->len; q < q_top; q++) { |
| if ((const byte*)ptr == *q) { |
| c = 'q'; |
| break; |
| } |
| } |
| } |
| #endif |
| } |
| break; |
| } |
| case AT_TAIL: c = '='; break; |
| case AT_MARK: c = 'm'; break; |
| } |
| mp_printf(&mp_plat_print, "%c", c); |
| } |
| mp_print_str(&mp_plat_print, "\n"); |
| GC_EXIT(); |
| } |
| |
| #if DEBUG_PRINT |
| void gc_test(void) { |
| mp_uint_t len = 500; |
| mp_uint_t *heap = malloc(len); |
| gc_init(heap, heap + len / sizeof(mp_uint_t)); |
| void *ptrs[100]; |
| { |
| mp_uint_t **p = gc_alloc(16, false); |
| p[0] = gc_alloc(64, false); |
| p[1] = gc_alloc(1, false); |
| p[2] = gc_alloc(1, false); |
| p[3] = gc_alloc(1, false); |
| mp_uint_t ***p2 = gc_alloc(16, false); |
| p2[0] = p; |
| p2[1] = p; |
| ptrs[0] = p2; |
| } |
| for (int i = 0; i < 25; i+=2) { |
| mp_uint_t *p = gc_alloc(i, false); |
| printf("p=%p\n", p); |
| if (i & 3) { |
| //ptrs[i] = p; |
| } |
| } |
| |
| printf("Before GC:\n"); |
| gc_dump_alloc_table(); |
| printf("Starting GC...\n"); |
| gc_collect_start(); |
| gc_collect_root(ptrs, sizeof(ptrs) / sizeof(void*)); |
| gc_collect_end(); |
| printf("After GC:\n"); |
| gc_dump_alloc_table(); |
| } |
| #endif |
| |
| #endif // MICROPY_ENABLE_GC |