| /* |
| * This file is part of the MicroPython project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013-2015 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdbool.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <assert.h> |
| |
| #include "py/scope.h" |
| #include "py/emit.h" |
| #include "py/compile.h" |
| #include "py/runtime.h" |
| #include "py/asmbase.h" |
| |
| #if MICROPY_ENABLE_COMPILER |
| |
| // TODO need to mangle __attr names |
| |
| #define INVALID_LABEL (0xffff) |
| |
| typedef enum { |
| // define rules with a compile function |
| #define DEF_RULE(rule, comp, kind, ...) PN_##rule, |
| #define DEF_RULE_NC(rule, kind, ...) |
| #include "py/grammar.h" |
| #undef DEF_RULE |
| #undef DEF_RULE_NC |
| PN_const_object, // special node for a constant, generic Python object |
| // define rules without a compile function |
| #define DEF_RULE(rule, comp, kind, ...) |
| #define DEF_RULE_NC(rule, kind, ...) PN_##rule, |
| #include "py/grammar.h" |
| #undef DEF_RULE |
| #undef DEF_RULE_NC |
| } pn_kind_t; |
| |
| #define NEED_METHOD_TABLE MICROPY_EMIT_NATIVE |
| |
| #if NEED_METHOD_TABLE |
| |
| // we need a method table to do the lookup for the emitter functions |
| #define EMIT(fun) (comp->emit_method_table->fun(comp->emit)) |
| #define EMIT_ARG(fun, ...) (comp->emit_method_table->fun(comp->emit, __VA_ARGS__)) |
| #define EMIT_LOAD_FAST(qst, local_num) (comp->emit_method_table->load_id.fast(comp->emit, qst, local_num)) |
| #define EMIT_LOAD_GLOBAL(qst) (comp->emit_method_table->load_id.global(comp->emit, qst)) |
| |
| #else |
| |
| // if we only have the bytecode emitter enabled then we can do a direct call to the functions |
| #define EMIT(fun) (mp_emit_bc_##fun(comp->emit)) |
| #define EMIT_ARG(fun, ...) (mp_emit_bc_##fun(comp->emit, __VA_ARGS__)) |
| #define EMIT_LOAD_FAST(qst, local_num) (mp_emit_bc_load_fast(comp->emit, qst, local_num)) |
| #define EMIT_LOAD_GLOBAL(qst) (mp_emit_bc_load_global(comp->emit, qst)) |
| |
| #endif |
| |
| #if MICROPY_EMIT_NATIVE |
| // define a macro to access external native emitter |
| #if MICROPY_EMIT_X64 |
| #define NATIVE_EMITTER(f) emit_native_x64_##f |
| #elif MICROPY_EMIT_X86 |
| #define NATIVE_EMITTER(f) emit_native_x86_##f |
| #elif MICROPY_EMIT_THUMB |
| #define NATIVE_EMITTER(f) emit_native_thumb_##f |
| #elif MICROPY_EMIT_ARM |
| #define NATIVE_EMITTER(f) emit_native_arm_##f |
| #elif MICROPY_EMIT_XTENSA |
| #define NATIVE_EMITTER(f) emit_native_xtensa_##f |
| #else |
| #error "unknown native emitter" |
| #endif |
| #endif |
| |
| #if MICROPY_EMIT_INLINE_ASM |
| // define macros for inline assembler |
| #if MICROPY_EMIT_INLINE_THUMB |
| #define ASM_DECORATOR_QSTR MP_QSTR_asm_thumb |
| #define ASM_EMITTER(f) emit_inline_thumb_##f |
| #elif MICROPY_EMIT_INLINE_XTENSA |
| #define ASM_DECORATOR_QSTR MP_QSTR_asm_xtensa |
| #define ASM_EMITTER(f) emit_inline_xtensa_##f |
| #else |
| #error "unknown asm emitter" |
| #endif |
| #endif |
| |
| #define EMIT_INLINE_ASM(fun) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm)) |
| #define EMIT_INLINE_ASM_ARG(fun, ...) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm, __VA_ARGS__)) |
| |
| // elements in this struct are ordered to make it compact |
| typedef struct _compiler_t { |
| qstr source_file; |
| |
| uint8_t is_repl; |
| uint8_t pass; // holds enum type pass_kind_t |
| uint8_t have_star; |
| |
| // try to keep compiler clean from nlr |
| mp_obj_t compile_error; // set to an exception object if there's an error |
| size_t compile_error_line; // set to best guess of line of error |
| |
| uint next_label; |
| |
| uint16_t num_dict_params; |
| uint16_t num_default_params; |
| |
| uint16_t break_label; // highest bit set indicates we are breaking out of a for loop |
| uint16_t continue_label; |
| uint16_t cur_except_level; // increased for SETUP_EXCEPT, SETUP_FINALLY; decreased for POP_BLOCK, POP_EXCEPT |
| uint16_t break_continue_except_level; |
| |
| scope_t *scope_head; |
| scope_t *scope_cur; |
| |
| emit_t *emit; // current emitter |
| #if NEED_METHOD_TABLE |
| const emit_method_table_t *emit_method_table; // current emit method table |
| #endif |
| |
| #if MICROPY_EMIT_INLINE_ASM |
| emit_inline_asm_t *emit_inline_asm; // current emitter for inline asm |
| const emit_inline_asm_method_table_t *emit_inline_asm_method_table; // current emit method table for inline asm |
| #endif |
| } compiler_t; |
| |
| STATIC void compile_error_set_line(compiler_t *comp, mp_parse_node_t pn) { |
| // if the line of the error is unknown then try to update it from the pn |
| if (comp->compile_error_line == 0 && MP_PARSE_NODE_IS_STRUCT(pn)) { |
| comp->compile_error_line = ((mp_parse_node_struct_t*)pn)->source_line; |
| } |
| } |
| |
| STATIC void compile_syntax_error(compiler_t *comp, mp_parse_node_t pn, const char *msg) { |
| // only register the error if there has been no other error |
| if (comp->compile_error == MP_OBJ_NULL) { |
| comp->compile_error = mp_obj_new_exception_msg(&mp_type_SyntaxError, msg); |
| compile_error_set_line(comp, pn); |
| } |
| } |
| |
| STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra); |
| STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind); |
| STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn); |
| |
| STATIC uint comp_next_label(compiler_t *comp) { |
| return comp->next_label++; |
| } |
| |
| STATIC void compile_increase_except_level(compiler_t *comp) { |
| comp->cur_except_level += 1; |
| if (comp->cur_except_level > comp->scope_cur->exc_stack_size) { |
| comp->scope_cur->exc_stack_size = comp->cur_except_level; |
| } |
| } |
| |
| STATIC void compile_decrease_except_level(compiler_t *comp) { |
| assert(comp->cur_except_level > 0); |
| comp->cur_except_level -= 1; |
| } |
| |
| STATIC scope_t *scope_new_and_link(compiler_t *comp, scope_kind_t kind, mp_parse_node_t pn, uint emit_options) { |
| scope_t *scope = scope_new(kind, pn, comp->source_file, emit_options); |
| scope->parent = comp->scope_cur; |
| scope->next = NULL; |
| if (comp->scope_head == NULL) { |
| comp->scope_head = scope; |
| } else { |
| scope_t *s = comp->scope_head; |
| while (s->next != NULL) { |
| s = s->next; |
| } |
| s->next = scope; |
| } |
| return scope; |
| } |
| |
| typedef void (*apply_list_fun_t)(compiler_t *comp, mp_parse_node_t pn); |
| |
| STATIC void apply_to_single_or_list(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_list_kind, apply_list_fun_t f) { |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, pn_list_kind)) { |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| for (int i = 0; i < num_nodes; i++) { |
| f(comp, pns->nodes[i]); |
| } |
| } else if (!MP_PARSE_NODE_IS_NULL(pn)) { |
| f(comp, pn); |
| } |
| } |
| |
| STATIC void compile_generic_all_nodes(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| for (int i = 0; i < num_nodes; i++) { |
| compile_node(comp, pns->nodes[i]); |
| if (comp->compile_error != MP_OBJ_NULL) { |
| // add line info for the error in case it didn't have a line number |
| compile_error_set_line(comp, pns->nodes[i]); |
| return; |
| } |
| } |
| } |
| |
| STATIC void compile_load_id(compiler_t *comp, qstr qst) { |
| if (comp->pass == MP_PASS_SCOPE) { |
| mp_emit_common_get_id_for_load(comp->scope_cur, qst); |
| } else { |
| #if NEED_METHOD_TABLE |
| mp_emit_common_id_op(comp->emit, &comp->emit_method_table->load_id, comp->scope_cur, qst); |
| #else |
| mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_load_id_ops, comp->scope_cur, qst); |
| #endif |
| } |
| } |
| |
| STATIC void compile_store_id(compiler_t *comp, qstr qst) { |
| if (comp->pass == MP_PASS_SCOPE) { |
| mp_emit_common_get_id_for_modification(comp->scope_cur, qst); |
| } else { |
| #if NEED_METHOD_TABLE |
| mp_emit_common_id_op(comp->emit, &comp->emit_method_table->store_id, comp->scope_cur, qst); |
| #else |
| mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_store_id_ops, comp->scope_cur, qst); |
| #endif |
| } |
| } |
| |
| STATIC void compile_delete_id(compiler_t *comp, qstr qst) { |
| if (comp->pass == MP_PASS_SCOPE) { |
| mp_emit_common_get_id_for_modification(comp->scope_cur, qst); |
| } else { |
| #if NEED_METHOD_TABLE |
| mp_emit_common_id_op(comp->emit, &comp->emit_method_table->delete_id, comp->scope_cur, qst); |
| #else |
| mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_delete_id_ops, comp->scope_cur, qst); |
| #endif |
| } |
| } |
| |
| STATIC void c_tuple(compiler_t *comp, mp_parse_node_t pn, mp_parse_node_struct_t *pns_list) { |
| int total = 0; |
| if (!MP_PARSE_NODE_IS_NULL(pn)) { |
| compile_node(comp, pn); |
| total += 1; |
| } |
| if (pns_list != NULL) { |
| int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_list); |
| for (int i = 0; i < n; i++) { |
| compile_node(comp, pns_list->nodes[i]); |
| } |
| total += n; |
| } |
| EMIT_ARG(build_tuple, total); |
| } |
| |
| STATIC void compile_generic_tuple(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // a simple tuple expression |
| c_tuple(comp, MP_PARSE_NODE_NULL, pns); |
| } |
| |
| STATIC void c_if_cond(compiler_t *comp, mp_parse_node_t pn, bool jump_if, int label) { |
| if (mp_parse_node_is_const_false(pn)) { |
| if (jump_if == false) { |
| EMIT_ARG(jump, label); |
| } |
| return; |
| } else if (mp_parse_node_is_const_true(pn)) { |
| if (jump_if == true) { |
| EMIT_ARG(jump, label); |
| } |
| return; |
| } else if (MP_PARSE_NODE_IS_STRUCT(pn)) { |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test) { |
| if (jump_if == false) { |
| and_or_logic1:; |
| uint label2 = comp_next_label(comp); |
| for (int i = 0; i < n - 1; i++) { |
| c_if_cond(comp, pns->nodes[i], !jump_if, label2); |
| } |
| c_if_cond(comp, pns->nodes[n - 1], jump_if, label); |
| EMIT_ARG(label_assign, label2); |
| } else { |
| and_or_logic2: |
| for (int i = 0; i < n; i++) { |
| c_if_cond(comp, pns->nodes[i], jump_if, label); |
| } |
| } |
| return; |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_and_test) { |
| if (jump_if == false) { |
| goto and_or_logic2; |
| } else { |
| goto and_or_logic1; |
| } |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_not_test_2) { |
| c_if_cond(comp, pns->nodes[0], !jump_if, label); |
| return; |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_atom_paren) { |
| // cond is something in parenthesis |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| // empty tuple, acts as false for the condition |
| if (jump_if == false) { |
| EMIT_ARG(jump, label); |
| } |
| } else { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)); |
| // non-empty tuple, acts as true for the condition |
| if (jump_if == true) { |
| EMIT_ARG(jump, label); |
| } |
| } |
| return; |
| } |
| } |
| |
| // nothing special, fall back to default compiling for node and jump |
| compile_node(comp, pn); |
| EMIT_ARG(pop_jump_if, jump_if, label); |
| } |
| |
| typedef enum { ASSIGN_STORE, ASSIGN_AUG_LOAD, ASSIGN_AUG_STORE } assign_kind_t; |
| STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t kind); |
| |
| STATIC void c_assign_atom_expr(compiler_t *comp, mp_parse_node_struct_t *pns, assign_kind_t assign_kind) { |
| if (assign_kind != ASSIGN_AUG_STORE) { |
| compile_node(comp, pns->nodes[0]); |
| } |
| |
| if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { |
| mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) { |
| int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1); |
| if (assign_kind != ASSIGN_AUG_STORE) { |
| for (int i = 0; i < n - 1; i++) { |
| compile_node(comp, pns1->nodes[i]); |
| } |
| } |
| assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1])); |
| pns1 = (mp_parse_node_struct_t*)pns1->nodes[n - 1]; |
| } |
| if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) { |
| if (assign_kind == ASSIGN_AUG_STORE) { |
| EMIT(rot_three); |
| EMIT(store_subscr); |
| } else { |
| compile_node(comp, pns1->nodes[0]); |
| if (assign_kind == ASSIGN_AUG_LOAD) { |
| EMIT(dup_top_two); |
| EMIT(load_subscr); |
| } else { |
| EMIT(store_subscr); |
| } |
| } |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) { |
| assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0])); |
| if (assign_kind == ASSIGN_AUG_LOAD) { |
| EMIT(dup_top); |
| EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0])); |
| } else { |
| if (assign_kind == ASSIGN_AUG_STORE) { |
| EMIT(rot_two); |
| } |
| EMIT_ARG(store_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0])); |
| } |
| } else { |
| goto cannot_assign; |
| } |
| } else { |
| goto cannot_assign; |
| } |
| |
| return; |
| |
| cannot_assign: |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "can't assign to expression"); |
| } |
| |
| // we need to allow for a caller passing in 1 initial node (node_head) followed by an array of nodes (nodes_tail) |
| STATIC void c_assign_tuple(compiler_t *comp, mp_parse_node_t node_head, uint num_tail, mp_parse_node_t *nodes_tail) { |
| uint num_head = (node_head == MP_PARSE_NODE_NULL) ? 0 : 1; |
| |
| // look for star expression |
| uint have_star_index = -1; |
| if (num_head != 0 && MP_PARSE_NODE_IS_STRUCT_KIND(node_head, PN_star_expr)) { |
| EMIT_ARG(unpack_ex, 0, num_tail); |
| have_star_index = 0; |
| } |
| for (uint i = 0; i < num_tail; i++) { |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes_tail[i], PN_star_expr)) { |
| if (have_star_index == (uint)-1) { |
| EMIT_ARG(unpack_ex, num_head + i, num_tail - i - 1); |
| have_star_index = num_head + i; |
| } else { |
| compile_syntax_error(comp, nodes_tail[i], "multiple *x in assignment"); |
| return; |
| } |
| } |
| } |
| if (have_star_index == (uint)-1) { |
| EMIT_ARG(unpack_sequence, num_head + num_tail); |
| } |
| if (num_head != 0) { |
| if (0 == have_star_index) { |
| c_assign(comp, ((mp_parse_node_struct_t*)node_head)->nodes[0], ASSIGN_STORE); |
| } else { |
| c_assign(comp, node_head, ASSIGN_STORE); |
| } |
| } |
| for (uint i = 0; i < num_tail; i++) { |
| if (num_head + i == have_star_index) { |
| c_assign(comp, ((mp_parse_node_struct_t*)nodes_tail[i])->nodes[0], ASSIGN_STORE); |
| } else { |
| c_assign(comp, nodes_tail[i], ASSIGN_STORE); |
| } |
| } |
| } |
| |
| // assigns top of stack to pn |
| STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t assign_kind) { |
| assert(!MP_PARSE_NODE_IS_NULL(pn)); |
| if (MP_PARSE_NODE_IS_LEAF(pn)) { |
| if (MP_PARSE_NODE_IS_ID(pn)) { |
| qstr arg = MP_PARSE_NODE_LEAF_ARG(pn); |
| switch (assign_kind) { |
| case ASSIGN_STORE: |
| case ASSIGN_AUG_STORE: |
| compile_store_id(comp, arg); |
| break; |
| case ASSIGN_AUG_LOAD: |
| default: |
| compile_load_id(comp, arg); |
| break; |
| } |
| } else { |
| goto cannot_assign; |
| } |
| } else { |
| // pn must be a struct |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| switch (MP_PARSE_NODE_STRUCT_KIND(pns)) { |
| case PN_atom_expr_normal: |
| // lhs is an index or attribute |
| c_assign_atom_expr(comp, pns, assign_kind); |
| break; |
| |
| case PN_testlist_star_expr: |
| case PN_exprlist: |
| // lhs is a tuple |
| if (assign_kind != ASSIGN_STORE) { |
| goto cannot_assign; |
| } |
| c_assign_tuple(comp, MP_PARSE_NODE_NULL, MP_PARSE_NODE_STRUCT_NUM_NODES(pns), pns->nodes); |
| break; |
| |
| case PN_atom_paren: |
| // lhs is something in parenthesis |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| // empty tuple |
| goto cannot_assign; |
| } else { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)); |
| if (assign_kind != ASSIGN_STORE) { |
| goto cannot_assign; |
| } |
| pns = (mp_parse_node_struct_t*)pns->nodes[0]; |
| goto testlist_comp; |
| } |
| break; |
| |
| case PN_atom_bracket: |
| // lhs is something in brackets |
| if (assign_kind != ASSIGN_STORE) { |
| goto cannot_assign; |
| } |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| // empty list, assignment allowed |
| c_assign_tuple(comp, MP_PARSE_NODE_NULL, 0, NULL); |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) { |
| pns = (mp_parse_node_struct_t*)pns->nodes[0]; |
| goto testlist_comp; |
| } else { |
| // brackets around 1 item |
| c_assign_tuple(comp, pns->nodes[0], 0, NULL); |
| } |
| break; |
| |
| default: |
| goto cannot_assign; |
| } |
| return; |
| |
| testlist_comp: |
| // lhs is a sequence |
| if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { |
| mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3b) { |
| // sequence of one item, with trailing comma |
| assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[0])); |
| c_assign_tuple(comp, pns->nodes[0], 0, NULL); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3c) { |
| // sequence of many items |
| uint n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns2); |
| c_assign_tuple(comp, pns->nodes[0], n, pns2->nodes); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_comp_for) { |
| goto cannot_assign; |
| } else { |
| // sequence with 2 items |
| goto sequence_with_2_items; |
| } |
| } else { |
| // sequence with 2 items |
| sequence_with_2_items: |
| c_assign_tuple(comp, MP_PARSE_NODE_NULL, 2, pns->nodes); |
| } |
| return; |
| } |
| return; |
| |
| cannot_assign: |
| compile_syntax_error(comp, pn, "can't assign to expression"); |
| } |
| |
| // stuff for lambda and comprehensions and generators: |
| // if n_pos_defaults > 0 then there is a tuple on the stack with the positional defaults |
| // if n_kw_defaults > 0 then there is a dictionary on the stack with the keyword defaults |
| // if both exist, the tuple is above the dictionary (ie the first pop gets the tuple) |
| STATIC void close_over_variables_etc(compiler_t *comp, scope_t *this_scope, int n_pos_defaults, int n_kw_defaults) { |
| assert(n_pos_defaults >= 0); |
| assert(n_kw_defaults >= 0); |
| |
| // set flags |
| if (n_kw_defaults > 0) { |
| this_scope->scope_flags |= MP_SCOPE_FLAG_DEFKWARGS; |
| } |
| this_scope->num_def_pos_args = n_pos_defaults; |
| |
| // make closed over variables, if any |
| // ensure they are closed over in the order defined in the outer scope (mainly to agree with CPython) |
| int nfree = 0; |
| if (comp->scope_cur->kind != SCOPE_MODULE) { |
| for (int i = 0; i < comp->scope_cur->id_info_len; i++) { |
| id_info_t *id = &comp->scope_cur->id_info[i]; |
| if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) { |
| for (int j = 0; j < this_scope->id_info_len; j++) { |
| id_info_t *id2 = &this_scope->id_info[j]; |
| if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) { |
| // in MicroPython we load closures using LOAD_FAST |
| EMIT_LOAD_FAST(id->qst, id->local_num); |
| nfree += 1; |
| } |
| } |
| } |
| } |
| } |
| |
| // make the function/closure |
| if (nfree == 0) { |
| EMIT_ARG(make_function, this_scope, n_pos_defaults, n_kw_defaults); |
| } else { |
| EMIT_ARG(make_closure, this_scope, nfree, n_pos_defaults, n_kw_defaults); |
| } |
| } |
| |
| STATIC void compile_funcdef_lambdef_param(compiler_t *comp, mp_parse_node_t pn) { |
| // For efficiency of the code below we extract the parse-node kind here |
| int pn_kind; |
| if (MP_PARSE_NODE_IS_ID(pn)) { |
| pn_kind = -1; |
| } else { |
| assert(MP_PARSE_NODE_IS_STRUCT(pn)); |
| pn_kind = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn); |
| } |
| |
| if (pn_kind == PN_typedargslist_star || pn_kind == PN_varargslist_star) { |
| comp->have_star = true; |
| /* don't need to distinguish bare from named star |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| // bare star |
| } else { |
| // named star |
| } |
| */ |
| |
| } else if (pn_kind == PN_typedargslist_dbl_star || pn_kind == PN_varargslist_dbl_star) { |
| // named double star |
| // TODO do we need to do anything with this? |
| |
| } else { |
| mp_parse_node_t pn_id; |
| mp_parse_node_t pn_equal; |
| if (pn_kind == -1) { |
| // this parameter is just an id |
| |
| pn_id = pn; |
| pn_equal = MP_PARSE_NODE_NULL; |
| |
| } else if (pn_kind == PN_typedargslist_name) { |
| // this parameter has a colon and/or equal specifier |
| |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| pn_id = pns->nodes[0]; |
| //pn_colon = pns->nodes[1]; // unused |
| pn_equal = pns->nodes[2]; |
| |
| } else { |
| assert(pn_kind == PN_varargslist_name); // should be |
| // this parameter has an equal specifier |
| |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| pn_id = pns->nodes[0]; |
| pn_equal = pns->nodes[1]; |
| } |
| |
| if (MP_PARSE_NODE_IS_NULL(pn_equal)) { |
| // this parameter does not have a default value |
| |
| // check for non-default parameters given after default parameters (allowed by parser, but not syntactically valid) |
| if (!comp->have_star && comp->num_default_params != 0) { |
| compile_syntax_error(comp, pn, "non-default argument follows default argument"); |
| return; |
| } |
| |
| } else { |
| // this parameter has a default value |
| // in CPython, None (and True, False?) as default parameters are loaded with LOAD_NAME; don't understandy why |
| |
| if (comp->have_star) { |
| comp->num_dict_params += 1; |
| // in MicroPython we put the default dict parameters into a dictionary using the bytecode |
| if (comp->num_dict_params == 1) { |
| // in MicroPython we put the default positional parameters into a tuple using the bytecode |
| // we need to do this here before we start building the map for the default keywords |
| if (comp->num_default_params > 0) { |
| EMIT_ARG(build_tuple, comp->num_default_params); |
| } else { |
| EMIT(load_null); // sentinel indicating empty default positional args |
| } |
| // first default dict param, so make the map |
| EMIT_ARG(build_map, 0); |
| } |
| |
| // compile value then key, then store it to the dict |
| compile_node(comp, pn_equal); |
| EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pn_id)); |
| EMIT(store_map); |
| } else { |
| comp->num_default_params += 1; |
| compile_node(comp, pn_equal); |
| } |
| } |
| } |
| } |
| |
| STATIC void compile_funcdef_lambdef(compiler_t *comp, scope_t *scope, mp_parse_node_t pn_params, pn_kind_t pn_list_kind) { |
| // When we call compile_funcdef_lambdef_param below it can compile an arbitrary |
| // expression for default arguments, which may contain a lambda. The lambda will |
| // call here in a nested way, so we must save and restore the relevant state. |
| bool orig_have_star = comp->have_star; |
| uint16_t orig_num_dict_params = comp->num_dict_params; |
| uint16_t orig_num_default_params = comp->num_default_params; |
| |
| // compile default parameters |
| comp->have_star = false; |
| comp->num_dict_params = 0; |
| comp->num_default_params = 0; |
| apply_to_single_or_list(comp, pn_params, pn_list_kind, compile_funcdef_lambdef_param); |
| |
| if (comp->compile_error != MP_OBJ_NULL) { |
| return; |
| } |
| |
| // in MicroPython we put the default positional parameters into a tuple using the bytecode |
| // the default keywords args may have already made the tuple; if not, do it now |
| if (comp->num_default_params > 0 && comp->num_dict_params == 0) { |
| EMIT_ARG(build_tuple, comp->num_default_params); |
| EMIT(load_null); // sentinel indicating empty default keyword args |
| } |
| |
| // make the function |
| close_over_variables_etc(comp, scope, comp->num_default_params, comp->num_dict_params); |
| |
| // restore state |
| comp->have_star = orig_have_star; |
| comp->num_dict_params = orig_num_dict_params; |
| comp->num_default_params = orig_num_default_params; |
| } |
| |
| // leaves function object on stack |
| // returns function name |
| STATIC qstr compile_funcdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) { |
| if (comp->pass == MP_PASS_SCOPE) { |
| // create a new scope for this function |
| scope_t *s = scope_new_and_link(comp, SCOPE_FUNCTION, (mp_parse_node_t)pns, emit_options); |
| // store the function scope so the compiling function can use it at each pass |
| pns->nodes[4] = (mp_parse_node_t)s; |
| } |
| |
| // get the scope for this function |
| scope_t *fscope = (scope_t*)pns->nodes[4]; |
| |
| // compile the function definition |
| compile_funcdef_lambdef(comp, fscope, pns->nodes[1], PN_typedargslist); |
| |
| // return its name (the 'f' in "def f(...):") |
| return fscope->simple_name; |
| } |
| |
| // leaves class object on stack |
| // returns class name |
| STATIC qstr compile_classdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) { |
| if (comp->pass == MP_PASS_SCOPE) { |
| // create a new scope for this class |
| scope_t *s = scope_new_and_link(comp, SCOPE_CLASS, (mp_parse_node_t)pns, emit_options); |
| // store the class scope so the compiling function can use it at each pass |
| pns->nodes[3] = (mp_parse_node_t)s; |
| } |
| |
| EMIT(load_build_class); |
| |
| // scope for this class |
| scope_t *cscope = (scope_t*)pns->nodes[3]; |
| |
| // compile the class |
| close_over_variables_etc(comp, cscope, 0, 0); |
| |
| // get its name |
| EMIT_ARG(load_const_str, cscope->simple_name); |
| |
| // nodes[1] has parent classes, if any |
| // empty parenthesis (eg class C():) gets here as an empty PN_classdef_2 and needs special handling |
| mp_parse_node_t parents = pns->nodes[1]; |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(parents, PN_classdef_2)) { |
| parents = MP_PARSE_NODE_NULL; |
| } |
| compile_trailer_paren_helper(comp, parents, false, 2); |
| |
| // return its name (the 'C' in class C(...):") |
| return cscope->simple_name; |
| } |
| |
| // returns true if it was a built-in decorator (even if the built-in had an error) |
| STATIC bool compile_built_in_decorator(compiler_t *comp, int name_len, mp_parse_node_t *name_nodes, uint *emit_options) { |
| if (MP_PARSE_NODE_LEAF_ARG(name_nodes[0]) != MP_QSTR_micropython) { |
| return false; |
| } |
| |
| if (name_len != 2) { |
| compile_syntax_error(comp, name_nodes[0], "invalid micropython decorator"); |
| return true; |
| } |
| |
| qstr attr = MP_PARSE_NODE_LEAF_ARG(name_nodes[1]); |
| if (attr == MP_QSTR_bytecode) { |
| *emit_options = MP_EMIT_OPT_BYTECODE; |
| #if MICROPY_EMIT_NATIVE |
| } else if (attr == MP_QSTR_native) { |
| *emit_options = MP_EMIT_OPT_NATIVE_PYTHON; |
| } else if (attr == MP_QSTR_viper) { |
| *emit_options = MP_EMIT_OPT_VIPER; |
| #endif |
| #if MICROPY_EMIT_INLINE_ASM |
| } else if (attr == ASM_DECORATOR_QSTR) { |
| *emit_options = MP_EMIT_OPT_ASM; |
| #endif |
| } else { |
| compile_syntax_error(comp, name_nodes[1], "invalid micropython decorator"); |
| } |
| |
| return true; |
| } |
| |
| STATIC void compile_decorated(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // get the list of decorators |
| mp_parse_node_t *nodes; |
| int n = mp_parse_node_extract_list(&pns->nodes[0], PN_decorators, &nodes); |
| |
| // inherit emit options for this function/class definition |
| uint emit_options = comp->scope_cur->emit_options; |
| |
| // compile each decorator |
| int num_built_in_decorators = 0; |
| for (int i = 0; i < n; i++) { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(nodes[i], PN_decorator)); // should be |
| mp_parse_node_struct_t *pns_decorator = (mp_parse_node_struct_t*)nodes[i]; |
| |
| // nodes[0] contains the decorator function, which is a dotted name |
| mp_parse_node_t *name_nodes; |
| int name_len = mp_parse_node_extract_list(&pns_decorator->nodes[0], PN_dotted_name, &name_nodes); |
| |
| // check for built-in decorators |
| if (compile_built_in_decorator(comp, name_len, name_nodes, &emit_options)) { |
| // this was a built-in |
| num_built_in_decorators += 1; |
| |
| } else { |
| // not a built-in, compile normally |
| |
| // compile the decorator function |
| compile_node(comp, name_nodes[0]); |
| for (int j = 1; j < name_len; j++) { |
| assert(MP_PARSE_NODE_IS_ID(name_nodes[j])); // should be |
| EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(name_nodes[j])); |
| } |
| |
| // nodes[1] contains arguments to the decorator function, if any |
| if (!MP_PARSE_NODE_IS_NULL(pns_decorator->nodes[1])) { |
| // call the decorator function with the arguments in nodes[1] |
| compile_node(comp, pns_decorator->nodes[1]); |
| } |
| } |
| } |
| |
| // compile the body (funcdef, async funcdef or classdef) and get its name |
| mp_parse_node_struct_t *pns_body = (mp_parse_node_struct_t*)pns->nodes[1]; |
| qstr body_name = 0; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_funcdef) { |
| body_name = compile_funcdef_helper(comp, pns_body, emit_options); |
| #if MICROPY_PY_ASYNC_AWAIT |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_async_funcdef) { |
| assert(MP_PARSE_NODE_IS_STRUCT(pns_body->nodes[0])); |
| mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns_body->nodes[0]; |
| body_name = compile_funcdef_helper(comp, pns0, emit_options); |
| scope_t *fscope = (scope_t*)pns0->nodes[4]; |
| fscope->scope_flags |= MP_SCOPE_FLAG_GENERATOR; |
| #endif |
| } else { |
| assert(MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_classdef); // should be |
| body_name = compile_classdef_helper(comp, pns_body, emit_options); |
| } |
| |
| // call each decorator |
| for (int i = 0; i < n - num_built_in_decorators; i++) { |
| EMIT_ARG(call_function, 1, 0, 0); |
| } |
| |
| // store func/class object into name |
| compile_store_id(comp, body_name); |
| } |
| |
| STATIC void compile_funcdef(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| qstr fname = compile_funcdef_helper(comp, pns, comp->scope_cur->emit_options); |
| // store function object into function name |
| compile_store_id(comp, fname); |
| } |
| |
| STATIC void c_del_stmt(compiler_t *comp, mp_parse_node_t pn) { |
| if (MP_PARSE_NODE_IS_ID(pn)) { |
| compile_delete_id(comp, MP_PARSE_NODE_LEAF_ARG(pn)); |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_expr_normal)) { |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| |
| compile_node(comp, pns->nodes[0]); // base of the atom_expr_normal node |
| |
| if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { |
| mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) { |
| int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1); |
| for (int i = 0; i < n - 1; i++) { |
| compile_node(comp, pns1->nodes[i]); |
| } |
| assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1])); |
| pns1 = (mp_parse_node_struct_t*)pns1->nodes[n - 1]; |
| } |
| if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) { |
| compile_node(comp, pns1->nodes[0]); |
| EMIT(delete_subscr); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) { |
| assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0])); |
| EMIT_ARG(delete_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0])); |
| } else { |
| goto cannot_delete; |
| } |
| } else { |
| goto cannot_delete; |
| } |
| |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_paren)) { |
| pn = ((mp_parse_node_struct_t*)pn)->nodes[0]; |
| if (MP_PARSE_NODE_IS_NULL(pn)) { |
| goto cannot_delete; |
| } else { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_testlist_comp)); |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| // TODO perhaps factorise testlist_comp code with other uses of PN_testlist_comp |
| |
| if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { |
| mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_testlist_comp_3b) { |
| // sequence of one item, with trailing comma |
| assert(MP_PARSE_NODE_IS_NULL(pns1->nodes[0])); |
| c_del_stmt(comp, pns->nodes[0]); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_testlist_comp_3c) { |
| // sequence of many items |
| int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1); |
| c_del_stmt(comp, pns->nodes[0]); |
| for (int i = 0; i < n; i++) { |
| c_del_stmt(comp, pns1->nodes[i]); |
| } |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_comp_for) { |
| goto cannot_delete; |
| } else { |
| // sequence with 2 items |
| goto sequence_with_2_items; |
| } |
| } else { |
| // sequence with 2 items |
| sequence_with_2_items: |
| c_del_stmt(comp, pns->nodes[0]); |
| c_del_stmt(comp, pns->nodes[1]); |
| } |
| } |
| } else { |
| // some arbitrary statement that we can't delete (eg del 1) |
| goto cannot_delete; |
| } |
| |
| return; |
| |
| cannot_delete: |
| compile_syntax_error(comp, (mp_parse_node_t)pn, "can't delete expression"); |
| } |
| |
| STATIC void compile_del_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| apply_to_single_or_list(comp, pns->nodes[0], PN_exprlist, c_del_stmt); |
| } |
| |
| STATIC void compile_break_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (comp->break_label == INVALID_LABEL) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "'break' outside loop"); |
| } |
| assert(comp->cur_except_level >= comp->break_continue_except_level); |
| EMIT_ARG(break_loop, comp->break_label, comp->cur_except_level - comp->break_continue_except_level); |
| } |
| |
| STATIC void compile_continue_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (comp->continue_label == INVALID_LABEL) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "'continue' outside loop"); |
| } |
| assert(comp->cur_except_level >= comp->break_continue_except_level); |
| EMIT_ARG(continue_loop, comp->continue_label, comp->cur_except_level - comp->break_continue_except_level); |
| } |
| |
| STATIC void compile_return_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (comp->scope_cur->kind != SCOPE_FUNCTION) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "'return' outside function"); |
| return; |
| } |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| // no argument to 'return', so return None |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| } else if (MICROPY_COMP_RETURN_IF_EXPR |
| && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_test_if_expr)) { |
| // special case when returning an if-expression; to match CPython optimisation |
| mp_parse_node_struct_t *pns_test_if_expr = (mp_parse_node_struct_t*)pns->nodes[0]; |
| mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns_test_if_expr->nodes[1]; |
| |
| uint l_fail = comp_next_label(comp); |
| c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition |
| compile_node(comp, pns_test_if_expr->nodes[0]); // success value |
| EMIT(return_value); |
| EMIT_ARG(label_assign, l_fail); |
| compile_node(comp, pns_test_if_else->nodes[1]); // failure value |
| } else { |
| compile_node(comp, pns->nodes[0]); |
| } |
| EMIT(return_value); |
| } |
| |
| STATIC void compile_yield_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| compile_node(comp, pns->nodes[0]); |
| EMIT(pop_top); |
| } |
| |
| STATIC void compile_raise_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| // raise |
| EMIT_ARG(raise_varargs, 0); |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_raise_stmt_arg)) { |
| // raise x from y |
| pns = (mp_parse_node_struct_t*)pns->nodes[0]; |
| compile_node(comp, pns->nodes[0]); |
| compile_node(comp, pns->nodes[1]); |
| EMIT_ARG(raise_varargs, 2); |
| } else { |
| // raise x |
| compile_node(comp, pns->nodes[0]); |
| EMIT_ARG(raise_varargs, 1); |
| } |
| } |
| |
| // q_base holds the base of the name |
| // eg a -> q_base=a |
| // a.b.c -> q_base=a |
| STATIC void do_import_name(compiler_t *comp, mp_parse_node_t pn, qstr *q_base) { |
| bool is_as = false; |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_as_name)) { |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| // a name of the form x as y; unwrap it |
| *q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]); |
| pn = pns->nodes[0]; |
| is_as = true; |
| } |
| if (MP_PARSE_NODE_IS_NULL(pn)) { |
| // empty name (eg, from . import x) |
| *q_base = MP_QSTR_; |
| EMIT_ARG(import_name, MP_QSTR_); // import the empty string |
| } else if (MP_PARSE_NODE_IS_ID(pn)) { |
| // just a simple name |
| qstr q_full = MP_PARSE_NODE_LEAF_ARG(pn); |
| if (!is_as) { |
| *q_base = q_full; |
| } |
| EMIT_ARG(import_name, q_full); |
| } else { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_name)); // should be |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| { |
| // a name of the form a.b.c |
| if (!is_as) { |
| *q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); |
| } |
| int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| int len = n - 1; |
| for (int i = 0; i < n; i++) { |
| len += qstr_len(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i])); |
| } |
| char *q_ptr = mp_local_alloc(len); |
| char *str_dest = q_ptr; |
| for (int i = 0; i < n; i++) { |
| if (i > 0) { |
| *str_dest++ = '.'; |
| } |
| size_t str_src_len; |
| const byte *str_src = qstr_data(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]), &str_src_len); |
| memcpy(str_dest, str_src, str_src_len); |
| str_dest += str_src_len; |
| } |
| qstr q_full = qstr_from_strn(q_ptr, len); |
| mp_local_free(q_ptr); |
| EMIT_ARG(import_name, q_full); |
| if (is_as) { |
| for (int i = 1; i < n; i++) { |
| EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[i])); |
| } |
| } |
| } |
| } |
| } |
| |
| STATIC void compile_dotted_as_name(compiler_t *comp, mp_parse_node_t pn) { |
| EMIT_ARG(load_const_small_int, 0); // level 0 import |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // not importing from anything |
| qstr q_base; |
| do_import_name(comp, pn, &q_base); |
| compile_store_id(comp, q_base); |
| } |
| |
| STATIC void compile_import_name(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| apply_to_single_or_list(comp, pns->nodes[0], PN_dotted_as_names, compile_dotted_as_name); |
| } |
| |
| STATIC void compile_import_from(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| mp_parse_node_t pn_import_source = pns->nodes[0]; |
| |
| // extract the preceding .'s (if any) for a relative import, to compute the import level |
| uint import_level = 0; |
| do { |
| mp_parse_node_t pn_rel; |
| if (MP_PARSE_NODE_IS_TOKEN(pn_import_source) || MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_one_or_more_period_or_ellipsis)) { |
| // This covers relative imports with dots only like "from .. import" |
| pn_rel = pn_import_source; |
| pn_import_source = MP_PARSE_NODE_NULL; |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_import_from_2b)) { |
| // This covers relative imports starting with dot(s) like "from .foo import" |
| mp_parse_node_struct_t *pns_2b = (mp_parse_node_struct_t*)pn_import_source; |
| pn_rel = pns_2b->nodes[0]; |
| pn_import_source = pns_2b->nodes[1]; |
| assert(!MP_PARSE_NODE_IS_NULL(pn_import_source)); // should not be |
| } else { |
| // Not a relative import |
| break; |
| } |
| |
| // get the list of . and/or ...'s |
| mp_parse_node_t *nodes; |
| int n = mp_parse_node_extract_list(&pn_rel, PN_one_or_more_period_or_ellipsis, &nodes); |
| |
| // count the total number of .'s |
| for (int i = 0; i < n; i++) { |
| if (MP_PARSE_NODE_IS_TOKEN_KIND(nodes[i], MP_TOKEN_DEL_PERIOD)) { |
| import_level++; |
| } else { |
| // should be an MP_TOKEN_ELLIPSIS |
| import_level += 3; |
| } |
| } |
| } while (0); |
| |
| if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_STAR)) { |
| EMIT_ARG(load_const_small_int, import_level); |
| |
| // build the "fromlist" tuple |
| EMIT_ARG(load_const_str, MP_QSTR__star_); |
| EMIT_ARG(build_tuple, 1); |
| |
| // do the import |
| qstr dummy_q; |
| do_import_name(comp, pn_import_source, &dummy_q); |
| EMIT(import_star); |
| |
| } else { |
| EMIT_ARG(load_const_small_int, import_level); |
| |
| // build the "fromlist" tuple |
| mp_parse_node_t *pn_nodes; |
| int n = mp_parse_node_extract_list(&pns->nodes[1], PN_import_as_names, &pn_nodes); |
| for (int i = 0; i < n; i++) { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name)); |
| mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pn_nodes[i]; |
| qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id |
| EMIT_ARG(load_const_str, id2); |
| } |
| EMIT_ARG(build_tuple, n); |
| |
| // do the import |
| qstr dummy_q; |
| do_import_name(comp, pn_import_source, &dummy_q); |
| for (int i = 0; i < n; i++) { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name)); |
| mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pn_nodes[i]; |
| qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id |
| EMIT_ARG(import_from, id2); |
| if (MP_PARSE_NODE_IS_NULL(pns3->nodes[1])) { |
| compile_store_id(comp, id2); |
| } else { |
| compile_store_id(comp, MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1])); |
| } |
| } |
| EMIT(pop_top); |
| } |
| } |
| |
| STATIC void compile_declare_global(compiler_t *comp, mp_parse_node_t pn, qstr qst) { |
| bool added; |
| id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added); |
| if (!added && id_info->kind != ID_INFO_KIND_GLOBAL_EXPLICIT) { |
| compile_syntax_error(comp, pn, "identifier redefined as global"); |
| return; |
| } |
| id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; |
| |
| // if the id exists in the global scope, set its kind to EXPLICIT_GLOBAL |
| id_info = scope_find_global(comp->scope_cur, qst); |
| if (id_info != NULL) { |
| id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; |
| } |
| } |
| |
| STATIC void compile_global_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (comp->pass == MP_PASS_SCOPE) { |
| mp_parse_node_t *nodes; |
| int n = mp_parse_node_extract_list(&pns->nodes[0], PN_name_list, &nodes); |
| for (int i = 0; i < n; i++) { |
| compile_declare_global(comp, (mp_parse_node_t)pns, MP_PARSE_NODE_LEAF_ARG(nodes[i])); |
| } |
| } |
| } |
| |
| STATIC void compile_declare_nonlocal(compiler_t *comp, mp_parse_node_t pn, qstr qst) { |
| bool added; |
| id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added); |
| if (added) { |
| scope_find_local_and_close_over(comp->scope_cur, id_info, qst); |
| if (id_info->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) { |
| compile_syntax_error(comp, pn, "no binding for nonlocal found"); |
| } |
| } else if (id_info->kind != ID_INFO_KIND_FREE) { |
| compile_syntax_error(comp, pn, "identifier redefined as nonlocal"); |
| } |
| } |
| |
| STATIC void compile_nonlocal_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (comp->pass == MP_PASS_SCOPE) { |
| if (comp->scope_cur->kind == SCOPE_MODULE) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "can't declare nonlocal in outer code"); |
| return; |
| } |
| mp_parse_node_t *nodes; |
| int n = mp_parse_node_extract_list(&pns->nodes[0], PN_name_list, &nodes); |
| for (int i = 0; i < n; i++) { |
| compile_declare_nonlocal(comp, (mp_parse_node_t)pns, MP_PARSE_NODE_LEAF_ARG(nodes[i])); |
| } |
| } |
| } |
| |
| STATIC void compile_assert_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // with optimisations enabled we don't compile assertions |
| if (MP_STATE_VM(mp_optimise_value) != 0) { |
| return; |
| } |
| |
| uint l_end = comp_next_label(comp); |
| c_if_cond(comp, pns->nodes[0], true, l_end); |
| EMIT_LOAD_GLOBAL(MP_QSTR_AssertionError); // we load_global instead of load_id, to be consistent with CPython |
| if (!MP_PARSE_NODE_IS_NULL(pns->nodes[1])) { |
| // assertion message |
| compile_node(comp, pns->nodes[1]); |
| EMIT_ARG(call_function, 1, 0, 0); |
| } |
| EMIT_ARG(raise_varargs, 1); |
| EMIT_ARG(label_assign, l_end); |
| } |
| |
| STATIC void compile_if_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| uint l_end = comp_next_label(comp); |
| |
| // optimisation: don't emit anything when "if False" |
| if (!mp_parse_node_is_const_false(pns->nodes[0])) { |
| uint l_fail = comp_next_label(comp); |
| c_if_cond(comp, pns->nodes[0], false, l_fail); // if condition |
| |
| compile_node(comp, pns->nodes[1]); // if block |
| |
| // optimisation: skip everything else when "if True" |
| if (mp_parse_node_is_const_true(pns->nodes[0])) { |
| goto done; |
| } |
| |
| if ( |
| // optimisation: don't jump over non-existent elif/else blocks |
| !(MP_PARSE_NODE_IS_NULL(pns->nodes[2]) && MP_PARSE_NODE_IS_NULL(pns->nodes[3])) |
| // optimisation: don't jump if last instruction was return |
| && !EMIT(last_emit_was_return_value) |
| ) { |
| // jump over elif/else blocks |
| EMIT_ARG(jump, l_end); |
| } |
| |
| EMIT_ARG(label_assign, l_fail); |
| } |
| |
| // compile elif blocks (if any) |
| mp_parse_node_t *pn_elif; |
| int n_elif = mp_parse_node_extract_list(&pns->nodes[2], PN_if_stmt_elif_list, &pn_elif); |
| for (int i = 0; i < n_elif; i++) { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_elif[i], PN_if_stmt_elif)); // should be |
| mp_parse_node_struct_t *pns_elif = (mp_parse_node_struct_t*)pn_elif[i]; |
| |
| // optimisation: don't emit anything when "if False" |
| if (!mp_parse_node_is_const_false(pns_elif->nodes[0])) { |
| uint l_fail = comp_next_label(comp); |
| c_if_cond(comp, pns_elif->nodes[0], false, l_fail); // elif condition |
| |
| compile_node(comp, pns_elif->nodes[1]); // elif block |
| |
| // optimisation: skip everything else when "elif True" |
| if (mp_parse_node_is_const_true(pns_elif->nodes[0])) { |
| goto done; |
| } |
| |
| // optimisation: don't jump if last instruction was return |
| if (!EMIT(last_emit_was_return_value)) { |
| EMIT_ARG(jump, l_end); |
| } |
| EMIT_ARG(label_assign, l_fail); |
| } |
| } |
| |
| // compile else block |
| compile_node(comp, pns->nodes[3]); // can be null |
| |
| done: |
| EMIT_ARG(label_assign, l_end); |
| } |
| |
| #define START_BREAK_CONTINUE_BLOCK \ |
| uint16_t old_break_label = comp->break_label; \ |
| uint16_t old_continue_label = comp->continue_label; \ |
| uint16_t old_break_continue_except_level = comp->break_continue_except_level; \ |
| uint break_label = comp_next_label(comp); \ |
| uint continue_label = comp_next_label(comp); \ |
| comp->break_label = break_label; \ |
| comp->continue_label = continue_label; \ |
| comp->break_continue_except_level = comp->cur_except_level; |
| |
| #define END_BREAK_CONTINUE_BLOCK \ |
| comp->break_label = old_break_label; \ |
| comp->continue_label = old_continue_label; \ |
| comp->break_continue_except_level = old_break_continue_except_level; |
| |
| STATIC void compile_while_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| START_BREAK_CONTINUE_BLOCK |
| |
| if (!mp_parse_node_is_const_false(pns->nodes[0])) { // optimisation: don't emit anything for "while False" |
| uint top_label = comp_next_label(comp); |
| if (!mp_parse_node_is_const_true(pns->nodes[0])) { // optimisation: don't jump to cond for "while True" |
| EMIT_ARG(jump, continue_label); |
| } |
| EMIT_ARG(label_assign, top_label); |
| compile_node(comp, pns->nodes[1]); // body |
| EMIT_ARG(label_assign, continue_label); |
| c_if_cond(comp, pns->nodes[0], true, top_label); // condition |
| } |
| |
| // break/continue apply to outer loop (if any) in the else block |
| END_BREAK_CONTINUE_BLOCK |
| |
| compile_node(comp, pns->nodes[2]); // else |
| |
| EMIT_ARG(label_assign, break_label); |
| } |
| |
| // This function compiles an optimised for-loop of the form: |
| // for <var> in range(<start>, <end>, <step>): |
| // <body> |
| // else: |
| // <else> |
| // <var> must be an identifier and <step> must be a small-int. |
| // |
| // Semantics of for-loop require: |
| // - final failing value should not be stored in the loop variable |
| // - if the loop never runs, the loop variable should never be assigned |
| // - assignments to <var>, <end> or <step> in the body do not alter the loop |
| // (<step> is a constant for us, so no need to worry about it changing) |
| // |
| // If <end> is a small-int, then the stack during the for-loop contains just |
| // the current value of <var>. Otherwise, the stack contains <end> then the |
| // current value of <var>. |
| STATIC void compile_for_stmt_optimised_range(compiler_t *comp, mp_parse_node_t pn_var, mp_parse_node_t pn_start, mp_parse_node_t pn_end, mp_parse_node_t pn_step, mp_parse_node_t pn_body, mp_parse_node_t pn_else) { |
| START_BREAK_CONTINUE_BLOCK |
| |
| uint top_label = comp_next_label(comp); |
| uint entry_label = comp_next_label(comp); |
| |
| // put the end value on the stack if it's not a small-int constant |
| bool end_on_stack = !MP_PARSE_NODE_IS_SMALL_INT(pn_end); |
| if (end_on_stack) { |
| compile_node(comp, pn_end); |
| } |
| |
| // compile: start |
| compile_node(comp, pn_start); |
| |
| EMIT_ARG(jump, entry_label); |
| EMIT_ARG(label_assign, top_label); |
| |
| // duplicate next value and store it to var |
| EMIT(dup_top); |
| c_assign(comp, pn_var, ASSIGN_STORE); |
| |
| // compile body |
| compile_node(comp, pn_body); |
| |
| EMIT_ARG(label_assign, continue_label); |
| |
| // compile: var + step |
| compile_node(comp, pn_step); |
| EMIT_ARG(binary_op, MP_BINARY_OP_INPLACE_ADD); |
| |
| EMIT_ARG(label_assign, entry_label); |
| |
| // compile: if var <cond> end: goto top |
| if (end_on_stack) { |
| EMIT(dup_top_two); |
| EMIT(rot_two); |
| } else { |
| EMIT(dup_top); |
| compile_node(comp, pn_end); |
| } |
| assert(MP_PARSE_NODE_IS_SMALL_INT(pn_step)); |
| if (MP_PARSE_NODE_LEAF_SMALL_INT(pn_step) >= 0) { |
| EMIT_ARG(binary_op, MP_BINARY_OP_LESS); |
| } else { |
| EMIT_ARG(binary_op, MP_BINARY_OP_MORE); |
| } |
| EMIT_ARG(pop_jump_if, true, top_label); |
| |
| // break/continue apply to outer loop (if any) in the else block |
| END_BREAK_CONTINUE_BLOCK |
| |
| // Compile the else block. We must pop the iterator variables before |
| // executing the else code because it may contain break/continue statements. |
| uint end_label = 0; |
| if (!MP_PARSE_NODE_IS_NULL(pn_else)) { |
| // discard final value of "var", and possible "end" value |
| EMIT(pop_top); |
| if (end_on_stack) { |
| EMIT(pop_top); |
| } |
| compile_node(comp, pn_else); |
| end_label = comp_next_label(comp); |
| EMIT_ARG(jump, end_label); |
| EMIT_ARG(adjust_stack_size, 1 + end_on_stack); |
| } |
| |
| EMIT_ARG(label_assign, break_label); |
| |
| // discard final value of var that failed the loop condition |
| EMIT(pop_top); |
| |
| // discard <end> value if it's on the stack |
| if (end_on_stack) { |
| EMIT(pop_top); |
| } |
| |
| if (!MP_PARSE_NODE_IS_NULL(pn_else)) { |
| EMIT_ARG(label_assign, end_label); |
| } |
| } |
| |
| STATIC void compile_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // this bit optimises: for <x> in range(...), turning it into an explicitly incremented variable |
| // this is actually slower, but uses no heap memory |
| // for viper it will be much, much faster |
| if (/*comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER &&*/ MP_PARSE_NODE_IS_ID(pns->nodes[0]) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_atom_expr_normal)) { |
| mp_parse_node_struct_t *pns_it = (mp_parse_node_struct_t*)pns->nodes[1]; |
| if (MP_PARSE_NODE_IS_ID(pns_it->nodes[0]) |
| && MP_PARSE_NODE_LEAF_ARG(pns_it->nodes[0]) == MP_QSTR_range |
| && MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pns_it->nodes[1]) == PN_trailer_paren) { |
| mp_parse_node_t pn_range_args = ((mp_parse_node_struct_t*)pns_it->nodes[1])->nodes[0]; |
| mp_parse_node_t *args; |
| int n_args = mp_parse_node_extract_list(&pn_range_args, PN_arglist, &args); |
| mp_parse_node_t pn_range_start; |
| mp_parse_node_t pn_range_end; |
| mp_parse_node_t pn_range_step; |
| bool optimize = false; |
| if (1 <= n_args && n_args <= 3) { |
| optimize = true; |
| if (n_args == 1) { |
| pn_range_start = mp_parse_node_new_small_int(0); |
| pn_range_end = args[0]; |
| pn_range_step = mp_parse_node_new_small_int(1); |
| } else if (n_args == 2) { |
| pn_range_start = args[0]; |
| pn_range_end = args[1]; |
| pn_range_step = mp_parse_node_new_small_int(1); |
| } else { |
| pn_range_start = args[0]; |
| pn_range_end = args[1]; |
| pn_range_step = args[2]; |
| // the step must be a non-zero constant integer to do the optimisation |
| if (!MP_PARSE_NODE_IS_SMALL_INT(pn_range_step) |
| || MP_PARSE_NODE_LEAF_SMALL_INT(pn_range_step) == 0) { |
| optimize = false; |
| } |
| } |
| // arguments must be able to be compiled as standard expressions |
| if (optimize && MP_PARSE_NODE_IS_STRUCT(pn_range_start)) { |
| int k = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_range_start); |
| if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) { |
| optimize = false; |
| } |
| } |
| if (optimize && MP_PARSE_NODE_IS_STRUCT(pn_range_end)) { |
| int k = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_range_end); |
| if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) { |
| optimize = false; |
| } |
| } |
| } |
| if (optimize) { |
| compile_for_stmt_optimised_range(comp, pns->nodes[0], pn_range_start, pn_range_end, pn_range_step, pns->nodes[2], pns->nodes[3]); |
| return; |
| } |
| } |
| } |
| |
| START_BREAK_CONTINUE_BLOCK |
| comp->break_label |= MP_EMIT_BREAK_FROM_FOR; |
| |
| uint pop_label = comp_next_label(comp); |
| |
| compile_node(comp, pns->nodes[1]); // iterator |
| EMIT_ARG(get_iter, true); |
| EMIT_ARG(label_assign, continue_label); |
| EMIT_ARG(for_iter, pop_label); |
| c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable |
| compile_node(comp, pns->nodes[2]); // body |
| if (!EMIT(last_emit_was_return_value)) { |
| EMIT_ARG(jump, continue_label); |
| } |
| EMIT_ARG(label_assign, pop_label); |
| EMIT(for_iter_end); |
| |
| // break/continue apply to outer loop (if any) in the else block |
| END_BREAK_CONTINUE_BLOCK |
| |
| compile_node(comp, pns->nodes[3]); // else (may be empty) |
| |
| EMIT_ARG(label_assign, break_label); |
| } |
| |
| STATIC void compile_try_except(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_excepts, mp_parse_node_t pn_else) { |
| // setup code |
| uint l1 = comp_next_label(comp); |
| uint success_label = comp_next_label(comp); |
| |
| EMIT_ARG(setup_except, l1); |
| compile_increase_except_level(comp); |
| |
| compile_node(comp, pn_body); // body |
| EMIT(pop_block); |
| EMIT_ARG(jump, success_label); // jump over exception handler |
| |
| EMIT_ARG(label_assign, l1); // start of exception handler |
| EMIT(start_except_handler); |
| |
| // at this point the top of the stack contains the exception instance that was raised |
| |
| uint l2 = comp_next_label(comp); |
| |
| for (int i = 0; i < n_except; i++) { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_excepts[i], PN_try_stmt_except)); // should be |
| mp_parse_node_struct_t *pns_except = (mp_parse_node_struct_t*)pn_excepts[i]; |
| |
| qstr qstr_exception_local = 0; |
| uint end_finally_label = comp_next_label(comp); |
| |
| if (MP_PARSE_NODE_IS_NULL(pns_except->nodes[0])) { |
| // this is a catch all exception handler |
| if (i + 1 != n_except) { |
| compile_syntax_error(comp, pn_excepts[i], "default 'except' must be last"); |
| compile_decrease_except_level(comp); |
| return; |
| } |
| } else { |
| // this exception handler requires a match to a certain type of exception |
| mp_parse_node_t pns_exception_expr = pns_except->nodes[0]; |
| if (MP_PARSE_NODE_IS_STRUCT(pns_exception_expr)) { |
| mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pns_exception_expr; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_try_stmt_as_name) { |
| // handler binds the exception to a local |
| pns_exception_expr = pns3->nodes[0]; |
| qstr_exception_local = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1]); |
| } |
| } |
| EMIT(dup_top); |
| compile_node(comp, pns_exception_expr); |
| EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH); |
| EMIT_ARG(pop_jump_if, false, end_finally_label); |
| } |
| |
| // either discard or store the exception instance |
| if (qstr_exception_local == 0) { |
| EMIT(pop_top); |
| } else { |
| compile_store_id(comp, qstr_exception_local); |
| } |
| |
| uint l3 = 0; |
| if (qstr_exception_local != 0) { |
| l3 = comp_next_label(comp); |
| EMIT_ARG(setup_finally, l3); |
| compile_increase_except_level(comp); |
| } |
| compile_node(comp, pns_except->nodes[1]); |
| if (qstr_exception_local != 0) { |
| EMIT(pop_block); |
| } |
| EMIT(pop_except); |
| if (qstr_exception_local != 0) { |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| EMIT_ARG(label_assign, l3); |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| compile_store_id(comp, qstr_exception_local); |
| compile_delete_id(comp, qstr_exception_local); |
| |
| compile_decrease_except_level(comp); |
| EMIT(end_finally); |
| } |
| EMIT_ARG(jump, l2); |
| EMIT_ARG(label_assign, end_finally_label); |
| EMIT_ARG(adjust_stack_size, 1); // stack adjust for the exception instance |
| } |
| |
| compile_decrease_except_level(comp); |
| EMIT(end_finally); |
| EMIT(end_except_handler); |
| |
| EMIT_ARG(label_assign, success_label); |
| compile_node(comp, pn_else); // else block, can be null |
| EMIT_ARG(label_assign, l2); |
| } |
| |
| STATIC void compile_try_finally(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_except, mp_parse_node_t pn_else, mp_parse_node_t pn_finally) { |
| uint l_finally_block = comp_next_label(comp); |
| |
| EMIT_ARG(setup_finally, l_finally_block); |
| compile_increase_except_level(comp); |
| |
| if (n_except == 0) { |
| assert(MP_PARSE_NODE_IS_NULL(pn_else)); |
| EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state |
| compile_node(comp, pn_body); |
| EMIT_ARG(adjust_stack_size, -3); |
| } else { |
| compile_try_except(comp, pn_body, n_except, pn_except, pn_else); |
| } |
| EMIT(pop_block); |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| EMIT_ARG(label_assign, l_finally_block); |
| compile_node(comp, pn_finally); |
| |
| compile_decrease_except_level(comp); |
| EMIT(end_finally); |
| } |
| |
| STATIC void compile_try_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should be |
| { |
| mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_finally) { |
| // just try-finally |
| compile_try_finally(comp, pns->nodes[0], 0, NULL, MP_PARSE_NODE_NULL, pns2->nodes[0]); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_except_and_more) { |
| // try-except and possibly else and/or finally |
| mp_parse_node_t *pn_excepts; |
| int n_except = mp_parse_node_extract_list(&pns2->nodes[0], PN_try_stmt_except_list, &pn_excepts); |
| if (MP_PARSE_NODE_IS_NULL(pns2->nodes[2])) { |
| // no finally |
| compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1]); |
| } else { |
| // have finally |
| compile_try_finally(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1], ((mp_parse_node_struct_t*)pns2->nodes[2])->nodes[0]); |
| } |
| } else { |
| // just try-except |
| mp_parse_node_t *pn_excepts; |
| int n_except = mp_parse_node_extract_list(&pns->nodes[1], PN_try_stmt_except_list, &pn_excepts); |
| compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, MP_PARSE_NODE_NULL); |
| } |
| } |
| } |
| |
| STATIC void compile_with_stmt_helper(compiler_t *comp, int n, mp_parse_node_t *nodes, mp_parse_node_t body) { |
| if (n == 0) { |
| // no more pre-bits, compile the body of the with |
| compile_node(comp, body); |
| } else { |
| uint l_end = comp_next_label(comp); |
| if (MICROPY_EMIT_NATIVE && comp->scope_cur->emit_options != MP_EMIT_OPT_BYTECODE) { |
| // we need to allocate an extra label for the native emitter |
| // it will use l_end+1 as an auxiliary label |
| comp_next_label(comp); |
| } |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) { |
| // this pre-bit is of the form "a as b" |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)nodes[0]; |
| compile_node(comp, pns->nodes[0]); |
| EMIT_ARG(setup_with, l_end); |
| c_assign(comp, pns->nodes[1], ASSIGN_STORE); |
| } else { |
| // this pre-bit is just an expression |
| compile_node(comp, nodes[0]); |
| EMIT_ARG(setup_with, l_end); |
| EMIT(pop_top); |
| } |
| compile_increase_except_level(comp); |
| // compile additional pre-bits and the body |
| compile_with_stmt_helper(comp, n - 1, nodes + 1, body); |
| // finish this with block |
| EMIT_ARG(with_cleanup, l_end); |
| compile_decrease_except_level(comp); |
| EMIT(end_finally); |
| } |
| } |
| |
| STATIC void compile_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit) |
| mp_parse_node_t *nodes; |
| int n = mp_parse_node_extract_list(&pns->nodes[0], PN_with_stmt_list, &nodes); |
| assert(n > 0); |
| |
| // compile in a nested fashion |
| compile_with_stmt_helper(comp, n, nodes, pns->nodes[1]); |
| } |
| |
| STATIC void compile_yield_from(compiler_t *comp) { |
| EMIT_ARG(get_iter, false); |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| EMIT(yield_from); |
| } |
| |
| #if MICROPY_PY_ASYNC_AWAIT |
| STATIC void compile_await_object_method(compiler_t *comp, qstr method) { |
| EMIT_ARG(load_method, method, false); |
| EMIT_ARG(call_method, 0, 0, 0); |
| compile_yield_from(comp); |
| } |
| |
| STATIC void compile_async_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // comp->break_label |= MP_EMIT_BREAK_FROM_FOR; |
| |
| qstr context = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]); |
| uint while_else_label = comp_next_label(comp); |
| uint try_exception_label = comp_next_label(comp); |
| uint try_else_label = comp_next_label(comp); |
| uint try_finally_label = comp_next_label(comp); |
| |
| compile_node(comp, pns->nodes[1]); // iterator |
| compile_await_object_method(comp, MP_QSTR___aiter__); |
| compile_store_id(comp, context); |
| |
| START_BREAK_CONTINUE_BLOCK |
| |
| EMIT_ARG(label_assign, continue_label); |
| |
| EMIT_ARG(setup_except, try_exception_label); |
| compile_increase_except_level(comp); |
| |
| compile_load_id(comp, context); |
| compile_await_object_method(comp, MP_QSTR___anext__); |
| c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable |
| EMIT(pop_block); |
| EMIT_ARG(jump, try_else_label); |
| |
| EMIT_ARG(label_assign, try_exception_label); |
| EMIT(start_except_handler); |
| EMIT(dup_top); |
| EMIT_LOAD_GLOBAL(MP_QSTR_StopAsyncIteration); |
| EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH); |
| EMIT_ARG(pop_jump_if, false, try_finally_label); |
| EMIT(pop_top); // pop exception instance |
| EMIT(pop_except); |
| EMIT_ARG(jump, while_else_label); |
| |
| EMIT_ARG(label_assign, try_finally_label); |
| EMIT_ARG(adjust_stack_size, 1); // if we jump here, the exc is on the stack |
| compile_decrease_except_level(comp); |
| EMIT(end_finally); |
| EMIT(end_except_handler); |
| |
| EMIT_ARG(label_assign, try_else_label); |
| compile_node(comp, pns->nodes[2]); // body |
| |
| EMIT_ARG(jump, continue_label); |
| // break/continue apply to outer loop (if any) in the else block |
| END_BREAK_CONTINUE_BLOCK |
| |
| EMIT_ARG(label_assign, while_else_label); |
| compile_node(comp, pns->nodes[3]); // else |
| |
| EMIT_ARG(label_assign, break_label); |
| } |
| |
| STATIC void compile_async_with_stmt_helper(compiler_t *comp, int n, mp_parse_node_t *nodes, mp_parse_node_t body) { |
| if (n == 0) { |
| // no more pre-bits, compile the body of the with |
| compile_node(comp, body); |
| } else { |
| uint try_exception_label = comp_next_label(comp); |
| uint no_reraise_label = comp_next_label(comp); |
| uint try_else_label = comp_next_label(comp); |
| uint end_label = comp_next_label(comp); |
| qstr context; |
| |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) { |
| // this pre-bit is of the form "a as b" |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)nodes[0]; |
| compile_node(comp, pns->nodes[0]); |
| context = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); |
| compile_store_id(comp, context); |
| compile_load_id(comp, context); |
| compile_await_object_method(comp, MP_QSTR___aenter__); |
| c_assign(comp, pns->nodes[1], ASSIGN_STORE); |
| } else { |
| // this pre-bit is just an expression |
| compile_node(comp, nodes[0]); |
| context = MP_PARSE_NODE_LEAF_ARG(nodes[0]); |
| compile_store_id(comp, context); |
| compile_load_id(comp, context); |
| compile_await_object_method(comp, MP_QSTR___aenter__); |
| EMIT(pop_top); |
| } |
| |
| compile_load_id(comp, context); |
| EMIT_ARG(load_method, MP_QSTR___aexit__, false); |
| |
| EMIT_ARG(setup_except, try_exception_label); |
| compile_increase_except_level(comp); |
| // compile additional pre-bits and the body |
| compile_async_with_stmt_helper(comp, n - 1, nodes + 1, body); |
| // finish this with block |
| EMIT(pop_block); |
| EMIT_ARG(jump, try_else_label); // jump over exception handler |
| |
| EMIT_ARG(label_assign, try_exception_label); // start of exception handler |
| EMIT(start_except_handler); |
| |
| // at this point the stack contains: ..., __aexit__, self, exc |
| EMIT(dup_top); |
| #if MICROPY_CPYTHON_COMPAT |
| EMIT_ARG(load_attr, MP_QSTR___class__); // get type(exc) |
| #else |
| compile_load_id(comp, MP_QSTR_type); |
| EMIT(rot_two); |
| EMIT_ARG(call_function, 1, 0, 0); // get type(exc) |
| #endif |
| EMIT(rot_two); |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // dummy traceback value |
| // at this point the stack contains: ..., __aexit__, self, type(exc), exc, None |
| EMIT_ARG(call_method, 3, 0, 0); |
| |
| compile_yield_from(comp); |
| EMIT_ARG(pop_jump_if, true, no_reraise_label); |
| EMIT_ARG(raise_varargs, 0); |
| |
| EMIT_ARG(label_assign, no_reraise_label); |
| EMIT(pop_except); |
| EMIT_ARG(jump, end_label); |
| |
| EMIT_ARG(adjust_stack_size, 3); // adjust for __aexit__, self, exc |
| compile_decrease_except_level(comp); |
| EMIT(end_finally); |
| EMIT(end_except_handler); |
| |
| EMIT_ARG(label_assign, try_else_label); // start of try-else handler |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| EMIT(dup_top); |
| EMIT(dup_top); |
| EMIT_ARG(call_method, 3, 0, 0); |
| compile_yield_from(comp); |
| EMIT(pop_top); |
| |
| EMIT_ARG(label_assign, end_label); |
| |
| } |
| } |
| |
| STATIC void compile_async_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit) |
| mp_parse_node_t *nodes; |
| int n = mp_parse_node_extract_list(&pns->nodes[0], PN_with_stmt_list, &nodes); |
| assert(n > 0); |
| |
| // compile in a nested fashion |
| compile_async_with_stmt_helper(comp, n, nodes, pns->nodes[1]); |
| } |
| |
| STATIC void compile_async_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[0])); |
| mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_funcdef) { |
| // async def |
| compile_funcdef(comp, pns0); |
| scope_t *fscope = (scope_t*)pns0->nodes[4]; |
| fscope->scope_flags |= MP_SCOPE_FLAG_GENERATOR; |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_for_stmt) { |
| // async for |
| compile_async_for_stmt(comp, pns0); |
| } else { |
| // async with |
| assert(MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_with_stmt); |
| compile_async_with_stmt(comp, pns0); |
| } |
| } |
| #endif |
| |
| STATIC void compile_expr_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[1])) { |
| if (comp->is_repl && comp->scope_cur->kind == SCOPE_MODULE) { |
| // for REPL, evaluate then print the expression |
| compile_load_id(comp, MP_QSTR___repl_print__); |
| compile_node(comp, pns->nodes[0]); |
| EMIT_ARG(call_function, 1, 0, 0); |
| EMIT(pop_top); |
| |
| } else { |
| // for non-REPL, evaluate then discard the expression |
| if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) && !MP_PARSE_NODE_IS_ID(pns->nodes[0])) |
| || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)) { |
| // do nothing with a lonely constant |
| } else { |
| compile_node(comp, pns->nodes[0]); // just an expression |
| EMIT(pop_top); // discard last result since this is a statement and leaves nothing on the stack |
| } |
| } |
| } else if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { |
| mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; |
| int kind = MP_PARSE_NODE_STRUCT_KIND(pns1); |
| if (kind == PN_expr_stmt_augassign) { |
| c_assign(comp, pns->nodes[0], ASSIGN_AUG_LOAD); // lhs load for aug assign |
| compile_node(comp, pns1->nodes[1]); // rhs |
| assert(MP_PARSE_NODE_IS_TOKEN(pns1->nodes[0])); |
| mp_binary_op_t op; |
| switch (MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0])) { |
| case MP_TOKEN_DEL_PIPE_EQUAL: op = MP_BINARY_OP_INPLACE_OR; break; |
| case MP_TOKEN_DEL_CARET_EQUAL: op = MP_BINARY_OP_INPLACE_XOR; break; |
| case MP_TOKEN_DEL_AMPERSAND_EQUAL: op = MP_BINARY_OP_INPLACE_AND; break; |
| case MP_TOKEN_DEL_DBL_LESS_EQUAL: op = MP_BINARY_OP_INPLACE_LSHIFT; break; |
| case MP_TOKEN_DEL_DBL_MORE_EQUAL: op = MP_BINARY_OP_INPLACE_RSHIFT; break; |
| case MP_TOKEN_DEL_PLUS_EQUAL: op = MP_BINARY_OP_INPLACE_ADD; break; |
| case MP_TOKEN_DEL_MINUS_EQUAL: op = MP_BINARY_OP_INPLACE_SUBTRACT; break; |
| case MP_TOKEN_DEL_STAR_EQUAL: op = MP_BINARY_OP_INPLACE_MULTIPLY; break; |
| case MP_TOKEN_DEL_DBL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_FLOOR_DIVIDE; break; |
| case MP_TOKEN_DEL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_TRUE_DIVIDE; break; |
| case MP_TOKEN_DEL_PERCENT_EQUAL: op = MP_BINARY_OP_INPLACE_MODULO; break; |
| case MP_TOKEN_DEL_DBL_STAR_EQUAL: default: op = MP_BINARY_OP_INPLACE_POWER; break; |
| } |
| EMIT_ARG(binary_op, op); |
| c_assign(comp, pns->nodes[0], ASSIGN_AUG_STORE); // lhs store for aug assign |
| } else if (kind == PN_expr_stmt_assign_list) { |
| int rhs = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1) - 1; |
| compile_node(comp, pns1->nodes[rhs]); // rhs |
| // following CPython, we store left-most first |
| if (rhs > 0) { |
| EMIT(dup_top); |
| } |
| c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store |
| for (int i = 0; i < rhs; i++) { |
| if (i + 1 < rhs) { |
| EMIT(dup_top); |
| } |
| c_assign(comp, pns1->nodes[i], ASSIGN_STORE); // middle store |
| } |
| } else { |
| plain_assign: |
| if (MICROPY_COMP_DOUBLE_TUPLE_ASSIGN |
| && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_testlist_star_expr) |
| && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr) |
| && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[1]) == 2 |
| && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 2) { |
| // optimisation for a, b = c, d |
| mp_parse_node_struct_t *pns10 = (mp_parse_node_struct_t*)pns->nodes[1]; |
| mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0]; |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr) |
| || MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr)) { |
| // can't optimise when it's a star expression on the lhs |
| goto no_optimisation; |
| } |
| compile_node(comp, pns10->nodes[0]); // rhs |
| compile_node(comp, pns10->nodes[1]); // rhs |
| EMIT(rot_two); |
| c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store |
| c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store |
| } else if (MICROPY_COMP_TRIPLE_TUPLE_ASSIGN |
| && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_testlist_star_expr) |
| && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr) |
| && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[1]) == 3 |
| && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 3) { |
| // optimisation for a, b, c = d, e, f |
| mp_parse_node_struct_t *pns10 = (mp_parse_node_struct_t*)pns->nodes[1]; |
| mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0]; |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr) |
| || MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr) |
| || MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[2], PN_star_expr)) { |
| // can't optimise when it's a star expression on the lhs |
| goto no_optimisation; |
| } |
| compile_node(comp, pns10->nodes[0]); // rhs |
| compile_node(comp, pns10->nodes[1]); // rhs |
| compile_node(comp, pns10->nodes[2]); // rhs |
| EMIT(rot_three); |
| EMIT(rot_two); |
| c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store |
| c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store |
| c_assign(comp, pns0->nodes[2], ASSIGN_STORE); // lhs store |
| } else { |
| no_optimisation: |
| compile_node(comp, pns->nodes[1]); // rhs |
| c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store |
| } |
| } |
| } else { |
| goto plain_assign; |
| } |
| } |
| |
| STATIC void c_binary_op(compiler_t *comp, mp_parse_node_struct_t *pns, mp_binary_op_t binary_op) { |
| int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| compile_node(comp, pns->nodes[0]); |
| for (int i = 1; i < num_nodes; i += 1) { |
| compile_node(comp, pns->nodes[i]); |
| EMIT_ARG(binary_op, binary_op); |
| } |
| } |
| |
| STATIC void compile_test_if_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_test_if_else)); |
| mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns->nodes[1]; |
| |
| uint l_fail = comp_next_label(comp); |
| uint l_end = comp_next_label(comp); |
| c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition |
| compile_node(comp, pns->nodes[0]); // success value |
| EMIT_ARG(jump, l_end); |
| EMIT_ARG(label_assign, l_fail); |
| EMIT_ARG(adjust_stack_size, -1); // adjust stack size |
| compile_node(comp, pns_test_if_else->nodes[1]); // failure value |
| EMIT_ARG(label_assign, l_end); |
| } |
| |
| STATIC void compile_lambdef(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (comp->pass == MP_PASS_SCOPE) { |
| // create a new scope for this lambda |
| scope_t *s = scope_new_and_link(comp, SCOPE_LAMBDA, (mp_parse_node_t)pns, comp->scope_cur->emit_options); |
| // store the lambda scope so the compiling function (this one) can use it at each pass |
| pns->nodes[2] = (mp_parse_node_t)s; |
| } |
| |
| // get the scope for this lambda |
| scope_t *this_scope = (scope_t*)pns->nodes[2]; |
| |
| // compile the lambda definition |
| compile_funcdef_lambdef(comp, this_scope, pns->nodes[0], PN_varargslist); |
| } |
| |
| STATIC void compile_or_and_test(compiler_t *comp, mp_parse_node_struct_t *pns, bool cond) { |
| uint l_end = comp_next_label(comp); |
| int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| for (int i = 0; i < n; i += 1) { |
| compile_node(comp, pns->nodes[i]); |
| if (i + 1 < n) { |
| EMIT_ARG(jump_if_or_pop, cond, l_end); |
| } |
| } |
| EMIT_ARG(label_assign, l_end); |
| } |
| |
| STATIC void compile_or_test(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| compile_or_and_test(comp, pns, true); |
| } |
| |
| STATIC void compile_and_test(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| compile_or_and_test(comp, pns, false); |
| } |
| |
| STATIC void compile_not_test_2(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| compile_node(comp, pns->nodes[0]); |
| EMIT_ARG(unary_op, MP_UNARY_OP_NOT); |
| } |
| |
| STATIC void compile_comparison(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| compile_node(comp, pns->nodes[0]); |
| bool multi = (num_nodes > 3); |
| uint l_fail = 0; |
| if (multi) { |
| l_fail = comp_next_label(comp); |
| } |
| for (int i = 1; i + 1 < num_nodes; i += 2) { |
| compile_node(comp, pns->nodes[i + 1]); |
| if (i + 2 < num_nodes) { |
| EMIT(dup_top); |
| EMIT(rot_three); |
| } |
| if (MP_PARSE_NODE_IS_TOKEN(pns->nodes[i])) { |
| mp_binary_op_t op; |
| switch (MP_PARSE_NODE_LEAF_ARG(pns->nodes[i])) { |
| case MP_TOKEN_OP_LESS: op = MP_BINARY_OP_LESS; break; |
| case MP_TOKEN_OP_MORE: op = MP_BINARY_OP_MORE; break; |
| case MP_TOKEN_OP_DBL_EQUAL: op = MP_BINARY_OP_EQUAL; break; |
| case MP_TOKEN_OP_LESS_EQUAL: op = MP_BINARY_OP_LESS_EQUAL; break; |
| case MP_TOKEN_OP_MORE_EQUAL: op = MP_BINARY_OP_MORE_EQUAL; break; |
| case MP_TOKEN_OP_NOT_EQUAL: op = MP_BINARY_OP_NOT_EQUAL; break; |
| case MP_TOKEN_KW_IN: default: op = MP_BINARY_OP_IN; break; |
| } |
| EMIT_ARG(binary_op, op); |
| } else { |
| assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[i])); // should be |
| mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[i]; |
| int kind = MP_PARSE_NODE_STRUCT_KIND(pns2); |
| if (kind == PN_comp_op_not_in) { |
| EMIT_ARG(binary_op, MP_BINARY_OP_NOT_IN); |
| } else { |
| assert(kind == PN_comp_op_is); // should be |
| if (MP_PARSE_NODE_IS_NULL(pns2->nodes[0])) { |
| EMIT_ARG(binary_op, MP_BINARY_OP_IS); |
| } else { |
| EMIT_ARG(binary_op, MP_BINARY_OP_IS_NOT); |
| } |
| } |
| } |
| if (i + 2 < num_nodes) { |
| EMIT_ARG(jump_if_or_pop, false, l_fail); |
| } |
| } |
| if (multi) { |
| uint l_end = comp_next_label(comp); |
| EMIT_ARG(jump, l_end); |
| EMIT_ARG(label_assign, l_fail); |
| EMIT_ARG(adjust_stack_size, 1); |
| EMIT(rot_two); |
| EMIT(pop_top); |
| EMIT_ARG(label_assign, l_end); |
| } |
| } |
| |
| STATIC void compile_star_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "*x must be assignment target"); |
| } |
| |
| STATIC void compile_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| c_binary_op(comp, pns, MP_BINARY_OP_OR); |
| } |
| |
| STATIC void compile_xor_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| c_binary_op(comp, pns, MP_BINARY_OP_XOR); |
| } |
| |
| STATIC void compile_and_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| c_binary_op(comp, pns, MP_BINARY_OP_AND); |
| } |
| |
| STATIC void compile_term(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| compile_node(comp, pns->nodes[0]); |
| for (int i = 1; i + 1 < num_nodes; i += 2) { |
| compile_node(comp, pns->nodes[i + 1]); |
| mp_binary_op_t op; |
| mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]); |
| switch (tok) { |
| case MP_TOKEN_OP_PLUS: op = MP_BINARY_OP_ADD; break; |
| case MP_TOKEN_OP_MINUS: op = MP_BINARY_OP_SUBTRACT; break; |
| case MP_TOKEN_OP_STAR: op = MP_BINARY_OP_MULTIPLY; break; |
| case MP_TOKEN_OP_DBL_SLASH: op = MP_BINARY_OP_FLOOR_DIVIDE; break; |
| case MP_TOKEN_OP_SLASH: op = MP_BINARY_OP_TRUE_DIVIDE; break; |
| case MP_TOKEN_OP_PERCENT: op = MP_BINARY_OP_MODULO; break; |
| case MP_TOKEN_OP_DBL_LESS: op = MP_BINARY_OP_LSHIFT; break; |
| default: |
| assert(tok == MP_TOKEN_OP_DBL_MORE); |
| op = MP_BINARY_OP_RSHIFT; |
| break; |
| } |
| EMIT_ARG(binary_op, op); |
| } |
| } |
| |
| STATIC void compile_factor_2(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| compile_node(comp, pns->nodes[1]); |
| mp_unary_op_t op; |
| mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); |
| switch (tok) { |
| case MP_TOKEN_OP_PLUS: op = MP_UNARY_OP_POSITIVE; break; |
| case MP_TOKEN_OP_MINUS: op = MP_UNARY_OP_NEGATIVE; break; |
| default: |
| assert(tok == MP_TOKEN_OP_TILDE); |
| op = MP_UNARY_OP_INVERT; |
| break; |
| } |
| EMIT_ARG(unary_op, op); |
| } |
| |
| STATIC void compile_atom_expr_normal(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // compile the subject of the expression |
| compile_node(comp, pns->nodes[0]); |
| |
| // compile_atom_expr_await may call us with a NULL node |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[1])) { |
| return; |
| } |
| |
| // get the array of trailers (known to be an array of PARSE_NODE_STRUCT) |
| size_t num_trail = 1; |
| mp_parse_node_struct_t **pns_trail = (mp_parse_node_struct_t**)&pns->nodes[1]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_atom_expr_trailers) { |
| num_trail = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_trail[0]); |
| pns_trail = (mp_parse_node_struct_t**)&pns_trail[0]->nodes[0]; |
| } |
| |
| // the current index into the array of trailers |
| size_t i = 0; |
| |
| // handle special super() call |
| if (comp->scope_cur->kind == SCOPE_FUNCTION |
| && MP_PARSE_NODE_IS_ID(pns->nodes[0]) |
| && MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]) == MP_QSTR_super |
| && MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_trailer_paren |
| && MP_PARSE_NODE_IS_NULL(pns_trail[0]->nodes[0])) { |
| // at this point we have matched "super()" within a function |
| |
| // load the class for super to search for a parent |
| compile_load_id(comp, MP_QSTR___class__); |
| |
| // look for first argument to function (assumes it's "self") |
| bool found = false; |
| id_info_t *id = &comp->scope_cur->id_info[0]; |
| for (size_t n = comp->scope_cur->id_info_len; n > 0; --n, ++id) { |
| if (id->flags & ID_FLAG_IS_PARAM) { |
| // first argument found; load it |
| compile_load_id(comp, id->qst); |
| found = true; |
| break; |
| } |
| } |
| if (!found) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns_trail[0], |
| "super() can't find self"); // really a TypeError |
| return; |
| } |
| |
| if (num_trail >= 3 |
| && MP_PARSE_NODE_STRUCT_KIND(pns_trail[1]) == PN_trailer_period |
| && MP_PARSE_NODE_STRUCT_KIND(pns_trail[2]) == PN_trailer_paren) { |
| // optimisation for method calls super().f(...), to eliminate heap allocation |
| mp_parse_node_struct_t *pns_period = pns_trail[1]; |
| mp_parse_node_struct_t *pns_paren = pns_trail[2]; |
| EMIT_ARG(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0]), true); |
| compile_trailer_paren_helper(comp, pns_paren->nodes[0], true, 0); |
| i = 3; |
| } else { |
| // a super() call |
| EMIT_ARG(call_function, 2, 0, 0); |
| i = 1; |
| } |
| } |
| |
| // compile the remaining trailers |
| for (; i < num_trail; i++) { |
| if (i + 1 < num_trail |
| && MP_PARSE_NODE_STRUCT_KIND(pns_trail[i]) == PN_trailer_period |
| && MP_PARSE_NODE_STRUCT_KIND(pns_trail[i + 1]) == PN_trailer_paren) { |
| // optimisation for method calls a.f(...), following PyPy |
| mp_parse_node_struct_t *pns_period = pns_trail[i]; |
| mp_parse_node_struct_t *pns_paren = pns_trail[i + 1]; |
| EMIT_ARG(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0]), false); |
| compile_trailer_paren_helper(comp, pns_paren->nodes[0], true, 0); |
| i += 1; |
| } else { |
| // node is one of: trailer_paren, trailer_bracket, trailer_period |
| compile_node(comp, (mp_parse_node_t)pns_trail[i]); |
| } |
| } |
| } |
| |
| STATIC void compile_power(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| compile_generic_all_nodes(comp, pns); // 2 nodes, arguments of power |
| EMIT_ARG(binary_op, MP_BINARY_OP_POWER); |
| } |
| |
| STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra) { |
| // function to call is on top of stack |
| |
| // get the list of arguments |
| mp_parse_node_t *args; |
| int n_args = mp_parse_node_extract_list(&pn_arglist, PN_arglist, &args); |
| |
| // compile the arguments |
| // Rather than calling compile_node on the list, we go through the list of args |
| // explicitly here so that we can count the number of arguments and give sensible |
| // error messages. |
| int n_positional = n_positional_extra; |
| uint n_keyword = 0; |
| uint star_flags = 0; |
| mp_parse_node_struct_t *star_args_node = NULL, *dblstar_args_node = NULL; |
| for (int i = 0; i < n_args; i++) { |
| if (MP_PARSE_NODE_IS_STRUCT(args[i])) { |
| mp_parse_node_struct_t *pns_arg = (mp_parse_node_struct_t*)args[i]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_star) { |
| if (star_flags & MP_EMIT_STAR_FLAG_SINGLE) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns_arg, "can't have multiple *x"); |
| return; |
| } |
| star_flags |= MP_EMIT_STAR_FLAG_SINGLE; |
| star_args_node = pns_arg; |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_dbl_star) { |
| if (star_flags & MP_EMIT_STAR_FLAG_DOUBLE) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns_arg, "can't have multiple **x"); |
| return; |
| } |
| star_flags |= MP_EMIT_STAR_FLAG_DOUBLE; |
| dblstar_args_node = pns_arg; |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_argument) { |
| if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns_arg->nodes[1], PN_comp_for)) { |
| if (!MP_PARSE_NODE_IS_ID(pns_arg->nodes[0])) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns_arg, "LHS of keyword arg must be an id"); |
| return; |
| } |
| EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns_arg->nodes[0])); |
| compile_node(comp, pns_arg->nodes[1]); |
| n_keyword += 1; |
| } else { |
| compile_comprehension(comp, pns_arg, SCOPE_GEN_EXPR); |
| n_positional++; |
| } |
| } else { |
| goto normal_argument; |
| } |
| } else { |
| normal_argument: |
| if (star_flags) { |
| compile_syntax_error(comp, args[i], "non-keyword arg after */**"); |
| return; |
| } |
| if (n_keyword > 0) { |
| compile_syntax_error(comp, args[i], "non-keyword arg after keyword arg"); |
| return; |
| } |
| compile_node(comp, args[i]); |
| n_positional++; |
| } |
| } |
| |
| // compile the star/double-star arguments if we had them |
| // if we had one but not the other then we load "null" as a place holder |
| if (star_flags != 0) { |
| if (star_args_node == NULL) { |
| EMIT(load_null); |
| } else { |
| compile_node(comp, star_args_node->nodes[0]); |
| } |
| if (dblstar_args_node == NULL) { |
| EMIT(load_null); |
| } else { |
| compile_node(comp, dblstar_args_node->nodes[0]); |
| } |
| } |
| |
| // emit the function/method call |
| if (is_method_call) { |
| EMIT_ARG(call_method, n_positional, n_keyword, star_flags); |
| } else { |
| EMIT_ARG(call_function, n_positional, n_keyword, star_flags); |
| } |
| } |
| |
| // pns needs to have 2 nodes, first is lhs of comprehension, second is PN_comp_for node |
| STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind) { |
| assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2); |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for)); |
| mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t*)pns->nodes[1]; |
| |
| if (comp->pass == MP_PASS_SCOPE) { |
| // create a new scope for this comprehension |
| scope_t *s = scope_new_and_link(comp, kind, (mp_parse_node_t)pns, comp->scope_cur->emit_options); |
| // store the comprehension scope so the compiling function (this one) can use it at each pass |
| pns_comp_for->nodes[3] = (mp_parse_node_t)s; |
| } |
| |
| // get the scope for this comprehension |
| scope_t *this_scope = (scope_t*)pns_comp_for->nodes[3]; |
| |
| // compile the comprehension |
| close_over_variables_etc(comp, this_scope, 0, 0); |
| |
| compile_node(comp, pns_comp_for->nodes[1]); // source of the iterator |
| if (kind == SCOPE_GEN_EXPR) { |
| EMIT_ARG(get_iter, false); |
| } |
| EMIT_ARG(call_function, 1, 0, 0); |
| } |
| |
| STATIC void compile_atom_paren(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| // an empty tuple |
| c_tuple(comp, MP_PARSE_NODE_NULL, NULL); |
| } else { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)); |
| pns = (mp_parse_node_struct_t*)pns->nodes[0]; |
| assert(!MP_PARSE_NODE_IS_NULL(pns->nodes[1])); |
| if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { |
| mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3b) { |
| // tuple of one item, with trailing comma |
| assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[0])); |
| c_tuple(comp, pns->nodes[0], NULL); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3c) { |
| // tuple of many items |
| c_tuple(comp, pns->nodes[0], pns2); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_comp_for) { |
| // generator expression |
| compile_comprehension(comp, pns, SCOPE_GEN_EXPR); |
| } else { |
| // tuple with 2 items |
| goto tuple_with_2_items; |
| } |
| } else { |
| // tuple with 2 items |
| tuple_with_2_items: |
| c_tuple(comp, MP_PARSE_NODE_NULL, pns); |
| } |
| } |
| } |
| |
| STATIC void compile_atom_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| // empty list |
| EMIT_ARG(build_list, 0); |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) { |
| mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[0]; |
| if (MP_PARSE_NODE_IS_STRUCT(pns2->nodes[1])) { |
| mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pns2->nodes[1]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_testlist_comp_3b) { |
| // list of one item, with trailing comma |
| assert(MP_PARSE_NODE_IS_NULL(pns3->nodes[0])); |
| compile_node(comp, pns2->nodes[0]); |
| EMIT_ARG(build_list, 1); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_testlist_comp_3c) { |
| // list of many items |
| compile_node(comp, pns2->nodes[0]); |
| compile_generic_all_nodes(comp, pns3); |
| EMIT_ARG(build_list, 1 + MP_PARSE_NODE_STRUCT_NUM_NODES(pns3)); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_comp_for) { |
| // list comprehension |
| compile_comprehension(comp, pns2, SCOPE_LIST_COMP); |
| } else { |
| // list with 2 items |
| goto list_with_2_items; |
| } |
| } else { |
| // list with 2 items |
| list_with_2_items: |
| compile_node(comp, pns2->nodes[0]); |
| compile_node(comp, pns2->nodes[1]); |
| EMIT_ARG(build_list, 2); |
| } |
| } else { |
| // list with 1 item |
| compile_node(comp, pns->nodes[0]); |
| EMIT_ARG(build_list, 1); |
| } |
| } |
| |
| STATIC void compile_atom_brace(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| mp_parse_node_t pn = pns->nodes[0]; |
| if (MP_PARSE_NODE_IS_NULL(pn)) { |
| // empty dict |
| EMIT_ARG(build_map, 0); |
| } else if (MP_PARSE_NODE_IS_STRUCT(pn)) { |
| pns = (mp_parse_node_struct_t*)pn; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker_item) { |
| // dict with one element |
| EMIT_ARG(build_map, 1); |
| compile_node(comp, pn); |
| EMIT(store_map); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker) { |
| assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should succeed |
| mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_dictorsetmaker_list) { |
| // dict/set with multiple elements |
| |
| // get tail elements (2nd, 3rd, ...) |
| mp_parse_node_t *nodes; |
| int n = mp_parse_node_extract_list(&pns1->nodes[0], PN_dictorsetmaker_list2, &nodes); |
| |
| // first element sets whether it's a dict or set |
| bool is_dict; |
| if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) { |
| // a dictionary |
| EMIT_ARG(build_map, 1 + n); |
| compile_node(comp, pns->nodes[0]); |
| EMIT(store_map); |
| is_dict = true; |
| } else { |
| // a set |
| compile_node(comp, pns->nodes[0]); // 1st value of set |
| is_dict = false; |
| } |
| |
| // process rest of elements |
| for (int i = 0; i < n; i++) { |
| mp_parse_node_t pn_i = nodes[i]; |
| bool is_key_value = MP_PARSE_NODE_IS_STRUCT_KIND(pn_i, PN_dictorsetmaker_item); |
| compile_node(comp, pn_i); |
| if (is_dict) { |
| if (!is_key_value) { |
| if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "invalid syntax"); |
| } else { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "expecting key:value for dict"); |
| } |
| return; |
| } |
| EMIT(store_map); |
| } else { |
| if (is_key_value) { |
| if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "invalid syntax"); |
| } else { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "expecting just a value for set"); |
| } |
| return; |
| } |
| } |
| } |
| |
| #if MICROPY_PY_BUILTINS_SET |
| // if it's a set, build it |
| if (!is_dict) { |
| EMIT_ARG(build_set, 1 + n); |
| } |
| #endif |
| } else { |
| assert(MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_comp_for); // should be |
| // dict/set comprehension |
| if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) { |
| // a dictionary comprehension |
| compile_comprehension(comp, pns, SCOPE_DICT_COMP); |
| } else { |
| // a set comprehension |
| compile_comprehension(comp, pns, SCOPE_SET_COMP); |
| } |
| } |
| } else { |
| // set with one element |
| goto set_with_one_element; |
| } |
| } else { |
| // set with one element |
| set_with_one_element: |
| #if MICROPY_PY_BUILTINS_SET |
| compile_node(comp, pn); |
| EMIT_ARG(build_set, 1); |
| #else |
| assert(0); |
| #endif |
| } |
| } |
| |
| STATIC void compile_trailer_paren(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| compile_trailer_paren_helper(comp, pns->nodes[0], false, 0); |
| } |
| |
| STATIC void compile_trailer_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // object who's index we want is on top of stack |
| compile_node(comp, pns->nodes[0]); // the index |
| EMIT(load_subscr); |
| } |
| |
| STATIC void compile_trailer_period(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // object who's attribute we want is on top of stack |
| EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); // attribute to get |
| } |
| |
| #if MICROPY_PY_BUILTINS_SLICE |
| STATIC void compile_subscript_3_helper(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3); // should always be |
| mp_parse_node_t pn = pns->nodes[0]; |
| if (MP_PARSE_NODE_IS_NULL(pn)) { |
| // [?:] |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| EMIT_ARG(build_slice, 2); |
| } else if (MP_PARSE_NODE_IS_STRUCT(pn)) { |
| pns = (mp_parse_node_struct_t*)pn; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3c) { |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| pn = pns->nodes[0]; |
| if (MP_PARSE_NODE_IS_NULL(pn)) { |
| // [?::] |
| EMIT_ARG(build_slice, 2); |
| } else { |
| // [?::x] |
| compile_node(comp, pn); |
| EMIT_ARG(build_slice, 3); |
| } |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3d) { |
| compile_node(comp, pns->nodes[0]); |
| assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be |
| pns = (mp_parse_node_struct_t*)pns->nodes[1]; |
| assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_sliceop); // should always be |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| // [?:x:] |
| EMIT_ARG(build_slice, 2); |
| } else { |
| // [?:x:x] |
| compile_node(comp, pns->nodes[0]); |
| EMIT_ARG(build_slice, 3); |
| } |
| } else { |
| // [?:x] |
| compile_node(comp, pn); |
| EMIT_ARG(build_slice, 2); |
| } |
| } else { |
| // [?:x] |
| compile_node(comp, pn); |
| EMIT_ARG(build_slice, 2); |
| } |
| } |
| |
| STATIC void compile_subscript_2(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| compile_node(comp, pns->nodes[0]); // start of slice |
| assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be |
| compile_subscript_3_helper(comp, (mp_parse_node_struct_t*)pns->nodes[1]); |
| } |
| |
| STATIC void compile_subscript_3(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| compile_subscript_3_helper(comp, pns); |
| } |
| #endif // MICROPY_PY_BUILTINS_SLICE |
| |
| STATIC void compile_dictorsetmaker_item(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // if this is called then we are compiling a dict key:value pair |
| compile_node(comp, pns->nodes[1]); // value |
| compile_node(comp, pns->nodes[0]); // key |
| } |
| |
| STATIC void compile_classdef(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| qstr cname = compile_classdef_helper(comp, pns, comp->scope_cur->emit_options); |
| // store class object into class name |
| compile_store_id(comp, cname); |
| } |
| |
| STATIC void compile_yield_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "'yield' outside function"); |
| return; |
| } |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| EMIT(yield_value); |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_yield_arg_from)) { |
| pns = (mp_parse_node_struct_t*)pns->nodes[0]; |
| compile_node(comp, pns->nodes[0]); |
| compile_yield_from(comp); |
| } else { |
| compile_node(comp, pns->nodes[0]); |
| EMIT(yield_value); |
| } |
| } |
| |
| #if MICROPY_PY_ASYNC_AWAIT |
| STATIC void compile_atom_expr_await(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "'await' outside function"); |
| return; |
| } |
| compile_atom_expr_normal(comp, pns); |
| compile_yield_from(comp); |
| } |
| #endif |
| |
| STATIC mp_obj_t get_const_object(mp_parse_node_struct_t *pns) { |
| #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D |
| // nodes are 32-bit pointers, but need to extract 64-bit object |
| return (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32); |
| #else |
| return (mp_obj_t)pns->nodes[0]; |
| #endif |
| } |
| |
| STATIC void compile_const_object(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| EMIT_ARG(load_const_obj, get_const_object(pns)); |
| } |
| |
| typedef void (*compile_function_t)(compiler_t*, mp_parse_node_struct_t*); |
| STATIC const compile_function_t compile_function[] = { |
| // only define rules with a compile function |
| #define c(f) compile_##f |
| #define DEF_RULE(rule, comp, kind, ...) comp, |
| #define DEF_RULE_NC(rule, kind, ...) |
| #include "py/grammar.h" |
| #undef c |
| #undef DEF_RULE |
| #undef DEF_RULE_NC |
| compile_const_object, |
| }; |
| |
| STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn) { |
| if (MP_PARSE_NODE_IS_NULL(pn)) { |
| // pass |
| } else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) { |
| mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn); |
| #if MICROPY_DYNAMIC_COMPILER |
| mp_uint_t sign_mask = -(1 << (mp_dynamic_compiler.small_int_bits - 1)); |
| if ((arg & sign_mask) == 0 || (arg & sign_mask) == sign_mask) { |
| // integer fits in target runtime's small-int |
| EMIT_ARG(load_const_small_int, arg); |
| } else { |
| // integer doesn't fit, so create a multi-precision int object |
| // (but only create the actual object on the last pass) |
| if (comp->pass != MP_PASS_EMIT) { |
| EMIT_ARG(load_const_obj, mp_const_none); |
| } else { |
| EMIT_ARG(load_const_obj, mp_obj_new_int_from_ll(arg)); |
| } |
| } |
| #else |
| EMIT_ARG(load_const_small_int, arg); |
| #endif |
| } else if (MP_PARSE_NODE_IS_LEAF(pn)) { |
| uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn); |
| switch (MP_PARSE_NODE_LEAF_KIND(pn)) { |
| case MP_PARSE_NODE_ID: compile_load_id(comp, arg); break; |
| case MP_PARSE_NODE_STRING: EMIT_ARG(load_const_str, arg); break; |
| case MP_PARSE_NODE_BYTES: |
| // only create and load the actual bytes object on the last pass |
| if (comp->pass != MP_PASS_EMIT) { |
| EMIT_ARG(load_const_obj, mp_const_none); |
| } else { |
| size_t len; |
| const byte *data = qstr_data(arg, &len); |
| EMIT_ARG(load_const_obj, mp_obj_new_bytes(data, len)); |
| } |
| break; |
| case MP_PARSE_NODE_TOKEN: default: |
| if (arg == MP_TOKEN_NEWLINE) { |
| // this can occur when file_input lets through a NEWLINE (eg if file starts with a newline) |
| // or when single_input lets through a NEWLINE (user enters a blank line) |
| // do nothing |
| } else { |
| EMIT_ARG(load_const_tok, arg); |
| } |
| break; |
| } |
| } else { |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| EMIT_ARG(set_source_line, pns->source_line); |
| assert(MP_PARSE_NODE_STRUCT_KIND(pns) <= PN_const_object); |
| compile_function_t f = compile_function[MP_PARSE_NODE_STRUCT_KIND(pns)]; |
| f(comp, pns); |
| } |
| } |
| |
| STATIC void compile_scope_func_lambda_param(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_name, pn_kind_t pn_star, pn_kind_t pn_dbl_star) { |
| // check that **kw is last |
| if ((comp->scope_cur->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) { |
| compile_syntax_error(comp, pn, "invalid syntax"); |
| return; |
| } |
| |
| qstr param_name = MP_QSTR_NULL; |
| uint param_flag = ID_FLAG_IS_PARAM; |
| if (MP_PARSE_NODE_IS_ID(pn)) { |
| param_name = MP_PARSE_NODE_LEAF_ARG(pn); |
| if (comp->have_star) { |
| // comes after a star, so counts as a keyword-only parameter |
| comp->scope_cur->num_kwonly_args += 1; |
| } else { |
| // comes before a star, so counts as a positional parameter |
| comp->scope_cur->num_pos_args += 1; |
| } |
| } else { |
| assert(MP_PARSE_NODE_IS_STRUCT(pn)); |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_name) { |
| param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); |
| if (comp->have_star) { |
| // comes after a star, so counts as a keyword-only parameter |
| comp->scope_cur->num_kwonly_args += 1; |
| } else { |
| // comes before a star, so counts as a positional parameter |
| comp->scope_cur->num_pos_args += 1; |
| } |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_star) { |
| if (comp->have_star) { |
| // more than one star |
| compile_syntax_error(comp, pn, "invalid syntax"); |
| return; |
| } |
| comp->have_star = true; |
| param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_STAR_PARAM; |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| // bare star |
| // TODO see http://www.python.org/dev/peps/pep-3102/ |
| //assert(comp->scope_cur->num_dict_params == 0); |
| } else if (MP_PARSE_NODE_IS_ID(pns->nodes[0])) { |
| // named star |
| comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS; |
| param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); |
| } else { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)); // should be |
| // named star with possible annotation |
| comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS; |
| pns = (mp_parse_node_struct_t*)pns->nodes[0]; |
| param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); |
| } |
| } else { |
| assert(MP_PARSE_NODE_STRUCT_KIND(pns) == pn_dbl_star); // should be |
| param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); |
| param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_DBL_STAR_PARAM; |
| comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARKEYWORDS; |
| } |
| } |
| |
| if (param_name != MP_QSTR_NULL) { |
| bool added; |
| id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, param_name, &added); |
| if (!added) { |
| compile_syntax_error(comp, pn, "name reused for argument"); |
| return; |
| } |
| id_info->kind = ID_INFO_KIND_LOCAL; |
| id_info->flags = param_flag; |
| } |
| } |
| |
| STATIC void compile_scope_func_param(compiler_t *comp, mp_parse_node_t pn) { |
| compile_scope_func_lambda_param(comp, pn, PN_typedargslist_name, PN_typedargslist_star, PN_typedargslist_dbl_star); |
| } |
| |
| STATIC void compile_scope_lambda_param(compiler_t *comp, mp_parse_node_t pn) { |
| compile_scope_func_lambda_param(comp, pn, PN_varargslist_name, PN_varargslist_star, PN_varargslist_dbl_star); |
| } |
| |
| #if MICROPY_EMIT_NATIVE |
| STATIC void compile_scope_func_annotations(compiler_t *comp, mp_parse_node_t pn) { |
| if (!MP_PARSE_NODE_IS_STRUCT(pn)) { |
| // no annotation |
| return; |
| } |
| |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_typedargslist_name) { |
| // named parameter with possible annotation |
| // fallthrough |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_typedargslist_star) { |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)) { |
| // named star with possible annotation |
| pns = (mp_parse_node_struct_t*)pns->nodes[0]; |
| // fallthrough |
| } else { |
| // no annotation |
| return; |
| } |
| } else { |
| assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_typedargslist_dbl_star); |
| // double star with possible annotation |
| // fallthrough |
| } |
| |
| mp_parse_node_t pn_annotation = pns->nodes[1]; |
| |
| if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) { |
| qstr param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); |
| id_info_t *id_info = scope_find(comp->scope_cur, param_name); |
| assert(id_info != NULL); |
| |
| if (MP_PARSE_NODE_IS_ID(pn_annotation)) { |
| qstr arg_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation); |
| EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ARG, id_info->local_num, arg_type); |
| } else { |
| compile_syntax_error(comp, pn_annotation, "parameter annotation must be an identifier"); |
| } |
| } |
| } |
| #endif // MICROPY_EMIT_NATIVE |
| |
| STATIC void compile_scope_comp_iter(compiler_t *comp, mp_parse_node_struct_t *pns_comp_for, mp_parse_node_t pn_inner_expr, int for_depth) { |
| uint l_top = comp_next_label(comp); |
| uint l_end = comp_next_label(comp); |
| EMIT_ARG(label_assign, l_top); |
| EMIT_ARG(for_iter, l_end); |
| c_assign(comp, pns_comp_for->nodes[0], ASSIGN_STORE); |
| mp_parse_node_t pn_iter = pns_comp_for->nodes[2]; |
| |
| tail_recursion: |
| if (MP_PARSE_NODE_IS_NULL(pn_iter)) { |
| // no more nested if/for; compile inner expression |
| compile_node(comp, pn_inner_expr); |
| if (comp->scope_cur->kind == SCOPE_GEN_EXPR) { |
| EMIT(yield_value); |
| EMIT(pop_top); |
| } else { |
| EMIT_ARG(store_comp, comp->scope_cur->kind, 4 * for_depth + 5); |
| } |
| } else if (MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_iter) == PN_comp_if) { |
| // if condition |
| mp_parse_node_struct_t *pns_comp_if = (mp_parse_node_struct_t*)pn_iter; |
| c_if_cond(comp, pns_comp_if->nodes[0], false, l_top); |
| pn_iter = pns_comp_if->nodes[1]; |
| goto tail_recursion; |
| } else { |
| assert(MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_iter) == PN_comp_for); // should be |
| // for loop |
| mp_parse_node_struct_t *pns_comp_for2 = (mp_parse_node_struct_t*)pn_iter; |
| compile_node(comp, pns_comp_for2->nodes[1]); |
| EMIT_ARG(get_iter, true); |
| compile_scope_comp_iter(comp, pns_comp_for2, pn_inner_expr, for_depth + 1); |
| } |
| |
| EMIT_ARG(jump, l_top); |
| EMIT_ARG(label_assign, l_end); |
| EMIT(for_iter_end); |
| } |
| |
| STATIC void check_for_doc_string(compiler_t *comp, mp_parse_node_t pn) { |
| #if MICROPY_ENABLE_DOC_STRING |
| // see http://www.python.org/dev/peps/pep-0257/ |
| |
| // look for the first statement |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) { |
| // a statement; fall through |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_file_input_2)) { |
| // file input; find the first non-newline node |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| for (int i = 0; i < num_nodes; i++) { |
| pn = pns->nodes[i]; |
| if (!(MP_PARSE_NODE_IS_LEAF(pn) && MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN && MP_PARSE_NODE_LEAF_ARG(pn) == MP_TOKEN_NEWLINE)) { |
| // not a newline, so this is the first statement; finish search |
| break; |
| } |
| } |
| // if we didn't find a non-newline then it's okay to fall through; pn will be a newline and so doc-string test below will fail gracefully |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_suite_block_stmts)) { |
| // a list of statements; get the first one |
| pn = ((mp_parse_node_struct_t*)pn)->nodes[0]; |
| } else { |
| return; |
| } |
| |
| // check the first statement for a doc string |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) { |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) |
| && MP_PARSE_NODE_LEAF_KIND(pns->nodes[0]) == MP_PARSE_NODE_STRING) |
| || (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object) |
| && MP_OBJ_IS_STR(get_const_object((mp_parse_node_struct_t*)pns->nodes[0])))) { |
| // compile the doc string |
| compile_node(comp, pns->nodes[0]); |
| // store the doc string |
| compile_store_id(comp, MP_QSTR___doc__); |
| } |
| } |
| #else |
| (void)comp; |
| (void)pn; |
| #endif |
| } |
| |
| STATIC void compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) { |
| comp->pass = pass; |
| comp->scope_cur = scope; |
| comp->next_label = 0; |
| EMIT_ARG(start_pass, pass, scope); |
| |
| if (comp->pass == MP_PASS_SCOPE) { |
| // reset maximum stack sizes in scope |
| // they will be computed in this first pass |
| scope->stack_size = 0; |
| scope->exc_stack_size = 0; |
| } |
| |
| // compile |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(scope->pn, PN_eval_input)) { |
| assert(scope->kind == SCOPE_MODULE); |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; |
| compile_node(comp, pns->nodes[0]); // compile the expression |
| EMIT(return_value); |
| } else if (scope->kind == SCOPE_MODULE) { |
| if (!comp->is_repl) { |
| check_for_doc_string(comp, scope->pn); |
| } |
| compile_node(comp, scope->pn); |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| EMIT(return_value); |
| } else if (scope->kind == SCOPE_FUNCTION) { |
| assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; |
| assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef); |
| |
| // work out number of parameters, keywords and default parameters, and add them to the id_info array |
| // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc) |
| if (comp->pass == MP_PASS_SCOPE) { |
| comp->have_star = false; |
| apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_param); |
| } |
| #if MICROPY_EMIT_NATIVE |
| else if (scope->emit_options == MP_EMIT_OPT_VIPER) { |
| // compile annotations; only needed on latter compiler passes |
| // only needed for viper emitter |
| |
| // argument annotations |
| apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_annotations); |
| |
| // pns->nodes[2] is return/whole function annotation |
| mp_parse_node_t pn_annotation = pns->nodes[2]; |
| if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) { |
| // nodes[2] can be null or a test-expr |
| if (MP_PARSE_NODE_IS_ID(pn_annotation)) { |
| qstr ret_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation); |
| EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_RETURN, 0, ret_type); |
| } else { |
| compile_syntax_error(comp, pn_annotation, "return annotation must be an identifier"); |
| } |
| } |
| } |
| #endif // MICROPY_EMIT_NATIVE |
| |
| compile_node(comp, pns->nodes[3]); // 3 is function body |
| // emit return if it wasn't the last opcode |
| if (!EMIT(last_emit_was_return_value)) { |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| EMIT(return_value); |
| } |
| } else if (scope->kind == SCOPE_LAMBDA) { |
| assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; |
| assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 3); |
| |
| // work out number of parameters, keywords and default parameters, and add them to the id_info array |
| // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc) |
| if (comp->pass == MP_PASS_SCOPE) { |
| comp->have_star = false; |
| apply_to_single_or_list(comp, pns->nodes[0], PN_varargslist, compile_scope_lambda_param); |
| } |
| |
| compile_node(comp, pns->nodes[1]); // 1 is lambda body |
| |
| // if the lambda is a generator, then we return None, not the result of the expression of the lambda |
| if (scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { |
| EMIT(pop_top); |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| } |
| EMIT(return_value); |
| } else if (scope->kind == SCOPE_LIST_COMP || scope->kind == SCOPE_DICT_COMP || scope->kind == SCOPE_SET_COMP || scope->kind == SCOPE_GEN_EXPR) { |
| // a bit of a hack at the moment |
| |
| assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; |
| assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2); |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for)); |
| mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t*)pns->nodes[1]; |
| |
| // We need a unique name for the comprehension argument (the iterator). |
| // CPython uses .0, but we should be able to use anything that won't |
| // clash with a user defined variable. Best to use an existing qstr, |
| // so we use the blank qstr. |
| qstr qstr_arg = MP_QSTR_; |
| if (comp->pass == MP_PASS_SCOPE) { |
| bool added; |
| id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qstr_arg, &added); |
| assert(added); |
| id_info->kind = ID_INFO_KIND_LOCAL; |
| scope->num_pos_args = 1; |
| } |
| |
| if (scope->kind == SCOPE_LIST_COMP) { |
| EMIT_ARG(build_list, 0); |
| } else if (scope->kind == SCOPE_DICT_COMP) { |
| EMIT_ARG(build_map, 0); |
| #if MICROPY_PY_BUILTINS_SET |
| } else if (scope->kind == SCOPE_SET_COMP) { |
| EMIT_ARG(build_set, 0); |
| #endif |
| } |
| |
| // There are 4 slots on the stack for the iterator, and the first one is |
| // NULL to indicate that the second one points to the iterator object. |
| if (scope->kind == SCOPE_GEN_EXPR) { |
| // TODO static assert that MP_OBJ_ITER_BUF_NSLOTS == 4 |
| EMIT(load_null); |
| compile_load_id(comp, qstr_arg); |
| EMIT(load_null); |
| EMIT(load_null); |
| } else { |
| compile_load_id(comp, qstr_arg); |
| EMIT_ARG(get_iter, true); |
| } |
| |
| compile_scope_comp_iter(comp, pns_comp_for, pns->nodes[0], 0); |
| |
| if (scope->kind == SCOPE_GEN_EXPR) { |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| } |
| EMIT(return_value); |
| } else { |
| assert(scope->kind == SCOPE_CLASS); |
| assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; |
| assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_classdef); |
| |
| if (comp->pass == MP_PASS_SCOPE) { |
| bool added; |
| id_info_t *id_info = scope_find_or_add_id(scope, MP_QSTR___class__, &added); |
| assert(added); |
| id_info->kind = ID_INFO_KIND_LOCAL; |
| } |
| |
| compile_load_id(comp, MP_QSTR___name__); |
| compile_store_id(comp, MP_QSTR___module__); |
| EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); // 0 is class name |
| compile_store_id(comp, MP_QSTR___qualname__); |
| |
| check_for_doc_string(comp, pns->nodes[2]); |
| compile_node(comp, pns->nodes[2]); // 2 is class body |
| |
| id_info_t *id = scope_find(scope, MP_QSTR___class__); |
| assert(id != NULL); |
| if (id->kind == ID_INFO_KIND_LOCAL) { |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| } else { |
| EMIT_LOAD_FAST(MP_QSTR___class__, id->local_num); |
| } |
| EMIT(return_value); |
| } |
| |
| EMIT(end_pass); |
| |
| // make sure we match all the exception levels |
| assert(comp->cur_except_level == 0); |
| } |
| |
| #if MICROPY_EMIT_INLINE_ASM |
| // requires 3 passes: SCOPE, CODE_SIZE, EMIT |
| STATIC void compile_scope_inline_asm(compiler_t *comp, scope_t *scope, pass_kind_t pass) { |
| comp->pass = pass; |
| comp->scope_cur = scope; |
| comp->next_label = 0; |
| |
| if (scope->kind != SCOPE_FUNCTION) { |
| compile_syntax_error(comp, MP_PARSE_NODE_NULL, "inline assembler must be a function"); |
| return; |
| } |
| |
| if (comp->pass > MP_PASS_SCOPE) { |
| EMIT_INLINE_ASM_ARG(start_pass, comp->pass, &comp->compile_error); |
| } |
| |
| // get the function definition parse node |
| assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; |
| assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef); |
| |
| //qstr f_id = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); // function name |
| |
| // parameters are in pns->nodes[1] |
| if (comp->pass == MP_PASS_CODE_SIZE) { |
| mp_parse_node_t *pn_params; |
| int n_params = mp_parse_node_extract_list(&pns->nodes[1], PN_typedargslist, &pn_params); |
| scope->num_pos_args = EMIT_INLINE_ASM_ARG(count_params, n_params, pn_params); |
| if (comp->compile_error != MP_OBJ_NULL) { |
| goto inline_asm_error; |
| } |
| } |
| |
| // pns->nodes[2] is function return annotation |
| mp_uint_t type_sig = MP_NATIVE_TYPE_INT; |
| mp_parse_node_t pn_annotation = pns->nodes[2]; |
| if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) { |
| // nodes[2] can be null or a test-expr |
| if (MP_PARSE_NODE_IS_ID(pn_annotation)) { |
| qstr ret_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation); |
| switch (ret_type) { |
| case MP_QSTR_object: type_sig = MP_NATIVE_TYPE_OBJ; break; |
| case MP_QSTR_bool: type_sig = MP_NATIVE_TYPE_BOOL; break; |
| case MP_QSTR_int: type_sig = MP_NATIVE_TYPE_INT; break; |
| case MP_QSTR_uint: type_sig = MP_NATIVE_TYPE_UINT; break; |
| default: compile_syntax_error(comp, pn_annotation, "unknown type"); return; |
| } |
| } else { |
| compile_syntax_error(comp, pn_annotation, "return annotation must be an identifier"); |
| } |
| } |
| |
| mp_parse_node_t pn_body = pns->nodes[3]; // body |
| mp_parse_node_t *nodes; |
| int num = mp_parse_node_extract_list(&pn_body, PN_suite_block_stmts, &nodes); |
| |
| for (int i = 0; i < num; i++) { |
| assert(MP_PARSE_NODE_IS_STRUCT(nodes[i])); |
| mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)nodes[i]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_pass_stmt) { |
| // no instructions |
| continue; |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_expr_stmt) { |
| // not an instruction; error |
| not_an_instruction: |
| compile_syntax_error(comp, nodes[i], "expecting an assembler instruction"); |
| return; |
| } |
| |
| // check structure of parse node |
| assert(MP_PARSE_NODE_IS_STRUCT(pns2->nodes[0])); |
| if (!MP_PARSE_NODE_IS_NULL(pns2->nodes[1])) { |
| goto not_an_instruction; |
| } |
| pns2 = (mp_parse_node_struct_t*)pns2->nodes[0]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_atom_expr_normal) { |
| goto not_an_instruction; |
| } |
| if (!MP_PARSE_NODE_IS_ID(pns2->nodes[0])) { |
| goto not_an_instruction; |
| } |
| if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns2->nodes[1], PN_trailer_paren)) { |
| goto not_an_instruction; |
| } |
| |
| // parse node looks like an instruction |
| // get instruction name and args |
| qstr op = MP_PARSE_NODE_LEAF_ARG(pns2->nodes[0]); |
| pns2 = (mp_parse_node_struct_t*)pns2->nodes[1]; // PN_trailer_paren |
| mp_parse_node_t *pn_arg; |
| int n_args = mp_parse_node_extract_list(&pns2->nodes[0], PN_arglist, &pn_arg); |
| |
| // emit instructions |
| if (op == MP_QSTR_label) { |
| if (!(n_args == 1 && MP_PARSE_NODE_IS_ID(pn_arg[0]))) { |
| compile_syntax_error(comp, nodes[i], "'label' requires 1 argument"); |
| return; |
| } |
| uint lab = comp_next_label(comp); |
| if (pass > MP_PASS_SCOPE) { |
| if (!EMIT_INLINE_ASM_ARG(label, lab, MP_PARSE_NODE_LEAF_ARG(pn_arg[0]))) { |
| compile_syntax_error(comp, nodes[i], "label redefined"); |
| return; |
| } |
| } |
| } else if (op == MP_QSTR_align) { |
| if (!(n_args == 1 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) { |
| compile_syntax_error(comp, nodes[i], "'align' requires 1 argument"); |
| return; |
| } |
| if (pass > MP_PASS_SCOPE) { |
| mp_asm_base_align((mp_asm_base_t*)comp->emit_inline_asm, |
| MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0])); |
| } |
| } else if (op == MP_QSTR_data) { |
| if (!(n_args >= 2 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) { |
| compile_syntax_error(comp, nodes[i], "'data' requires at least 2 arguments"); |
| return; |
| } |
| if (pass > MP_PASS_SCOPE) { |
| mp_int_t bytesize = MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0]); |
| for (uint j = 1; j < n_args; j++) { |
| if (!MP_PARSE_NODE_IS_SMALL_INT(pn_arg[j])) { |
| compile_syntax_error(comp, nodes[i], "'data' requires integer arguments"); |
| return; |
| } |
| mp_asm_base_data((mp_asm_base_t*)comp->emit_inline_asm, |
| bytesize, MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[j])); |
| } |
| } |
| } else { |
| if (pass > MP_PASS_SCOPE) { |
| EMIT_INLINE_ASM_ARG(op, op, n_args, pn_arg); |
| } |
| } |
| |
| if (comp->compile_error != MP_OBJ_NULL) { |
| pns = pns2; // this is the parse node that had the error |
| goto inline_asm_error; |
| } |
| } |
| |
| if (comp->pass > MP_PASS_SCOPE) { |
| EMIT_INLINE_ASM_ARG(end_pass, type_sig); |
| |
| if (comp->pass == MP_PASS_EMIT) { |
| void *f = mp_asm_base_get_code((mp_asm_base_t*)comp->emit_inline_asm); |
| mp_emit_glue_assign_native(comp->scope_cur->raw_code, MP_CODE_NATIVE_ASM, |
| f, mp_asm_base_get_code_size((mp_asm_base_t*)comp->emit_inline_asm), |
| NULL, comp->scope_cur->num_pos_args, 0, type_sig); |
| } |
| } |
| |
| if (comp->compile_error != MP_OBJ_NULL) { |
| // inline assembler had an error; set line for its exception |
| inline_asm_error: |
| comp->compile_error_line = pns->source_line; |
| } |
| } |
| #endif |
| |
| STATIC void scope_compute_things(scope_t *scope) { |
| // in MicroPython we put the *x parameter after all other parameters (except **y) |
| if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) { |
| id_info_t *id_param = NULL; |
| for (int i = scope->id_info_len - 1; i >= 0; i--) { |
| id_info_t *id = &scope->id_info[i]; |
| if (id->flags & ID_FLAG_IS_STAR_PARAM) { |
| if (id_param != NULL) { |
| // swap star param with last param |
| id_info_t temp = *id_param; *id_param = *id; *id = temp; |
| } |
| break; |
| } else if (id_param == NULL && id->flags == ID_FLAG_IS_PARAM) { |
| id_param = id; |
| } |
| } |
| } |
| |
| // in functions, turn implicit globals into explicit globals |
| // compute the index of each local |
| scope->num_locals = 0; |
| for (int i = 0; i < scope->id_info_len; i++) { |
| id_info_t *id = &scope->id_info[i]; |
| if (scope->kind == SCOPE_CLASS && id->qst == MP_QSTR___class__) { |
| // __class__ is not counted as a local; if it's used then it becomes a ID_INFO_KIND_CELL |
| continue; |
| } |
| if (SCOPE_IS_FUNC_LIKE(scope->kind) && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) { |
| id->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; |
| } |
| // params always count for 1 local, even if they are a cell |
| if (id->kind == ID_INFO_KIND_LOCAL || (id->flags & ID_FLAG_IS_PARAM)) { |
| id->local_num = scope->num_locals++; |
| } |
| } |
| |
| // compute the index of cell vars |
| for (int i = 0; i < scope->id_info_len; i++) { |
| id_info_t *id = &scope->id_info[i]; |
| // in MicroPython the cells come right after the fast locals |
| // parameters are not counted here, since they remain at the start |
| // of the locals, even if they are cell vars |
| if (id->kind == ID_INFO_KIND_CELL && !(id->flags & ID_FLAG_IS_PARAM)) { |
| id->local_num = scope->num_locals; |
| scope->num_locals += 1; |
| } |
| } |
| |
| // compute the index of free vars |
| // make sure they are in the order of the parent scope |
| if (scope->parent != NULL) { |
| int num_free = 0; |
| for (int i = 0; i < scope->parent->id_info_len; i++) { |
| id_info_t *id = &scope->parent->id_info[i]; |
| if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) { |
| for (int j = 0; j < scope->id_info_len; j++) { |
| id_info_t *id2 = &scope->id_info[j]; |
| if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) { |
| assert(!(id2->flags & ID_FLAG_IS_PARAM)); // free vars should not be params |
| // in MicroPython the frees come first, before the params |
| id2->local_num = num_free; |
| num_free += 1; |
| } |
| } |
| } |
| } |
| // in MicroPython shift all other locals after the free locals |
| if (num_free > 0) { |
| for (int i = 0; i < scope->id_info_len; i++) { |
| id_info_t *id = &scope->id_info[i]; |
| if (id->kind != ID_INFO_KIND_FREE || (id->flags & ID_FLAG_IS_PARAM)) { |
| id->local_num += num_free; |
| } |
| } |
| scope->num_pos_args += num_free; // free vars are counted as params for passing them into the function |
| scope->num_locals += num_free; |
| } |
| } |
| } |
| |
| #if !MICROPY_PERSISTENT_CODE_SAVE |
| STATIC |
| #endif |
| mp_raw_code_t *mp_compile_to_raw_code(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl) { |
| // put compiler state on the stack, it's relatively small |
| compiler_t comp_state = {0}; |
| compiler_t *comp = &comp_state; |
| |
| comp->source_file = source_file; |
| comp->is_repl = is_repl; |
| comp->break_label = INVALID_LABEL; |
| comp->continue_label = INVALID_LABEL; |
| |
| // create the module scope |
| scope_t *module_scope = scope_new_and_link(comp, SCOPE_MODULE, parse_tree->root, emit_opt); |
| |
| // create standard emitter; it's used at least for MP_PASS_SCOPE |
| emit_t *emit_bc = emit_bc_new(); |
| |
| // compile pass 1 |
| comp->emit = emit_bc; |
| #if MICROPY_EMIT_NATIVE |
| comp->emit_method_table = &emit_bc_method_table; |
| #endif |
| uint max_num_labels = 0; |
| for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) { |
| if (false) { |
| #if MICROPY_EMIT_INLINE_ASM |
| } else if (s->emit_options == MP_EMIT_OPT_ASM) { |
| compile_scope_inline_asm(comp, s, MP_PASS_SCOPE); |
| #endif |
| } else { |
| compile_scope(comp, s, MP_PASS_SCOPE); |
| } |
| |
| // update maximim number of labels needed |
| if (comp->next_label > max_num_labels) { |
| max_num_labels = comp->next_label; |
| } |
| } |
| |
| // compute some things related to scope and identifiers |
| for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) { |
| scope_compute_things(s); |
| } |
| |
| // set max number of labels now that it's calculated |
| emit_bc_set_max_num_labels(emit_bc, max_num_labels); |
| |
| // compile pass 2 and 3 |
| #if MICROPY_EMIT_NATIVE |
| emit_t *emit_native = NULL; |
| #endif |
| for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) { |
| if (false) { |
| // dummy |
| |
| #if MICROPY_EMIT_INLINE_ASM |
| } else if (s->emit_options == MP_EMIT_OPT_ASM) { |
| // inline assembly |
| if (comp->emit_inline_asm == NULL) { |
| comp->emit_inline_asm = ASM_EMITTER(new)(max_num_labels); |
| } |
| comp->emit = NULL; |
| comp->emit_inline_asm_method_table = &ASM_EMITTER(method_table); |
| compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE); |
| #if MICROPY_EMIT_INLINE_XTENSA |
| // Xtensa requires an extra pass to compute size of l32r const table |
| // TODO this can be improved by calculating it during SCOPE pass |
| // but that requires some other structural changes to the asm emitters |
| compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE); |
| #endif |
| if (comp->compile_error == MP_OBJ_NULL) { |
| compile_scope_inline_asm(comp, s, MP_PASS_EMIT); |
| } |
| #endif |
| |
| } else { |
| |
| // choose the emit type |
| |
| switch (s->emit_options) { |
| |
| #if MICROPY_EMIT_NATIVE |
| case MP_EMIT_OPT_NATIVE_PYTHON: |
| case MP_EMIT_OPT_VIPER: |
| if (emit_native == NULL) { |
| emit_native = NATIVE_EMITTER(new)(&comp->compile_error, max_num_labels); |
| } |
| comp->emit_method_table = &NATIVE_EMITTER(method_table); |
| comp->emit = emit_native; |
| EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ENABLE, s->emit_options == MP_EMIT_OPT_VIPER, 0); |
| break; |
| #endif // MICROPY_EMIT_NATIVE |
| |
| default: |
| comp->emit = emit_bc; |
| #if MICROPY_EMIT_NATIVE |
| comp->emit_method_table = &emit_bc_method_table; |
| #endif |
| break; |
| } |
| |
| // need a pass to compute stack size |
| compile_scope(comp, s, MP_PASS_STACK_SIZE); |
| |
| // second last pass: compute code size |
| if (comp->compile_error == MP_OBJ_NULL) { |
| compile_scope(comp, s, MP_PASS_CODE_SIZE); |
| } |
| |
| // final pass: emit code |
| if (comp->compile_error == MP_OBJ_NULL) { |
| compile_scope(comp, s, MP_PASS_EMIT); |
| } |
| } |
| } |
| |
| if (comp->compile_error != MP_OBJ_NULL) { |
| // if there is no line number for the error then use the line |
| // number for the start of this scope |
| compile_error_set_line(comp, comp->scope_cur->pn); |
| // add a traceback to the exception using relevant source info |
| mp_obj_exception_add_traceback(comp->compile_error, comp->source_file, |
| comp->compile_error_line, comp->scope_cur->simple_name); |
| } |
| |
| // free the emitters |
| |
| emit_bc_free(emit_bc); |
| #if MICROPY_EMIT_NATIVE |
| if (emit_native != NULL) { |
| NATIVE_EMITTER(free)(emit_native); |
| } |
| #endif |
| #if MICROPY_EMIT_INLINE_ASM |
| if (comp->emit_inline_asm != NULL) { |
| ASM_EMITTER(free)(comp->emit_inline_asm); |
| } |
| #endif |
| |
| // free the parse tree |
| mp_parse_tree_clear(parse_tree); |
| |
| // free the scopes |
| mp_raw_code_t *outer_raw_code = module_scope->raw_code; |
| for (scope_t *s = module_scope; s;) { |
| scope_t *next = s->next; |
| scope_free(s); |
| s = next; |
| } |
| |
| if (comp->compile_error != MP_OBJ_NULL) { |
| nlr_raise(comp->compile_error); |
| } else { |
| return outer_raw_code; |
| } |
| } |
| |
| mp_obj_t mp_compile(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl) { |
| mp_raw_code_t *rc = mp_compile_to_raw_code(parse_tree, source_file, emit_opt, is_repl); |
| // return function that executes the outer module |
| return mp_make_function_from_raw_code(rc, MP_OBJ_NULL, MP_OBJ_NULL); |
| } |
| |
| #endif // MICROPY_ENABLE_COMPILER |