| /* |
| * This file is part of the MicroPython project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2017-2020 Nick Moore |
| * Copyright (c) 2018 shawwwn <shawwwn1@gmail.com> |
| * Copyright (c) 2020-2021 Glenn Moloney @glenn20 |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| |
| #include <stdio.h> |
| #include <stdint.h> |
| #include <string.h> |
| |
| #include "esp_log.h" |
| #include "esp_now.h" |
| #include "esp_wifi.h" |
| #include "esp_wifi_types.h" |
| |
| #include "py/runtime.h" |
| #include "py/mphal.h" |
| #include "py/mperrno.h" |
| #include "py/obj.h" |
| #include "py/objstr.h" |
| #include "py/objarray.h" |
| #include "py/stream.h" |
| #include "py/binary.h" |
| #include "py/ringbuf.h" |
| |
| #include "mpconfigport.h" |
| |
| #if MICROPY_PY_ESPNOW |
| |
| #include "modnetwork.h" |
| #include "modespnow.h" |
| |
| #ifndef MICROPY_PY_ESPNOW_RSSI |
| // Include code to track rssi of peers |
| #define MICROPY_PY_ESPNOW_RSSI 1 |
| #endif |
| #ifndef MICROPY_PY_ESPNOW_EXTRA_PEER_METHODS |
| // Include mod_peer(),get_peer(),peer_count() |
| #define MICROPY_PY_ESPNOW_EXTRA_PEER_METHODS 1 |
| #endif |
| |
| // Relies on gcc Variadic Macros and Statement Expressions |
| #define NEW_TUPLE(...) \ |
| ({mp_obj_t _z[] = {__VA_ARGS__}; mp_obj_new_tuple(MP_ARRAY_SIZE(_z), _z); }) |
| |
| static const uint8_t ESPNOW_MAGIC = 0x99; |
| |
| // ESPNow packet format for the receive buffer. |
| // Use this for peeking at the header of the next packet in the buffer. |
| typedef struct { |
| uint8_t magic; // = ESPNOW_MAGIC |
| uint8_t msg_len; // Length of the message |
| #if MICROPY_PY_ESPNOW_RSSI |
| uint32_t time_ms; // Timestamp (ms) when packet is received |
| int8_t rssi; // RSSI value (dBm) (-127 to 0) |
| #endif // MICROPY_PY_ESPNOW_RSSI |
| } __attribute__((packed)) espnow_hdr_t; |
| |
| typedef struct { |
| espnow_hdr_t hdr; // The header |
| uint8_t peer[6]; // Peer address |
| uint8_t msg[0]; // Message is up to 250 bytes |
| } __attribute__((packed)) espnow_pkt_t; |
| |
| // The maximum length of an espnow packet (bytes) |
| static const size_t MAX_PACKET_LEN = ( |
| (sizeof(espnow_pkt_t) + ESP_NOW_MAX_DATA_LEN)); |
| |
| // Enough for 2 full-size packets: 2 * (6 + 7 + 250) = 526 bytes |
| // Will allocate an additional 7 bytes for buffer overhead |
| static const size_t DEFAULT_RECV_BUFFER_SIZE = (2 * MAX_PACKET_LEN); |
| |
| // Default timeout (millisec) to wait for incoming ESPNow messages (5 minutes). |
| static const size_t DEFAULT_RECV_TIMEOUT_MS = (5 * 60 * 1000); |
| |
| // Time to wait (millisec) for responses from sent packets: (2 seconds). |
| static const size_t DEFAULT_SEND_TIMEOUT_MS = (2 * 1000); |
| |
| // Number of milliseconds to wait for pending responses to sent packets. |
| // This is a fallback which should never be reached. |
| static const mp_uint_t PENDING_RESPONSES_TIMEOUT_MS = 100; |
| static const mp_uint_t PENDING_RESPONSES_BUSY_POLL_MS = 10; |
| |
| // The data structure for the espnow_singleton. |
| typedef struct _esp_espnow_obj_t { |
| mp_obj_base_t base; |
| |
| ringbuf_t *recv_buffer; // A buffer for received packets |
| size_t recv_buffer_size; // The size of the recv_buffer |
| mp_int_t recv_timeout_ms; // Timeout for recv() |
| volatile size_t rx_packets; // # of received packets |
| size_t dropped_rx_pkts; // # of dropped packets (buffer full) |
| size_t tx_packets; // # of sent packets |
| volatile size_t tx_responses; // # of sent packet responses received |
| volatile size_t tx_failures; // # of sent packet responses failed |
| size_t peer_count; // Cache the # of peers for send(sync=True) |
| mp_obj_t recv_cb; // Callback when a packet is received |
| mp_obj_t recv_cb_arg; // Argument passed to callback |
| #if MICROPY_PY_ESPNOW_RSSI |
| mp_obj_t peers_table; // A dictionary of discovered peers |
| #endif // MICROPY_PY_ESPNOW_RSSI |
| } esp_espnow_obj_t; |
| |
| const mp_obj_type_t esp_espnow_type; |
| |
| // ### Initialisation and Config functions |
| // |
| |
| // Return a pointer to the ESPNow module singleton |
| // If state == INITIALISED check the device has been initialised. |
| // Raises OSError if not initialised and state == INITIALISED. |
| static esp_espnow_obj_t *_get_singleton() { |
| return MP_STATE_PORT(espnow_singleton); |
| } |
| |
| static esp_espnow_obj_t *_get_singleton_initialised() { |
| esp_espnow_obj_t *self = _get_singleton(); |
| // assert(self); |
| if (self->recv_buffer == NULL) { |
| // Throw an espnow not initialised error |
| check_esp_err(ESP_ERR_ESPNOW_NOT_INIT); |
| } |
| return self; |
| } |
| |
| // Allocate and initialise the ESPNow module as a singleton. |
| // Returns the initialised espnow_singleton. |
| static mp_obj_t espnow_make_new(const mp_obj_type_t *type, size_t n_args, |
| size_t n_kw, const mp_obj_t *all_args) { |
| |
| // The espnow_singleton must be defined in MICROPY_PORT_ROOT_POINTERS |
| // (see mpconfigport.h) to prevent memory allocated here from being |
| // garbage collected. |
| // NOTE: on soft reset the espnow_singleton MUST be set to NULL and the |
| // ESP-NOW functions de-initialised (see main.c). |
| esp_espnow_obj_t *self = MP_STATE_PORT(espnow_singleton); |
| if (self != NULL) { |
| return self; |
| } |
| self = m_new_obj(esp_espnow_obj_t); |
| self->base.type = &esp_espnow_type; |
| self->recv_buffer_size = DEFAULT_RECV_BUFFER_SIZE; |
| self->recv_timeout_ms = DEFAULT_RECV_TIMEOUT_MS; |
| self->recv_buffer = NULL; // Buffer is allocated in espnow_init() |
| self->recv_cb = mp_const_none; |
| #if MICROPY_PY_ESPNOW_RSSI |
| self->peers_table = mp_obj_new_dict(0); |
| // Prevent user code modifying the dict |
| mp_obj_dict_get_map(self->peers_table)->is_fixed = 1; |
| #endif // MICROPY_PY_ESPNOW_RSSI |
| |
| // Set the global singleton pointer for the espnow protocol. |
| MP_STATE_PORT(espnow_singleton) = self; |
| |
| return self; |
| } |
| |
| // Forward declare the send and recv ESPNow callbacks |
| static void send_cb(const uint8_t *mac_addr, esp_now_send_status_t status); |
| |
| static void recv_cb(const esp_now_recv_info_t *recv_info, const uint8_t *msg, int msg_len); |
| |
| // ESPNow.init(): Initialise the data buffers and ESP-NOW functions. |
| // Initialise the Espressif ESPNOW software stack, register callbacks and |
| // allocate the recv data buffers. |
| // Returns None. |
| static mp_obj_t espnow_init(mp_obj_t _) { |
| esp_espnow_obj_t *self = _get_singleton(); |
| if (self->recv_buffer == NULL) { // Already initialised |
| self->recv_buffer = m_new_obj(ringbuf_t); |
| ringbuf_alloc(self->recv_buffer, self->recv_buffer_size); |
| |
| esp_initialise_wifi(); // Call the wifi init code in network_wlan.c |
| check_esp_err(esp_now_init()); |
| check_esp_err(esp_now_register_recv_cb(recv_cb)); |
| check_esp_err(esp_now_register_send_cb(send_cb)); |
| } |
| return mp_const_none; |
| } |
| |
| // ESPNow.deinit(): De-initialise the ESPNOW software stack, disable callbacks |
| // and deallocate the recv data buffers. |
| // Note: this function is called from main.c:mp_task() to cleanup before soft |
| // reset, so cannot be declared static and must guard against self == NULL;. |
| mp_obj_t espnow_deinit(mp_obj_t _) { |
| esp_espnow_obj_t *self = _get_singleton(); |
| if (self != NULL && self->recv_buffer != NULL) { |
| check_esp_err(esp_now_unregister_recv_cb()); |
| check_esp_err(esp_now_unregister_send_cb()); |
| check_esp_err(esp_now_deinit()); |
| self->recv_buffer->buf = NULL; |
| self->recv_buffer = NULL; |
| self->peer_count = 0; // esp_now_deinit() removes all peers. |
| self->tx_packets = self->tx_responses; |
| } |
| return mp_const_none; |
| } |
| |
| static mp_obj_t espnow_active(size_t n_args, const mp_obj_t *args) { |
| esp_espnow_obj_t *self = _get_singleton(); |
| if (n_args > 1) { |
| if (mp_obj_is_true(args[1])) { |
| espnow_init(self); |
| } else { |
| espnow_deinit(self); |
| } |
| } |
| return self->recv_buffer != NULL ? mp_const_true : mp_const_false; |
| } |
| static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(espnow_active_obj, 1, 2, espnow_active); |
| |
| // ESPNow.config(['param'|param=value, ..]) |
| // Get or set configuration values. Supported config params: |
| // buffer: size of buffer for rx packets (default=514 bytes) |
| // timeout: Default read timeout (default=300,000 milliseconds) |
| static mp_obj_t espnow_config(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { |
| esp_espnow_obj_t *self = _get_singleton(); |
| enum { ARG_get, ARG_rxbuf, ARG_timeout_ms, ARG_rate }; |
| static const mp_arg_t allowed_args[] = { |
| { MP_QSTR_, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, |
| { MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, |
| { MP_QSTR_timeout_ms, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MIN} }, |
| { MP_QSTR_rate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, |
| }; |
| mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; |
| mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, |
| MP_ARRAY_SIZE(allowed_args), allowed_args, args); |
| |
| if (args[ARG_rxbuf].u_int >= 0) { |
| self->recv_buffer_size = args[ARG_rxbuf].u_int; |
| } |
| if (args[ARG_timeout_ms].u_int != INT_MIN) { |
| self->recv_timeout_ms = args[ARG_timeout_ms].u_int; |
| } |
| if (args[ARG_rate].u_int >= 0) { |
| esp_initialise_wifi(); // Call the wifi init code in network_wlan.c |
| check_esp_err(esp_wifi_config_espnow_rate(ESP_IF_WIFI_STA, args[ARG_rate].u_int)); |
| check_esp_err(esp_wifi_config_espnow_rate(ESP_IF_WIFI_AP, args[ARG_rate].u_int)); |
| } |
| if (args[ARG_get].u_obj == MP_OBJ_NULL) { |
| return mp_const_none; |
| } |
| #define QS(x) (uintptr_t)MP_OBJ_NEW_QSTR(x) |
| // Return the value of the requested parameter |
| uintptr_t name = (uintptr_t)args[ARG_get].u_obj; |
| if (name == QS(MP_QSTR_rxbuf)) { |
| return mp_obj_new_int(self->recv_buffer_size); |
| } else if (name == QS(MP_QSTR_timeout_ms)) { |
| return mp_obj_new_int(self->recv_timeout_ms); |
| } else { |
| mp_raise_ValueError(MP_ERROR_TEXT("unknown config param")); |
| } |
| #undef QS |
| |
| return mp_const_none; |
| } |
| static MP_DEFINE_CONST_FUN_OBJ_KW(espnow_config_obj, 1, espnow_config); |
| |
| // ESPNow.irq(recv_cb) |
| // Set callback function to be invoked when a message is received. |
| static mp_obj_t espnow_irq(size_t n_args, const mp_obj_t *args) { |
| esp_espnow_obj_t *self = _get_singleton(); |
| mp_obj_t recv_cb = args[1]; |
| if (recv_cb != mp_const_none && !mp_obj_is_callable(recv_cb)) { |
| mp_raise_ValueError(MP_ERROR_TEXT("invalid handler")); |
| } |
| self->recv_cb = recv_cb; |
| self->recv_cb_arg = (n_args > 2) ? args[2] : mp_const_none; |
| return mp_const_none; |
| } |
| static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(espnow_irq_obj, 2, 3, espnow_irq); |
| |
| // ESPnow.stats(): Provide some useful stats. |
| // Returns a tuple of: |
| // (tx_pkts, tx_responses, tx_failures, rx_pkts, dropped_rx_pkts) |
| static mp_obj_t espnow_stats(mp_obj_t _) { |
| const esp_espnow_obj_t *self = _get_singleton(); |
| return NEW_TUPLE( |
| mp_obj_new_int(self->tx_packets), |
| mp_obj_new_int(self->tx_responses), |
| mp_obj_new_int(self->tx_failures), |
| mp_obj_new_int(self->rx_packets), |
| mp_obj_new_int(self->dropped_rx_pkts)); |
| } |
| static MP_DEFINE_CONST_FUN_OBJ_1(espnow_stats_obj, espnow_stats); |
| |
| #if MICROPY_PY_ESPNOW_RSSI |
| // ### Maintaining the peer table and reading RSSI values |
| // |
| // We maintain a peers table for several reasons, to: |
| // - support monitoring the RSSI values for all peers; and |
| // - to return unique bytestrings for each peer which supports more efficient |
| // application memory usage and peer handling. |
| |
| // Lookup a peer in the peers table and return a reference to the item in the |
| // peers_table. Add peer to the table if it is not found (may alloc memory). |
| // Will not return NULL. |
| static mp_map_elem_t *_lookup_add_peer(esp_espnow_obj_t *self, const uint8_t *peer) { |
| // We do not want to allocate any new memory in the case that the peer |
| // already exists in the peers_table (which is almost all the time). |
| // So, we use a byte string on the stack and look that up in the dict. |
| mp_map_t *map = mp_obj_dict_get_map(self->peers_table); |
| mp_obj_str_t peer_obj = {{&mp_type_bytes}, 0, ESP_NOW_ETH_ALEN, peer}; |
| mp_map_elem_t *item = mp_map_lookup(map, &peer_obj, MP_MAP_LOOKUP); |
| if (item == NULL) { |
| // If not found, add the peer using a new bytestring |
| map->is_fixed = 0; // Allow to modify the dict |
| mp_obj_t new_peer = mp_obj_new_bytes(peer, ESP_NOW_ETH_ALEN); |
| item = mp_map_lookup(map, new_peer, MP_MAP_LOOKUP_ADD_IF_NOT_FOUND); |
| item->value = mp_obj_new_list(2, NULL); |
| map->is_fixed = 1; // Relock the dict |
| } |
| return item; |
| } |
| |
| // Update the peers table with the new rssi value from a received pkt and |
| // return a reference to the item in the peers_table. |
| static mp_map_elem_t *_update_rssi(const uint8_t *peer, int8_t rssi, uint32_t time_ms) { |
| esp_espnow_obj_t *self = _get_singleton_initialised(); |
| // Lookup the peer in the device table |
| mp_map_elem_t *item = _lookup_add_peer(self, peer); |
| mp_obj_list_t *list = MP_OBJ_TO_PTR(item->value); |
| list->items[0] = MP_OBJ_NEW_SMALL_INT(rssi); |
| list->items[1] = mp_obj_new_int(time_ms); |
| return item; |
| } |
| #endif // MICROPY_PY_ESPNOW_RSSI |
| |
| // Return C pointer to byte memory string/bytes/bytearray in obj. |
| // Raise ValueError if the length does not match expected len. |
| static uint8_t *_get_bytes_len_rw(mp_obj_t obj, size_t len, mp_uint_t rw) { |
| mp_buffer_info_t bufinfo; |
| mp_get_buffer_raise(obj, &bufinfo, rw); |
| if (bufinfo.len != len) { |
| mp_raise_ValueError(MP_ERROR_TEXT("invalid buffer length")); |
| } |
| return (uint8_t *)bufinfo.buf; |
| } |
| |
| static uint8_t *_get_bytes_len(mp_obj_t obj, size_t len) { |
| return _get_bytes_len_rw(obj, len, MP_BUFFER_READ); |
| } |
| |
| static uint8_t *_get_bytes_len_w(mp_obj_t obj, size_t len) { |
| return _get_bytes_len_rw(obj, len, MP_BUFFER_WRITE); |
| } |
| |
| // Return C pointer to the MAC address. |
| // Raise ValueError if mac_addr is wrong type or is not 6 bytes long. |
| static const uint8_t *_get_peer(mp_obj_t mac_addr) { |
| return mp_obj_is_true(mac_addr) |
| ? _get_bytes_len(mac_addr, ESP_NOW_ETH_ALEN) : NULL; |
| } |
| |
| // Copy data from the ring buffer - wait if buffer is empty up to timeout_ms |
| // 0: Success |
| // -1: Not enough data available to complete read (try again later) |
| // -2: Requested read is larger than buffer - will never succeed |
| static int ringbuf_get_bytes_wait(ringbuf_t *r, uint8_t *data, size_t len, mp_int_t timeout_ms) { |
| mp_uint_t start = mp_hal_ticks_ms(); |
| int status = 0; |
| while (((status = ringbuf_get_bytes(r, data, len)) == -1) |
| && (timeout_ms < 0 || (mp_uint_t)(mp_hal_ticks_ms() - start) < (mp_uint_t)timeout_ms)) { |
| MICROPY_EVENT_POLL_HOOK; |
| } |
| return status; |
| } |
| |
| // ESPNow.recvinto(buffers[, timeout_ms]): |
| // Waits for an espnow message and copies the peer_addr and message into |
| // the buffers list. |
| // Arguments: |
| // buffers: (Optional) list of bytearrays to store return values. |
| // timeout_ms: (Optional) timeout in milliseconds (or None). |
| // Buffers should be a list: [bytearray(6), bytearray(250)] |
| // If buffers is 4 elements long, the rssi and timestamp values will be |
| // loaded into the 3rd and 4th elements. |
| // Default timeout is set with ESPNow.config(timeout=milliseconds). |
| // Return (None, None) on timeout. |
| static mp_obj_t espnow_recvinto(size_t n_args, const mp_obj_t *args) { |
| esp_espnow_obj_t *self = _get_singleton_initialised(); |
| |
| mp_int_t timeout_ms = ((n_args > 2 && args[2] != mp_const_none) |
| ? mp_obj_get_int(args[2]) : self->recv_timeout_ms); |
| |
| mp_obj_list_t *list = MP_OBJ_TO_PTR(args[1]); |
| if (!mp_obj_is_type(list, &mp_type_list) || list->len < 2) { |
| mp_raise_ValueError(MP_ERROR_TEXT("ESPNow.recvinto(): Invalid argument")); |
| } |
| mp_obj_array_t *msg = MP_OBJ_TO_PTR(list->items[1]); |
| if (mp_obj_is_type(msg, &mp_type_bytearray)) { |
| msg->len += msg->free; // Make all the space in msg array available |
| msg->free = 0; |
| } |
| #if MICROPY_PY_ESPNOW_RSSI |
| uint8_t peer_buf[ESP_NOW_ETH_ALEN]; |
| #else |
| uint8_t *peer_buf = _get_bytes_len_w(list->items[0], ESP_NOW_ETH_ALEN); |
| #endif // MICROPY_PY_ESPNOW_RSSI |
| uint8_t *msg_buf = _get_bytes_len_w(msg, ESP_NOW_MAX_DATA_LEN); |
| |
| // Read the packet header from the incoming buffer |
| espnow_hdr_t hdr; |
| if (ringbuf_get_bytes_wait(self->recv_buffer, (uint8_t *)&hdr, sizeof(hdr), timeout_ms) < 0) { |
| return MP_OBJ_NEW_SMALL_INT(0); // Timeout waiting for packet |
| } |
| int msg_len = hdr.msg_len; |
| |
| // Check the message packet header format and read the message data |
| if (hdr.magic != ESPNOW_MAGIC |
| || msg_len > ESP_NOW_MAX_DATA_LEN |
| || ringbuf_get_bytes(self->recv_buffer, peer_buf, ESP_NOW_ETH_ALEN) < 0 |
| || ringbuf_get_bytes(self->recv_buffer, msg_buf, msg_len) < 0) { |
| mp_raise_ValueError(MP_ERROR_TEXT("ESPNow.recv(): buffer error")); |
| } |
| if (mp_obj_is_type(msg, &mp_type_bytearray)) { |
| // Set the length of the message bytearray. |
| size_t size = msg->len + msg->free; |
| msg->len = msg_len; |
| msg->free = size - msg_len; |
| } |
| |
| #if MICROPY_PY_ESPNOW_RSSI |
| // Update rssi value in the peer device table |
| mp_map_elem_t *entry = _update_rssi(peer_buf, hdr.rssi, hdr.time_ms); |
| list->items[0] = entry->key; // Set first element of list to peer |
| if (list->len >= 4) { |
| list->items[2] = MP_OBJ_NEW_SMALL_INT(hdr.rssi); |
| list->items[3] = mp_obj_new_int(hdr.time_ms); |
| } |
| #endif // MICROPY_PY_ESPNOW_RSSI |
| |
| return MP_OBJ_NEW_SMALL_INT(msg_len); |
| } |
| static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(espnow_recvinto_obj, 2, 3, espnow_recvinto); |
| |
| // Test if data is available to read from the buffers |
| static mp_obj_t espnow_any(const mp_obj_t _) { |
| esp_espnow_obj_t *self = _get_singleton_initialised(); |
| |
| return ringbuf_avail(self->recv_buffer) ? mp_const_true : mp_const_false; |
| } |
| static MP_DEFINE_CONST_FUN_OBJ_1(espnow_any_obj, espnow_any); |
| |
| // Used by espnow_send() for sends() with sync==True. |
| // Wait till all pending sent packet responses have been received. |
| // ie. self->tx_responses == self->tx_packets. |
| static void _wait_for_pending_responses(esp_espnow_obj_t *self) { |
| mp_uint_t start = mp_hal_ticks_ms(); |
| mp_uint_t t; |
| while (self->tx_responses < self->tx_packets) { |
| if ((t = mp_hal_ticks_ms() - start) > PENDING_RESPONSES_TIMEOUT_MS) { |
| mp_raise_OSError(MP_ETIMEDOUT); |
| } |
| if (t > PENDING_RESPONSES_BUSY_POLL_MS) { |
| // After 10ms of busy waiting give other tasks a look in. |
| MICROPY_EVENT_POLL_HOOK; |
| } |
| } |
| } |
| |
| // ESPNow.send(peer_addr, message, [sync (=true), size]) |
| // ESPNow.send(message) |
| // Send a message to the peer's mac address. Optionally wait for a response. |
| // If peer_addr == None or any non-true value, send to all registered peers. |
| // If sync == True, wait for response after sending. |
| // If size is provided it should be the number of bytes in message to send(). |
| // Returns: |
| // True if sync==False and message sent successfully. |
| // True if sync==True and message is received successfully by all recipients |
| // False if sync==True and message is not received by at least one recipient |
| // Raises: EAGAIN if the internal espnow buffers are full. |
| static mp_obj_t espnow_send(size_t n_args, const mp_obj_t *args) { |
| esp_espnow_obj_t *self = _get_singleton_initialised(); |
| // Check the various combinations of input arguments |
| const uint8_t *peer = (n_args > 2) ? _get_peer(args[1]) : NULL; |
| mp_obj_t msg = (n_args > 2) ? args[2] : (n_args == 2) ? args[1] : MP_OBJ_NULL; |
| bool sync = n_args <= 3 || args[3] == mp_const_none || mp_obj_is_true(args[3]); |
| |
| // Get a pointer to the data buffer of the message |
| mp_buffer_info_t message; |
| mp_get_buffer_raise(msg, &message, MP_BUFFER_READ); |
| |
| if (sync) { |
| // Flush out any pending responses. |
| // If the last call was sync==False there may be outstanding responses |
| // still to be received (possible many if we just had a burst of |
| // unsync send()s). We need to wait for all pending responses if this |
| // call has sync=True. |
| _wait_for_pending_responses(self); |
| } |
| int saved_failures = self->tx_failures; |
| // Send the packet - try, try again if internal esp-now buffers are full. |
| esp_err_t err; |
| mp_uint_t start = mp_hal_ticks_ms(); |
| while ((ESP_ERR_ESPNOW_NO_MEM == (err = esp_now_send(peer, message.buf, message.len))) |
| && (mp_uint_t)(mp_hal_ticks_ms() - start) < (mp_uint_t)DEFAULT_SEND_TIMEOUT_MS) { |
| MICROPY_EVENT_POLL_HOOK; |
| } |
| check_esp_err(err); // Will raise OSError if e != ESP_OK |
| // Increment the sent packet count. If peer_addr==NULL msg will be |
| // sent to all peers EXCEPT any broadcast or multicast addresses. |
| self->tx_packets += ((peer == NULL) ? self->peer_count : 1); |
| if (sync) { |
| // Wait for and tally all the expected responses from peers |
| _wait_for_pending_responses(self); |
| } |
| // Return False if sync and any peers did not respond. |
| return mp_obj_new_bool(!(sync && self->tx_failures != saved_failures)); |
| } |
| static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(espnow_send_obj, 2, 4, espnow_send); |
| |
| // ### The ESP_Now send and recv callback routines |
| // |
| |
| // Callback triggered when a sent packet is acknowledged by the peer (or not). |
| // Just count the number of responses and number of failures. |
| // These are used in the send() logic. |
| static void send_cb(const uint8_t *mac_addr, esp_now_send_status_t status) { |
| esp_espnow_obj_t *self = _get_singleton(); |
| self->tx_responses++; |
| if (status != ESP_NOW_SEND_SUCCESS) { |
| self->tx_failures++; |
| } |
| } |
| |
| // Callback triggered when an ESP-Now packet is received. |
| // Write the peer MAC address and the message into the recv_buffer as an |
| // ESPNow packet. |
| // If the buffer is full, drop the message and increment the dropped count. |
| // Schedules the user callback if one has been registered (ESPNow.config()). |
| static void recv_cb(const esp_now_recv_info_t *recv_info, const uint8_t *msg, int msg_len) { |
| esp_espnow_obj_t *self = _get_singleton(); |
| ringbuf_t *buf = self->recv_buffer; |
| // TODO: Test this works with ">". |
| if (sizeof(espnow_pkt_t) + msg_len >= ringbuf_free(buf)) { |
| self->dropped_rx_pkts++; |
| return; |
| } |
| espnow_hdr_t header; |
| header.magic = ESPNOW_MAGIC; |
| header.msg_len = msg_len; |
| #if MICROPY_PY_ESPNOW_RSSI |
| header.rssi = recv_info->rx_ctrl->rssi; |
| header.time_ms = mp_hal_ticks_ms(); |
| #endif // MICROPY_PY_ESPNOW_RSSI |
| |
| ringbuf_put_bytes(buf, (uint8_t *)&header, sizeof(header)); |
| ringbuf_put_bytes(buf, recv_info->src_addr, ESP_NOW_ETH_ALEN); |
| ringbuf_put_bytes(buf, msg, msg_len); |
| self->rx_packets++; |
| if (self->recv_cb != mp_const_none) { |
| mp_sched_schedule(self->recv_cb, self->recv_cb_arg); |
| } |
| } |
| |
| // ### Peer Management Functions |
| // |
| |
| // Set the ESP-NOW Primary Master Key (pmk) (for encrypted communications). |
| // Raise OSError if ESP-NOW functions are not initialised. |
| // Raise ValueError if key is not a bytes-like object exactly 16 bytes long. |
| static mp_obj_t espnow_set_pmk(mp_obj_t _, mp_obj_t key) { |
| check_esp_err(esp_now_set_pmk(_get_bytes_len(key, ESP_NOW_KEY_LEN))); |
| return mp_const_none; |
| } |
| static MP_DEFINE_CONST_FUN_OBJ_2(espnow_set_pmk_obj, espnow_set_pmk); |
| |
| // Common code for add_peer() and mod_peer() to process the args and kw_args: |
| // Raise ValueError if the LMK is not a bytes-like object of exactly 16 bytes. |
| // Raise TypeError if invalid keyword args or too many positional args. |
| // Return true if all args parsed correctly. |
| static bool _update_peer_info( |
| esp_now_peer_info_t *peer, size_t n_args, |
| const mp_obj_t *pos_args, mp_map_t *kw_args) { |
| |
| enum { ARG_lmk, ARG_channel, ARG_ifidx, ARG_encrypt }; |
| static const mp_arg_t allowed_args[] = { |
| { MP_QSTR_lmk, MP_ARG_OBJ, {.u_obj = mp_const_none} }, |
| { MP_QSTR_channel, MP_ARG_OBJ, {.u_obj = mp_const_none} }, |
| { MP_QSTR_ifidx, MP_ARG_OBJ, {.u_obj = mp_const_none} }, |
| { MP_QSTR_encrypt, MP_ARG_OBJ, {.u_obj = mp_const_none} }, |
| }; |
| mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; |
| mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); |
| if (args[ARG_lmk].u_obj != mp_const_none) { |
| mp_obj_t obj = args[ARG_lmk].u_obj; |
| peer->encrypt = mp_obj_is_true(obj); |
| if (peer->encrypt) { |
| // Key must be 16 bytes in length. |
| memcpy(peer->lmk, _get_bytes_len(obj, ESP_NOW_KEY_LEN), ESP_NOW_KEY_LEN); |
| } |
| } |
| if (args[ARG_channel].u_obj != mp_const_none) { |
| peer->channel = mp_obj_get_int(args[ARG_channel].u_obj); |
| } |
| if (args[ARG_ifidx].u_obj != mp_const_none) { |
| peer->ifidx = mp_obj_get_int(args[ARG_ifidx].u_obj); |
| } |
| if (args[ARG_encrypt].u_obj != mp_const_none) { |
| peer->encrypt = mp_obj_is_true(args[ARG_encrypt].u_obj); |
| } |
| return true; |
| } |
| |
| // Update the cached peer count in self->peer_count; |
| // The peer_count ignores broadcast and multicast addresses and is used for the |
| // send() logic and is updated from add_peer(), mod_peer() and del_peer(). |
| static void _update_peer_count() { |
| esp_espnow_obj_t *self = _get_singleton_initialised(); |
| |
| esp_now_peer_info_t peer = {0}; |
| bool from_head = true; |
| int count = 0; |
| // esp_now_fetch_peer() skips over any broadcast or multicast addresses |
| while (esp_now_fetch_peer(from_head, &peer) == ESP_OK) { |
| from_head = false; |
| if (++count >= ESP_NOW_MAX_TOTAL_PEER_NUM) { |
| break; // Should not happen |
| } |
| } |
| self->peer_count = count; |
| } |
| |
| // ESPNow.add_peer(peer_mac, [lmk, [channel, [ifidx, [encrypt]]]]) or |
| // ESPNow.add_peer(peer_mac, [lmk=b'0123456789abcdef'|b''|None|False], |
| // [channel=1..11|0], [ifidx=0|1], [encrypt=True|False]) |
| // Positional args set to None will be left at defaults. |
| // Raise OSError if ESPNow.init() has not been called. |
| // Raise ValueError if mac or LMK are not bytes-like objects or wrong length. |
| // Raise TypeError if invalid keyword args or too many positional args. |
| // Return None. |
| static mp_obj_t espnow_add_peer(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| esp_now_peer_info_t peer = {0}; |
| memcpy(peer.peer_addr, _get_peer(args[1]), ESP_NOW_ETH_ALEN); |
| _update_peer_info(&peer, n_args - 2, args + 2, kw_args); |
| |
| check_esp_err(esp_now_add_peer(&peer)); |
| _update_peer_count(); |
| |
| return mp_const_none; |
| } |
| static MP_DEFINE_CONST_FUN_OBJ_KW(espnow_add_peer_obj, 2, espnow_add_peer); |
| |
| // ESPNow.del_peer(peer_mac): Unregister peer_mac. |
| // Raise OSError if ESPNow.init() has not been called. |
| // Raise ValueError if peer is not a bytes-like objects or wrong length. |
| // Return None. |
| static mp_obj_t espnow_del_peer(mp_obj_t _, mp_obj_t peer) { |
| uint8_t peer_addr[ESP_NOW_ETH_ALEN]; |
| memcpy(peer_addr, _get_peer(peer), ESP_NOW_ETH_ALEN); |
| |
| check_esp_err(esp_now_del_peer(peer_addr)); |
| _update_peer_count(); |
| |
| return mp_const_none; |
| } |
| static MP_DEFINE_CONST_FUN_OBJ_2(espnow_del_peer_obj, espnow_del_peer); |
| |
| // Convert a peer_info struct to python tuple |
| // Used by espnow_get_peer() and espnow_get_peers() |
| static mp_obj_t _peer_info_to_tuple(const esp_now_peer_info_t *peer) { |
| return NEW_TUPLE( |
| mp_obj_new_bytes(peer->peer_addr, MP_ARRAY_SIZE(peer->peer_addr)), |
| mp_obj_new_bytes(peer->lmk, MP_ARRAY_SIZE(peer->lmk)), |
| mp_obj_new_int(peer->channel), |
| mp_obj_new_int(peer->ifidx), |
| (peer->encrypt) ? mp_const_true : mp_const_false); |
| } |
| |
| // ESPNow.get_peers(): Fetch peer_info records for all registered ESPNow peers. |
| // Raise OSError if ESPNow.init() has not been called. |
| // Return a tuple of tuples: |
| // ((peer_addr, lmk, channel, ifidx, encrypt), |
| // (peer_addr, lmk, channel, ifidx, encrypt), ...) |
| static mp_obj_t espnow_get_peers(mp_obj_t _) { |
| esp_espnow_obj_t *self = _get_singleton_initialised(); |
| |
| // Build and initialise the peer info tuple. |
| mp_obj_tuple_t *peerinfo_tuple = mp_obj_new_tuple(self->peer_count, NULL); |
| esp_now_peer_info_t peer = {0}; |
| for (int i = 0; i < peerinfo_tuple->len; i++) { |
| int status = esp_now_fetch_peer((i == 0), &peer); |
| peerinfo_tuple->items[i] = |
| (status == ESP_OK ? _peer_info_to_tuple(&peer) : mp_const_none); |
| } |
| |
| return peerinfo_tuple; |
| } |
| static MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_peers_obj, espnow_get_peers); |
| |
| #if MICROPY_PY_ESPNOW_EXTRA_PEER_METHODS |
| // ESPNow.get_peer(peer_mac): Get the peer info for peer_mac as a tuple. |
| // Raise OSError if ESPNow.init() has not been called. |
| // Raise ValueError if mac or LMK are not bytes-like objects or wrong length. |
| // Return a tuple of (peer_addr, lmk, channel, ifidx, encrypt). |
| static mp_obj_t espnow_get_peer(mp_obj_t _, mp_obj_t arg1) { |
| esp_now_peer_info_t peer = {0}; |
| memcpy(peer.peer_addr, _get_peer(arg1), ESP_NOW_ETH_ALEN); |
| |
| check_esp_err(esp_now_get_peer(peer.peer_addr, &peer)); |
| |
| return _peer_info_to_tuple(&peer); |
| } |
| static MP_DEFINE_CONST_FUN_OBJ_2(espnow_get_peer_obj, espnow_get_peer); |
| |
| // ESPNow.mod_peer(peer_mac, [lmk, [channel, [ifidx, [encrypt]]]]) or |
| // ESPNow.mod_peer(peer_mac, [lmk=b'0123456789abcdef'|b''|None|False], |
| // [channel=1..11|0], [ifidx=0|1], [encrypt=True|False]) |
| // Positional args set to None will be left at current values. |
| // Raise OSError if ESPNow.init() has not been called. |
| // Raise ValueError if mac or LMK are not bytes-like objects or wrong length. |
| // Raise TypeError if invalid keyword args or too many positional args. |
| // Return None. |
| static mp_obj_t espnow_mod_peer(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| esp_now_peer_info_t peer = {0}; |
| memcpy(peer.peer_addr, _get_peer(args[1]), ESP_NOW_ETH_ALEN); |
| check_esp_err(esp_now_get_peer(peer.peer_addr, &peer)); |
| |
| _update_peer_info(&peer, n_args - 2, args + 2, kw_args); |
| |
| check_esp_err(esp_now_mod_peer(&peer)); |
| _update_peer_count(); |
| |
| return mp_const_none; |
| } |
| static MP_DEFINE_CONST_FUN_OBJ_KW(espnow_mod_peer_obj, 2, espnow_mod_peer); |
| |
| // ESPNow.espnow_peer_count(): Get the number of registered peers. |
| // Raise OSError if ESPNow.init() has not been called. |
| // Return a tuple of (num_total_peers, num_encrypted_peers). |
| static mp_obj_t espnow_peer_count(mp_obj_t _) { |
| esp_now_peer_num_t peer_num = {0}; |
| check_esp_err(esp_now_get_peer_num(&peer_num)); |
| |
| return NEW_TUPLE( |
| mp_obj_new_int(peer_num.total_num), |
| mp_obj_new_int(peer_num.encrypt_num)); |
| } |
| static MP_DEFINE_CONST_FUN_OBJ_1(espnow_peer_count_obj, espnow_peer_count); |
| #endif |
| |
| static const mp_rom_map_elem_t esp_espnow_locals_dict_table[] = { |
| { MP_ROM_QSTR(MP_QSTR_active), MP_ROM_PTR(&espnow_active_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_config), MP_ROM_PTR(&espnow_config_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&espnow_irq_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_stats), MP_ROM_PTR(&espnow_stats_obj) }, |
| |
| // Send and receive messages |
| { MP_ROM_QSTR(MP_QSTR_recvinto), MP_ROM_PTR(&espnow_recvinto_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&espnow_send_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&espnow_any_obj) }, |
| |
| // Peer management functions |
| { MP_ROM_QSTR(MP_QSTR_set_pmk), MP_ROM_PTR(&espnow_set_pmk_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_add_peer), MP_ROM_PTR(&espnow_add_peer_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_del_peer), MP_ROM_PTR(&espnow_del_peer_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_get_peers), MP_ROM_PTR(&espnow_get_peers_obj) }, |
| #if MICROPY_PY_ESPNOW_EXTRA_PEER_METHODS |
| { MP_ROM_QSTR(MP_QSTR_mod_peer), MP_ROM_PTR(&espnow_mod_peer_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_get_peer), MP_ROM_PTR(&espnow_get_peer_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_peer_count), MP_ROM_PTR(&espnow_peer_count_obj) }, |
| #endif // MICROPY_PY_ESPNOW_EXTRA_PEER_METHODS |
| }; |
| static MP_DEFINE_CONST_DICT(esp_espnow_locals_dict, esp_espnow_locals_dict_table); |
| |
| static const mp_rom_map_elem_t espnow_globals_dict_table[] = { |
| { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR__espnow) }, |
| { MP_ROM_QSTR(MP_QSTR_ESPNowBase), MP_ROM_PTR(&esp_espnow_type) }, |
| { MP_ROM_QSTR(MP_QSTR_MAX_DATA_LEN), MP_ROM_INT(ESP_NOW_MAX_DATA_LEN)}, |
| { MP_ROM_QSTR(MP_QSTR_ADDR_LEN), MP_ROM_INT(ESP_NOW_ETH_ALEN)}, |
| { MP_ROM_QSTR(MP_QSTR_KEY_LEN), MP_ROM_INT(ESP_NOW_KEY_LEN)}, |
| { MP_ROM_QSTR(MP_QSTR_MAX_TOTAL_PEER_NUM), MP_ROM_INT(ESP_NOW_MAX_TOTAL_PEER_NUM)}, |
| { MP_ROM_QSTR(MP_QSTR_MAX_ENCRYPT_PEER_NUM), MP_ROM_INT(ESP_NOW_MAX_ENCRYPT_PEER_NUM)}, |
| }; |
| static MP_DEFINE_CONST_DICT(espnow_globals_dict, espnow_globals_dict_table); |
| |
| // ### Dummy Buffer Protocol support |
| // ...so asyncio can poll.ipoll() on this device |
| |
| // Support ioctl(MP_STREAM_POLL, ) for asyncio |
| static mp_uint_t espnow_stream_ioctl( |
| mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) { |
| if (request != MP_STREAM_POLL) { |
| *errcode = MP_EINVAL; |
| return MP_STREAM_ERROR; |
| } |
| esp_espnow_obj_t *self = _get_singleton(); |
| return (self->recv_buffer == NULL) ? 0 : // If not initialised |
| arg ^ ( |
| // If no data in the buffer, unset the Read ready flag |
| ((ringbuf_avail(self->recv_buffer) == 0) ? MP_STREAM_POLL_RD : 0) | |
| // If still waiting for responses, unset the Write ready flag |
| ((self->tx_responses < self->tx_packets) ? MP_STREAM_POLL_WR : 0)); |
| } |
| |
| static const mp_stream_p_t espnow_stream_p = { |
| .ioctl = espnow_stream_ioctl, |
| }; |
| |
| #if MICROPY_PY_ESPNOW_RSSI |
| // Return reference to the dictionary of peers we have seen: |
| // {peer1: (rssi, time_sec), peer2: (rssi, time_msec), ...} |
| // where: |
| // peerX is a byte string containing the 6-byte mac address of the peer, |
| // rssi is the wifi signal strength from the last msg received |
| // (in dBm from -127 to 0) |
| // time_sec is the time in milliseconds since device last booted. |
| static void espnow_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { |
| esp_espnow_obj_t *self = _get_singleton(); |
| if (dest[0] != MP_OBJ_NULL) { // Only allow "Load" operation |
| return; |
| } |
| if (attr == MP_QSTR_peers_table) { |
| dest[0] = self->peers_table; |
| return; |
| } |
| dest[1] = MP_OBJ_SENTINEL; // Attribute not found |
| } |
| #endif // MICROPY_PY_ESPNOW_RSSI |
| |
| MP_DEFINE_CONST_OBJ_TYPE( |
| esp_espnow_type, |
| MP_QSTR_ESPNowBase, |
| MP_TYPE_FLAG_NONE, |
| make_new, espnow_make_new, |
| #if MICROPY_PY_ESPNOW_RSSI |
| attr, espnow_attr, |
| #endif // MICROPY_PY_ESPNOW_RSSI |
| protocol, &espnow_stream_p, |
| locals_dict, &esp_espnow_locals_dict |
| ); |
| |
| const mp_obj_module_t mp_module_espnow = { |
| .base = { &mp_type_module }, |
| .globals = (mp_obj_dict_t *)&espnow_globals_dict, |
| }; |
| |
| MP_REGISTER_MODULE(MP_QSTR__espnow, mp_module_espnow); |
| MP_REGISTER_ROOT_POINTER(struct _esp_espnow_obj_t *espnow_singleton); |
| |
| #endif // MICROPY_PY_ESPNOW |