blob: 661c07138e535d1f04ded040dc8919373e06fbdd [file] [log] [blame]
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016-2023 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This file is never compiled standalone, it's included directly from
// extmod/machine_uart.c via MICROPY_PY_MACHINE_UART_INCLUDEFILE.
#include "driver/uart.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "esp_task.h"
#include "shared/runtime/mpirq.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "uart.h"
#include "machine_timer.h"
#if SOC_UART_SUPPORT_XTAL_CLK
// Works independently of APB frequency, on ESP32C3, ESP32S3.
#define UART_SOURCE_CLK UART_SCLK_XTAL
#else
#define UART_SOURCE_CLK UART_SCLK_DEFAULT
#endif
#define UART_INV_TX UART_SIGNAL_TXD_INV
#define UART_INV_RX UART_SIGNAL_RXD_INV
#define UART_INV_RTS UART_SIGNAL_RTS_INV
#define UART_INV_CTS UART_SIGNAL_CTS_INV
#define UART_INV_MASK (UART_INV_TX | UART_INV_RX | UART_INV_RTS | UART_INV_CTS)
#define UART_IRQ_RX (1 << UART_DATA)
#define UART_IRQ_RXIDLE (0x1000)
#define UART_IRQ_BREAK (1 << UART_BREAK)
#define MP_UART_ALLOWED_FLAGS (UART_IRQ_RX | UART_IRQ_RXIDLE | UART_IRQ_BREAK)
#define RXIDLE_TIMER_MIN (5000) // 500 us
#define UART_QUEUE_SIZE (3)
enum {
RXIDLE_INACTIVE,
RXIDLE_STANDBY,
RXIDLE_ARMED,
RXIDLE_ALERT,
};
typedef struct _machine_uart_obj_t {
mp_obj_base_t base;
uart_port_t uart_num;
uart_hw_flowcontrol_t flowcontrol;
uint8_t bits;
uint8_t parity;
uint8_t stop;
gpio_num_t tx;
gpio_num_t rx;
gpio_num_t rts;
gpio_num_t cts;
uint16_t txbuf;
uint16_t rxbuf;
uint16_t timeout; // timeout waiting for first char (in ms)
uint16_t timeout_char; // timeout waiting between chars (in ms)
uint32_t invert; // lines to invert
TaskHandle_t uart_event_task;
QueueHandle_t uart_queue;
uint16_t mp_irq_trigger; // user IRQ trigger mask
uint16_t mp_irq_flags; // user IRQ active IRQ flags
mp_irq_obj_t *mp_irq_obj; // user IRQ object
machine_timer_obj_t *rxidle_timer;
uint8_t rxidle_state;
uint16_t rxidle_period;
} machine_uart_obj_t;
static const char *_parity_name[] = {"None", "1", "0"};
/******************************************************************************/
// MicroPython bindings for UART
#define MICROPY_PY_MACHINE_UART_CLASS_CONSTANTS \
{ MP_ROM_QSTR(MP_QSTR_INV_TX), MP_ROM_INT(UART_INV_TX) }, \
{ MP_ROM_QSTR(MP_QSTR_INV_RX), MP_ROM_INT(UART_INV_RX) }, \
{ MP_ROM_QSTR(MP_QSTR_INV_RTS), MP_ROM_INT(UART_INV_RTS) }, \
{ MP_ROM_QSTR(MP_QSTR_INV_CTS), MP_ROM_INT(UART_INV_CTS) }, \
{ MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HW_FLOWCTRL_RTS) }, \
{ MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HW_FLOWCTRL_CTS) }, \
{ MP_ROM_QSTR(MP_QSTR_IRQ_RX), MP_ROM_INT(UART_IRQ_RX) }, \
{ MP_ROM_QSTR(MP_QSTR_IRQ_RXIDLE), MP_ROM_INT(UART_IRQ_RXIDLE) }, \
{ MP_ROM_QSTR(MP_QSTR_IRQ_BREAK), MP_ROM_INT(UART_IRQ_BREAK) }, \
static void uart_timer_callback(machine_timer_obj_t *timer) {
// The UART object is referred here by the callback field.
machine_uart_obj_t *self = (machine_uart_obj_t *)timer->callback;
if (self->rxidle_state == RXIDLE_ALERT) {
// At the first call, just switch the state
self->rxidle_state = RXIDLE_ARMED;
} else if (self->rxidle_state == RXIDLE_ARMED) {
// At the second call, run the irq callback and stop the timer
self->rxidle_state = RXIDLE_STANDBY;
self->mp_irq_flags = UART_IRQ_RXIDLE;
mp_irq_handler(self->mp_irq_obj);
mp_hal_wake_main_task_from_isr();
machine_timer_disable(self->rxidle_timer);
}
}
static void uart_event_task(void *self_in) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
uart_event_t event;
for (;;) {
// Waiting for an UART event.
if (xQueueReceive(self->uart_queue, (void *)&event, (TickType_t)portMAX_DELAY)) {
uint16_t mp_irq_flags = 0;
switch (event.type) {
// Event of UART receiving data
case UART_DATA:
if (self->mp_irq_trigger & UART_IRQ_RXIDLE) {
if (self->rxidle_state != RXIDLE_INACTIVE) {
if (self->rxidle_state == RXIDLE_STANDBY) {
machine_timer_enable(self->rxidle_timer);
}
}
self->rxidle_state = RXIDLE_ALERT;
}
mp_irq_flags |= UART_IRQ_RX;
break;
case UART_BREAK:
mp_irq_flags |= UART_IRQ_BREAK;
break;
default:
break;
}
// Check the flags to see if the user handler should be called
if (self->mp_irq_trigger & mp_irq_flags) {
self->mp_irq_flags = mp_irq_flags;
mp_irq_handler(self->mp_irq_obj);
mp_hal_wake_main_task_from_isr();
}
}
}
}
static inline void uart_event_task_create(machine_uart_obj_t *self) {
if (xTaskCreatePinnedToCore(uart_event_task, "uart_event_task", 2048, self,
ESP_TASKD_EVENT_PRIO, (TaskHandle_t *)&self->uart_event_task, MP_TASK_COREID) != pdPASS) {
mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("failed to create UART event task"));
}
}
static void mp_machine_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
uint32_t baudrate;
check_esp_err(uart_get_baudrate(self->uart_num, &baudrate));
mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=%s, stop=%u, tx=%d, rx=%d, rts=%d, cts=%d, txbuf=%u, rxbuf=%u, timeout=%u, timeout_char=%u, irq=%d",
self->uart_num, baudrate, self->bits, _parity_name[self->parity],
self->stop, self->tx, self->rx, self->rts, self->cts, self->txbuf, self->rxbuf, self->timeout, self->timeout_char, self->mp_irq_trigger);
if (self->invert) {
mp_printf(print, ", invert=");
uint32_t invert_mask = self->invert;
if (invert_mask & UART_INV_TX) {
mp_printf(print, "INV_TX");
invert_mask &= ~UART_INV_TX;
if (invert_mask) {
mp_printf(print, "|");
}
}
if (invert_mask & UART_INV_RX) {
mp_printf(print, "INV_RX");
invert_mask &= ~UART_INV_RX;
if (invert_mask) {
mp_printf(print, "|");
}
}
if (invert_mask & UART_INV_RTS) {
mp_printf(print, "INV_RTS");
invert_mask &= ~UART_INV_RTS;
if (invert_mask) {
mp_printf(print, "|");
}
}
if (invert_mask & UART_INV_CTS) {
mp_printf(print, "INV_CTS");
}
}
if (self->flowcontrol) {
mp_printf(print, ", flow=");
uint32_t flow_mask = self->flowcontrol;
if (flow_mask & UART_HW_FLOWCTRL_RTS) {
mp_printf(print, "RTS");
flow_mask &= ~UART_HW_FLOWCTRL_RTS;
if (flow_mask) {
mp_printf(print, "|");
}
}
if (flow_mask & UART_HW_FLOWCTRL_CTS) {
mp_printf(print, "CTS");
}
}
mp_printf(print, ")");
}
static void mp_machine_uart_init_helper(machine_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_baudrate, ARG_bits, ARG_parity, ARG_stop, ARG_tx, ARG_rx, ARG_rts, ARG_cts, ARG_txbuf, ARG_rxbuf, ARG_timeout, ARG_timeout_char, ARG_invert, ARG_flow };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_parity, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_stop, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_tx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_rx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_rts, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_cts, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_txbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_invert, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// wait for all data to be transmitted before changing settings
uart_wait_tx_done(self->uart_num, pdMS_TO_TICKS(1000));
if ((args[ARG_txbuf].u_int >= 0 && args[ARG_txbuf].u_int != self->txbuf) || (args[ARG_rxbuf].u_int >= 0 && args[ARG_rxbuf].u_int != self->rxbuf)) {
// must reinitialise driver to change the tx/rx buffer size
#if MICROPY_HW_ENABLE_UART_REPL
if (self->uart_num == MICROPY_HW_UART_REPL) {
mp_raise_ValueError(MP_ERROR_TEXT("UART buffer size is fixed"));
}
#endif
if (args[ARG_txbuf].u_int >= 0) {
self->txbuf = args[ARG_txbuf].u_int;
}
if (args[ARG_rxbuf].u_int >= 0) {
self->rxbuf = args[ARG_rxbuf].u_int;
}
uart_config_t uartcfg = {
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
.rx_flow_ctrl_thresh = 0,
.source_clk = UART_SOURCE_CLK,
};
uint32_t baudrate;
check_esp_err(uart_get_baudrate(self->uart_num, &baudrate));
uartcfg.baud_rate = baudrate;
check_esp_err(uart_get_word_length(self->uart_num, &uartcfg.data_bits));
check_esp_err(uart_get_parity(self->uart_num, &uartcfg.parity));
check_esp_err(uart_get_stop_bits(self->uart_num, &uartcfg.stop_bits));
mp_machine_uart_deinit(self);
check_esp_err(uart_param_config(self->uart_num, &uartcfg));
check_esp_err(uart_driver_install(self->uart_num, self->rxbuf, self->txbuf, UART_QUEUE_SIZE, &self->uart_queue, 0));
if (self->mp_irq_obj != NULL && self->mp_irq_obj->handler != mp_const_none) {
uart_event_task_create(self);
}
}
// set baudrate
uint32_t baudrate = 115200;
if (args[ARG_baudrate].u_int > 0) {
check_esp_err(uart_set_baudrate(self->uart_num, args[ARG_baudrate].u_int));
}
check_esp_err(uart_get_baudrate(self->uart_num, &baudrate));
if (args[ARG_tx].u_obj != MP_OBJ_NULL) {
self->tx = machine_pin_get_id(args[ARG_tx].u_obj);
}
if (args[ARG_rx].u_obj != MP_OBJ_NULL) {
self->rx = machine_pin_get_id(args[ARG_rx].u_obj);
}
if (args[ARG_rts].u_obj != MP_OBJ_NULL) {
self->rts = machine_pin_get_id(args[ARG_rts].u_obj);
}
if (args[ARG_cts].u_obj != MP_OBJ_NULL) {
self->cts = machine_pin_get_id(args[ARG_cts].u_obj);
}
check_esp_err(uart_set_pin(self->uart_num, self->tx, self->rx, self->rts, self->cts));
// set data bits
switch (args[ARG_bits].u_int) {
case 0:
break;
case 5:
check_esp_err(uart_set_word_length(self->uart_num, UART_DATA_5_BITS));
self->bits = 5;
break;
case 6:
check_esp_err(uart_set_word_length(self->uart_num, UART_DATA_6_BITS));
self->bits = 6;
break;
case 7:
check_esp_err(uart_set_word_length(self->uart_num, UART_DATA_7_BITS));
self->bits = 7;
break;
case 8:
check_esp_err(uart_set_word_length(self->uart_num, UART_DATA_8_BITS));
self->bits = 8;
break;
default:
mp_raise_ValueError(MP_ERROR_TEXT("invalid data bits"));
break;
}
// set parity
if (args[ARG_parity].u_obj != MP_OBJ_NULL) {
if (args[ARG_parity].u_obj == mp_const_none) {
check_esp_err(uart_set_parity(self->uart_num, UART_PARITY_DISABLE));
self->parity = 0;
} else {
mp_int_t parity = mp_obj_get_int(args[ARG_parity].u_obj);
if (parity & 1) {
check_esp_err(uart_set_parity(self->uart_num, UART_PARITY_ODD));
self->parity = 1;
} else {
check_esp_err(uart_set_parity(self->uart_num, UART_PARITY_EVEN));
self->parity = 2;
}
}
}
// set stop bits
switch (args[ARG_stop].u_int) {
// FIXME: ESP32 also supports 1.5 stop bits
case 0:
break;
case 1:
check_esp_err(uart_set_stop_bits(self->uart_num, UART_STOP_BITS_1));
self->stop = 1;
break;
case 2:
check_esp_err(uart_set_stop_bits(self->uart_num, UART_STOP_BITS_2));
self->stop = 2;
break;
default:
mp_raise_ValueError(MP_ERROR_TEXT("invalid stop bits"));
break;
}
// set timeout
if (args[ARG_timeout].u_int != -1) {
self->timeout = args[ARG_timeout].u_int;
}
// set timeout_char
if (args[ARG_timeout_char].u_int != -1) {
self->timeout_char = args[ARG_timeout_char].u_int;
}
// make sure it is at least as long as a whole character (12 bits here)
uint32_t char_time_ms = 12000 / baudrate + 1;
uint32_t rx_timeout = self->timeout_char / char_time_ms;
if (rx_timeout < 1) {
check_esp_err(uart_set_rx_full_threshold(self->uart_num, 1));
check_esp_err(uart_set_rx_timeout(self->uart_num, 1));
} else {
check_esp_err(uart_set_rx_timeout(self->uart_num, rx_timeout));
}
// set line inversion
if (args[ARG_invert].u_int != -1) {
if (args[ARG_invert].u_int & ~UART_INV_MASK) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid inversion mask"));
}
self->invert = args[ARG_invert].u_int;
}
check_esp_err(uart_set_line_inverse(self->uart_num, self->invert));
// set hardware flow control
if (args[ARG_flow].u_int != -1) {
if (args[ARG_flow].u_int & ~UART_HW_FLOWCTRL_CTS_RTS) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid flow control mask"));
}
self->flowcontrol = args[ARG_flow].u_int;
}
uint8_t uart_fifo_len = UART_HW_FIFO_LEN(self->uart_num);
check_esp_err(uart_set_hw_flow_ctrl(self->uart_num, self->flowcontrol, uart_fifo_len - uart_fifo_len / 4));
}
static mp_obj_t mp_machine_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// get uart id
mp_int_t uart_num = mp_obj_get_int(args[0]);
if (uart_num < 0 || uart_num >= UART_NUM_MAX) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) does not exist"), uart_num);
}
// Defaults
uart_config_t uartcfg = {
.baud_rate = 115200,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
.rx_flow_ctrl_thresh = 0,
.source_clk = UART_SOURCE_CLK,
};
// create instance
machine_uart_obj_t *self = mp_obj_malloc(machine_uart_obj_t, &machine_uart_type);
self->uart_num = uart_num;
self->bits = 8;
self->parity = 0;
self->stop = 1;
self->rts = UART_PIN_NO_CHANGE;
self->cts = UART_PIN_NO_CHANGE;
self->txbuf = 256;
self->rxbuf = 256; // IDF minimum
self->timeout = 0;
self->timeout_char = 0;
self->invert = 0;
self->flowcontrol = 0;
self->uart_event_task = NULL;
self->uart_queue = NULL;
self->rxidle_state = RXIDLE_INACTIVE;
switch (uart_num) {
case UART_NUM_0:
self->rx = UART_PIN_NO_CHANGE; // GPIO 3
self->tx = UART_PIN_NO_CHANGE; // GPIO 1
break;
case UART_NUM_1:
self->rx = 9;
self->tx = 10;
break;
#if SOC_UART_HP_NUM > 2
case UART_NUM_2:
self->rx = 16;
self->tx = 17;
break;
#endif
#if SOC_UART_LP_NUM >= 1
case LP_UART_NUM_0:
self->rx = 4;
self->tx = 5;
#endif
}
#if MICROPY_HW_ENABLE_UART_REPL
// Only reset the driver if it's not the REPL UART.
if (uart_num != MICROPY_HW_UART_REPL)
#endif
{
// Remove any existing configuration
check_esp_err(uart_driver_delete(self->uart_num));
self->uart_queue = NULL;
// init the peripheral
// Setup
check_esp_err(uart_param_config(self->uart_num, &uartcfg));
check_esp_err(uart_driver_install(uart_num, self->rxbuf, self->txbuf, UART_QUEUE_SIZE, &self->uart_queue, 0));
}
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
mp_machine_uart_init_helper(self, n_args - 1, args + 1, &kw_args);
// Make sure pins are connected.
check_esp_err(uart_set_pin(self->uart_num, self->tx, self->rx, self->rts, self->cts));
return MP_OBJ_FROM_PTR(self);
}
static void mp_machine_uart_deinit(machine_uart_obj_t *self) {
if (self->uart_event_task != NULL) {
vTaskDelete(self->uart_event_task);
self->uart_event_task = NULL;
}
check_esp_err(uart_driver_delete(self->uart_num));
self->uart_queue = NULL;
}
static mp_int_t mp_machine_uart_any(machine_uart_obj_t *self) {
size_t rxbufsize;
check_esp_err(uart_get_buffered_data_len(self->uart_num, &rxbufsize));
return rxbufsize;
}
static bool mp_machine_uart_txdone(machine_uart_obj_t *self) {
return uart_wait_tx_done(self->uart_num, 0) == ESP_OK;
}
static void mp_machine_uart_sendbreak(machine_uart_obj_t *self) {
// Calculate the length of the break, as 13 bits.
uint32_t baudrate;
check_esp_err(uart_get_baudrate(self->uart_num, &baudrate));
uint32_t break_delay_us = 13000000 / baudrate;
// Wait for any outstanding data to be transmitted.
check_esp_err(uart_wait_tx_done(self->uart_num, pdMS_TO_TICKS(1000)));
// Set the TX pin to output, pull it low, and wait for the break period.
mp_hal_pin_output(self->tx);
mp_hal_pin_write(self->tx, 0);
mp_hal_delay_us(break_delay_us);
// Restore original UART pin settings.
check_esp_err(uart_set_pin(self->uart_num, self->tx, self->rx, self->rts, self->cts));
}
// Configure the timer used for IRQ_RXIDLE
static void uart_irq_configure_timer(machine_uart_obj_t *self, mp_uint_t trigger) {
self->rxidle_state = RXIDLE_INACTIVE;
if (trigger & UART_IRQ_RXIDLE) {
// The RXIDLE event is always a soft IRQ.
self->mp_irq_obj->ishard = false;
uint32_t baudrate;
uart_get_baudrate(self->uart_num, &baudrate);
mp_int_t period = TIMER_SCALE * 20 / baudrate + 1;
if (period < RXIDLE_TIMER_MIN) {
period = RXIDLE_TIMER_MIN;
}
self->rxidle_period = period;
self->rxidle_timer->period = period;
self->rxidle_timer->handler = uart_timer_callback;
// The Python callback is not used. So use this
// data field to hold a reference to the UART object.
self->rxidle_timer->callback = self;
self->rxidle_timer->repeat = true;
self->rxidle_state = RXIDLE_STANDBY;
}
}
static mp_uint_t uart_irq_trigger(mp_obj_t self_in, mp_uint_t new_trigger) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
uart_irq_configure_timer(self, new_trigger);
self->mp_irq_trigger = new_trigger;
return 0;
}
static mp_uint_t uart_irq_info(mp_obj_t self_in, mp_uint_t info_type) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (info_type == MP_IRQ_INFO_FLAGS) {
return self->mp_irq_flags;
} else if (info_type == MP_IRQ_INFO_TRIGGERS) {
return self->mp_irq_trigger;
}
return 0;
}
static const mp_irq_methods_t uart_irq_methods = {
.trigger = uart_irq_trigger,
.info = uart_irq_info,
};
static mp_irq_obj_t *mp_machine_uart_irq(machine_uart_obj_t *self, bool any_args, mp_arg_val_t *args) {
#if MICROPY_HW_ENABLE_UART_REPL
if (self->uart_num == MICROPY_HW_UART_REPL) {
mp_raise_ValueError(MP_ERROR_TEXT("UART does not support IRQs"));
}
#endif
if (self->mp_irq_obj == NULL) {
self->mp_irq_trigger = 0;
self->mp_irq_obj = mp_irq_new(&uart_irq_methods, MP_OBJ_FROM_PTR(self));
}
if (any_args) {
// Check the handler
mp_obj_t handler = args[MP_IRQ_ARG_INIT_handler].u_obj;
if (handler != mp_const_none && !mp_obj_is_callable(handler)) {
mp_raise_ValueError(MP_ERROR_TEXT("handler must be None or callable"));
}
// Check the trigger
mp_uint_t trigger = args[MP_IRQ_ARG_INIT_trigger].u_int;
mp_uint_t not_supported = trigger & ~MP_UART_ALLOWED_FLAGS;
if (trigger != 0 && not_supported) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("trigger 0x%04x unsupported"), not_supported);
}
self->mp_irq_obj->handler = handler;
if (args[MP_IRQ_ARG_INIT_hard].u_bool) {
mp_raise_ValueError(MP_ERROR_TEXT("hard IRQ is not supported"));
}
self->mp_irq_obj->ishard = false;
self->mp_irq_trigger = trigger;
self->rxidle_timer = machine_timer_create(0);
uart_irq_configure_timer(self, trigger);
// Start a task for handling events
if (handler != mp_const_none && self->uart_event_task == NULL && self->uart_queue != NULL) {
uart_event_task_create(self);
} else if (handler == mp_const_none && self->uart_event_task != NULL) {
vTaskDelete(self->uart_event_task);
self->uart_event_task = NULL;
}
}
return self->mp_irq_obj;
}
static mp_uint_t mp_machine_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
// make sure we want at least 1 char
if (size == 0) {
return 0;
}
TickType_t time_to_wait;
if (self->timeout == 0) {
time_to_wait = 0;
} else {
time_to_wait = pdMS_TO_TICKS(self->timeout);
}
bool release_gil = time_to_wait > 0;
if (release_gil) {
MP_THREAD_GIL_EXIT();
}
int bytes_read = uart_read_bytes(self->uart_num, buf_in, size, time_to_wait);
if (release_gil) {
MP_THREAD_GIL_ENTER();
}
if (bytes_read <= 0) {
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
}
return bytes_read;
}
static mp_uint_t mp_machine_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
int bytes_written = uart_write_bytes(self->uart_num, buf_in, size);
if (bytes_written < 0) {
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
}
// return number of bytes written
return bytes_written;
}
static mp_uint_t mp_machine_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
machine_uart_obj_t *self = self_in;
mp_uint_t ret;
if (request == MP_STREAM_POLL) {
mp_uint_t flags = arg;
ret = 0;
size_t rxbufsize;
check_esp_err(uart_get_buffered_data_len(self->uart_num, &rxbufsize));
if ((flags & MP_STREAM_POLL_RD) && rxbufsize > 0) {
ret |= MP_STREAM_POLL_RD;
}
if ((flags & MP_STREAM_POLL_WR) && 1) { // FIXME: uart_tx_any_room(self->uart_num)
ret |= MP_STREAM_POLL_WR;
}
} else if (request == MP_STREAM_FLUSH) {
// The timeout is estimated using the buffer size and the baudrate.
// Take the worst case assumptions at 13 bit symbol size times 2.
uint32_t baudrate;
check_esp_err(uart_get_baudrate(self->uart_num, &baudrate));
uint32_t timeout = (3 + self->txbuf) * 13000 * 2 / baudrate;
if (uart_wait_tx_done(self->uart_num, timeout) == ESP_OK) {
ret = 0;
} else {
*errcode = MP_ETIMEDOUT;
ret = MP_STREAM_ERROR;
}
} else {
*errcode = MP_EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}