| /* |
| * This file is part of the MicroPython project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2019 "Matt Trentini" <matt.trentini@gmail.com> |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "py/mphal.h" |
| #include "py/runtime.h" |
| #include "modmachine.h" |
| #include "modesp32.h" |
| |
| #include "esp_task.h" |
| #include "driver/rmt.h" |
| |
| // This exposes the ESP32's RMT module to MicroPython. RMT is provided by the Espressif ESP-IDF: |
| // |
| // https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/peripherals/rmt.html |
| // |
| // With some examples provided: |
| // |
| // https://github.com/espressif/arduino-esp32/tree/master/libraries/ESP32/examples/RMT |
| // |
| // RMT allows accurate (down to 12.5ns resolution) transmit - and receive - of pulse signals. |
| // Originally designed to generate infrared remote control signals, the module is very |
| // flexible and quite easy-to-use. |
| // |
| // This current MicroPython implementation lacks some major features, notably receive pulses |
| // and carrier output. |
| |
| // Last available RMT channel that can transmit. |
| #define RMT_LAST_TX_CHANNEL (SOC_RMT_TX_CANDIDATES_PER_GROUP - 1) |
| |
| // Forward declaration |
| extern const mp_obj_type_t esp32_rmt_type; |
| |
| typedef struct _esp32_rmt_obj_t { |
| mp_obj_base_t base; |
| uint8_t channel_id; |
| gpio_num_t pin; |
| uint8_t clock_div; |
| mp_uint_t num_items; |
| rmt_item32_t *items; |
| bool loop_en; |
| } esp32_rmt_obj_t; |
| |
| // Current channel used for machine.bitstream, in the machine_bitstream_high_low_rmt |
| // implementation. A value of -1 means do not use RMT. |
| int8_t esp32_rmt_bitstream_channel_id = RMT_LAST_TX_CHANNEL; |
| |
| #if MP_TASK_COREID == 0 |
| |
| typedef struct _rmt_install_state_t { |
| SemaphoreHandle_t handle; |
| uint8_t channel_id; |
| esp_err_t ret; |
| } rmt_install_state_t; |
| |
| static void rmt_install_task(void *pvParameter) { |
| rmt_install_state_t *state = pvParameter; |
| state->ret = rmt_driver_install(state->channel_id, 0, 0); |
| xSemaphoreGive(state->handle); |
| vTaskDelete(NULL); |
| for (;;) { |
| } |
| } |
| |
| // Call rmt_driver_install on core 1. This ensures that the RMT interrupt handler is |
| // serviced on core 1, so that WiFi (if active) does not interrupt it and cause glitches. |
| esp_err_t rmt_driver_install_core1(uint8_t channel_id) { |
| TaskHandle_t th; |
| rmt_install_state_t state; |
| state.handle = xSemaphoreCreateBinary(); |
| state.channel_id = channel_id; |
| xTaskCreatePinnedToCore(rmt_install_task, "rmt_install_task", 2048 / sizeof(StackType_t), &state, ESP_TASK_PRIO_MIN + 1, &th, 1); |
| xSemaphoreTake(state.handle, portMAX_DELAY); |
| vSemaphoreDelete(state.handle); |
| return state.ret; |
| } |
| |
| #else |
| |
| // MicroPython runs on core 1, so we can call the RMT installer directly and its |
| // interrupt handler will also run on core 1. |
| esp_err_t rmt_driver_install_core1(uint8_t channel_id) { |
| return rmt_driver_install(channel_id, 0, 0); |
| } |
| |
| #endif |
| |
| static mp_obj_t esp32_rmt_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { |
| static const mp_arg_t allowed_args[] = { |
| { MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} }, |
| { MP_QSTR_pin, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, |
| { MP_QSTR_clock_div, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, // 100ns resolution |
| { MP_QSTR_idle_level, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, // low voltage |
| { MP_QSTR_tx_carrier, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, // no carrier |
| }; |
| mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; |
| mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); |
| mp_uint_t channel_id = args[0].u_int; |
| gpio_num_t pin_id = machine_pin_get_id(args[1].u_obj); |
| mp_uint_t clock_div = args[2].u_int; |
| mp_uint_t idle_level = args[3].u_bool; |
| mp_obj_t tx_carrier_obj = args[4].u_obj; |
| |
| if (esp32_rmt_bitstream_channel_id >= 0 && channel_id == esp32_rmt_bitstream_channel_id) { |
| mp_raise_ValueError(MP_ERROR_TEXT("channel used by bitstream")); |
| } |
| |
| if (clock_div < 1 || clock_div > 255) { |
| mp_raise_ValueError(MP_ERROR_TEXT("clock_div must be between 1 and 255")); |
| } |
| |
| esp32_rmt_obj_t *self = mp_obj_malloc_with_finaliser(esp32_rmt_obj_t, &esp32_rmt_type); |
| self->channel_id = channel_id; |
| self->pin = pin_id; |
| self->clock_div = clock_div; |
| self->loop_en = false; |
| |
| rmt_config_t config = {0}; |
| config.rmt_mode = RMT_MODE_TX; |
| config.channel = (rmt_channel_t)self->channel_id; |
| config.gpio_num = self->pin; |
| config.mem_block_num = 1; |
| config.tx_config.loop_en = 0; |
| |
| if (tx_carrier_obj != mp_const_none) { |
| mp_obj_t *tx_carrier_details = NULL; |
| mp_obj_get_array_fixed_n(tx_carrier_obj, 3, &tx_carrier_details); |
| mp_uint_t frequency = mp_obj_get_int(tx_carrier_details[0]); |
| mp_uint_t duty = mp_obj_get_int(tx_carrier_details[1]); |
| mp_uint_t level = mp_obj_is_true(tx_carrier_details[2]); |
| |
| if (frequency == 0) { |
| mp_raise_ValueError(MP_ERROR_TEXT("tx_carrier frequency must be >0")); |
| } |
| if (duty > 100) { |
| mp_raise_ValueError(MP_ERROR_TEXT("tx_carrier duty must be 0..100")); |
| } |
| |
| config.tx_config.carrier_en = 1; |
| config.tx_config.carrier_freq_hz = frequency; |
| config.tx_config.carrier_duty_percent = duty; |
| config.tx_config.carrier_level = level; |
| } else { |
| config.tx_config.carrier_en = 0; |
| } |
| |
| config.tx_config.idle_output_en = 1; |
| config.tx_config.idle_level = idle_level; |
| |
| config.clk_div = self->clock_div; |
| |
| check_esp_err(rmt_config(&config)); |
| check_esp_err(rmt_driver_install_core1(config.channel)); |
| |
| return MP_OBJ_FROM_PTR(self); |
| } |
| |
| static void esp32_rmt_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { |
| esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in); |
| if (self->pin != -1) { |
| bool idle_output_en; |
| rmt_idle_level_t idle_level; |
| check_esp_err(rmt_get_idle_level(self->channel_id, &idle_output_en, &idle_level)); |
| mp_printf(print, "RMT(channel=%u, pin=%u, source_freq=%u, clock_div=%u, idle_level=%u)", |
| self->channel_id, self->pin, APB_CLK_FREQ, self->clock_div, idle_level); |
| } else { |
| mp_printf(print, "RMT()"); |
| } |
| } |
| |
| static mp_obj_t esp32_rmt_deinit(mp_obj_t self_in) { |
| // fixme: check for valid channel. Return exception if error occurs. |
| esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in); |
| if (self->pin != -1) { // Check if channel has already been deinitialised. |
| rmt_driver_uninstall(self->channel_id); |
| self->pin = -1; // -1 to indicate RMT is unused |
| m_free(self->items); |
| } |
| return mp_const_none; |
| } |
| static MP_DEFINE_CONST_FUN_OBJ_1(esp32_rmt_deinit_obj, esp32_rmt_deinit); |
| |
| // Return the source frequency. |
| // Currently only the APB clock (80MHz) can be used but it is possible other |
| // clock sources will added in the future. |
| static mp_obj_t esp32_rmt_source_freq() { |
| return mp_obj_new_int(APB_CLK_FREQ); |
| } |
| static MP_DEFINE_CONST_FUN_OBJ_0(esp32_rmt_source_freq_obj, esp32_rmt_source_freq); |
| static MP_DEFINE_CONST_STATICMETHOD_OBJ(esp32_rmt_source_obj, MP_ROM_PTR(&esp32_rmt_source_freq_obj)); |
| |
| // Return the clock divider. |
| static mp_obj_t esp32_rmt_clock_div(mp_obj_t self_in) { |
| esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in); |
| return mp_obj_new_int(self->clock_div); |
| } |
| static MP_DEFINE_CONST_FUN_OBJ_1(esp32_rmt_clock_div_obj, esp32_rmt_clock_div); |
| |
| // Query whether the channel has finished sending pulses. Takes an optional |
| // timeout (in milliseconds), returning true if the pulse stream has |
| // completed or false if they are still transmitting (or timeout is reached). |
| static mp_obj_t esp32_rmt_wait_done(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { |
| static const mp_arg_t allowed_args[] = { |
| { MP_QSTR_self, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = mp_const_none} }, |
| { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, |
| }; |
| |
| mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; |
| mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); |
| |
| esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0].u_obj); |
| |
| esp_err_t err = rmt_wait_tx_done(self->channel_id, args[1].u_int / portTICK_PERIOD_MS); |
| return err == ESP_OK ? mp_const_true : mp_const_false; |
| } |
| static MP_DEFINE_CONST_FUN_OBJ_KW(esp32_rmt_wait_done_obj, 1, esp32_rmt_wait_done); |
| |
| static mp_obj_t esp32_rmt_loop(mp_obj_t self_in, mp_obj_t loop) { |
| esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in); |
| self->loop_en = mp_obj_get_int(loop); |
| if (!self->loop_en) { |
| bool loop_en; |
| check_esp_err(rmt_get_tx_loop_mode(self->channel_id, &loop_en)); |
| if (loop_en) { |
| check_esp_err(rmt_set_tx_loop_mode(self->channel_id, false)); |
| check_esp_err(rmt_set_tx_intr_en(self->channel_id, true)); |
| } |
| } |
| return mp_const_none; |
| } |
| static MP_DEFINE_CONST_FUN_OBJ_2(esp32_rmt_loop_obj, esp32_rmt_loop); |
| |
| static mp_obj_t esp32_rmt_write_pulses(size_t n_args, const mp_obj_t *args) { |
| esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0]); |
| mp_obj_t duration_obj = args[1]; |
| mp_obj_t data_obj = n_args > 2 ? args[2] : mp_const_true; |
| |
| mp_uint_t duration = 0; |
| size_t duration_length = 0; |
| mp_obj_t *duration_ptr = NULL; |
| mp_uint_t data = 0; |
| size_t data_length = 0; |
| mp_obj_t *data_ptr = NULL; |
| mp_uint_t num_pulses = 0; |
| |
| if (!(mp_obj_is_type(data_obj, &mp_type_tuple) || mp_obj_is_type(data_obj, &mp_type_list))) { |
| // Mode 1: array of durations, toggle initial data value |
| mp_obj_get_array(duration_obj, &duration_length, &duration_ptr); |
| data = mp_obj_is_true(data_obj); |
| num_pulses = duration_length; |
| } else if (mp_obj_is_int(duration_obj)) { |
| // Mode 2: constant duration, array of data values |
| duration = mp_obj_get_int(duration_obj); |
| mp_obj_get_array(data_obj, &data_length, &data_ptr); |
| num_pulses = data_length; |
| } else { |
| // Mode 3: arrays of durations and data values |
| mp_obj_get_array(duration_obj, &duration_length, &duration_ptr); |
| mp_obj_get_array(data_obj, &data_length, &data_ptr); |
| if (duration_length != data_length) { |
| mp_raise_ValueError(MP_ERROR_TEXT("duration and data must have same length")); |
| } |
| num_pulses = duration_length; |
| } |
| |
| if (num_pulses == 0) { |
| mp_raise_ValueError(MP_ERROR_TEXT("No pulses")); |
| } |
| if (self->loop_en && num_pulses > 126) { |
| mp_raise_ValueError(MP_ERROR_TEXT("Too many pulses for loop")); |
| } |
| |
| mp_uint_t num_items = (num_pulses / 2) + (num_pulses % 2); |
| if (num_items > self->num_items) { |
| self->items = (rmt_item32_t *)m_realloc(self->items, num_items * sizeof(rmt_item32_t *)); |
| self->num_items = num_items; |
| } |
| |
| for (mp_uint_t item_index = 0, pulse_index = 0; item_index < num_items; item_index++) { |
| self->items[item_index].duration0 = duration_length ? mp_obj_get_int(duration_ptr[pulse_index]) : duration; |
| self->items[item_index].level0 = data_length ? mp_obj_is_true(data_ptr[pulse_index]) : data++; |
| pulse_index++; |
| if (pulse_index < num_pulses) { |
| self->items[item_index].duration1 = duration_length ? mp_obj_get_int(duration_ptr[pulse_index]) : duration; |
| self->items[item_index].level1 = data_length ? mp_obj_is_true(data_ptr[pulse_index]) : data++; |
| pulse_index++; |
| } else { |
| self->items[item_index].duration1 = 0; |
| self->items[item_index].level1 = 0; |
| } |
| } |
| |
| if (self->loop_en) { |
| bool loop_en; |
| check_esp_err(rmt_get_tx_loop_mode(self->channel_id, &loop_en)); |
| if (loop_en) { |
| check_esp_err(rmt_set_tx_intr_en(self->channel_id, true)); |
| check_esp_err(rmt_set_tx_loop_mode(self->channel_id, false)); |
| } |
| check_esp_err(rmt_wait_tx_done(self->channel_id, portMAX_DELAY)); |
| } |
| |
| #if !CONFIG_IDF_TARGET_ESP32S3 |
| check_esp_err(rmt_write_items(self->channel_id, self->items, num_items, false)); |
| #endif |
| |
| if (self->loop_en) { |
| check_esp_err(rmt_set_tx_intr_en(self->channel_id, false)); |
| check_esp_err(rmt_set_tx_loop_mode(self->channel_id, true)); |
| } |
| |
| #if CONFIG_IDF_TARGET_ESP32S3 |
| check_esp_err(rmt_write_items(self->channel_id, self->items, num_items, false)); |
| #endif |
| |
| return mp_const_none; |
| } |
| static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_rmt_write_pulses_obj, 2, 3, esp32_rmt_write_pulses); |
| |
| static mp_obj_t esp32_rmt_bitstream_channel(size_t n_args, const mp_obj_t *args) { |
| if (n_args > 0) { |
| if (args[0] == mp_const_none) { |
| esp32_rmt_bitstream_channel_id = -1; |
| } else { |
| mp_int_t channel_id = mp_obj_get_int(args[0]); |
| if (channel_id < 0 || channel_id > RMT_LAST_TX_CHANNEL) { |
| mp_raise_ValueError(MP_ERROR_TEXT("invalid channel")); |
| } |
| esp32_rmt_bitstream_channel_id = channel_id; |
| } |
| } |
| if (esp32_rmt_bitstream_channel_id < 0) { |
| return mp_const_none; |
| } else { |
| return MP_OBJ_NEW_SMALL_INT(esp32_rmt_bitstream_channel_id); |
| } |
| } |
| static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_rmt_bitstream_channel_fun_obj, 0, 1, esp32_rmt_bitstream_channel); |
| static MP_DEFINE_CONST_STATICMETHOD_OBJ(esp32_rmt_bitstream_channel_obj, MP_ROM_PTR(&esp32_rmt_bitstream_channel_fun_obj)); |
| |
| static const mp_rom_map_elem_t esp32_rmt_locals_dict_table[] = { |
| { MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&esp32_rmt_deinit_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&esp32_rmt_deinit_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_clock_div), MP_ROM_PTR(&esp32_rmt_clock_div_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_wait_done), MP_ROM_PTR(&esp32_rmt_wait_done_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_loop), MP_ROM_PTR(&esp32_rmt_loop_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_write_pulses), MP_ROM_PTR(&esp32_rmt_write_pulses_obj) }, |
| |
| // Static methods |
| { MP_ROM_QSTR(MP_QSTR_bitstream_channel), MP_ROM_PTR(&esp32_rmt_bitstream_channel_obj) }, |
| |
| // Class methods |
| { MP_ROM_QSTR(MP_QSTR_source_freq), MP_ROM_PTR(&esp32_rmt_source_obj) }, |
| |
| // Constants |
| { MP_ROM_QSTR(MP_QSTR_PULSE_MAX), MP_ROM_INT(32767) }, |
| }; |
| static MP_DEFINE_CONST_DICT(esp32_rmt_locals_dict, esp32_rmt_locals_dict_table); |
| |
| MP_DEFINE_CONST_OBJ_TYPE( |
| esp32_rmt_type, |
| MP_QSTR_RMT, |
| MP_TYPE_FLAG_NONE, |
| make_new, esp32_rmt_make_new, |
| print, esp32_rmt_print, |
| locals_dict, &esp32_rmt_locals_dict |
| ); |