| /* |
| * This file is part of the MicroPython project, http://micropython.org/ |
| * |
| * Original template from ST Cube library. See below for header. |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| /** |
| ****************************************************************************** |
| * @file Templates/Src/stm32f4xx_it.c |
| * @author MCD Application Team |
| * @version V1.0.1 |
| * @date 26-February-2014 |
| * @brief Main Interrupt Service Routines. |
| * This file provides template for all exceptions handler and |
| * peripherals interrupt service routine. |
| ****************************************************************************** |
| * @attention |
| * |
| * <h2><center>© COPYRIGHT(c) 2014 STMicroelectronics</center></h2> |
| * |
| * Redistribution and use in source and binary forms, with or without modification, |
| * are permitted provided that the following conditions are met: |
| * 1. Redistributions of source code must retain the above copyright notice, |
| * this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * 3. Neither the name of STMicroelectronics nor the names of its contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| ****************************************************************************** |
| */ |
| |
| #include <stdio.h> |
| |
| #include "py/obj.h" |
| #include "py/mphal.h" |
| #include "stm32_it.h" |
| #include "pendsv.h" |
| #include "irq.h" |
| #include "powerctrl.h" |
| #include "pybthread.h" |
| #include "gccollect.h" |
| #include "extint.h" |
| #include "timer.h" |
| #include "uart.h" |
| #include "storage.h" |
| #include "dma.h" |
| #include "i2c.h" |
| #include "usb.h" |
| |
| extern void __fatal_error(const char *); |
| #if defined(MICROPY_HW_USB_FS) |
| extern PCD_HandleTypeDef pcd_fs_handle; |
| #endif |
| #if defined(MICROPY_HW_USB_HS) |
| extern PCD_HandleTypeDef pcd_hs_handle; |
| #endif |
| |
| /******************************************************************************/ |
| /* Cortex-M4 Processor Exceptions Handlers */ |
| /******************************************************************************/ |
| |
| // Set the following to 1 to get some more information on the Hard Fault |
| // More information about decoding the fault registers can be found here: |
| // http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0646a/Cihdjcfc.html |
| |
| STATIC char *fmt_hex(uint32_t val, char *buf) { |
| const char *hexDig = "0123456789abcdef"; |
| |
| buf[0] = hexDig[(val >> 28) & 0x0f]; |
| buf[1] = hexDig[(val >> 24) & 0x0f]; |
| buf[2] = hexDig[(val >> 20) & 0x0f]; |
| buf[3] = hexDig[(val >> 16) & 0x0f]; |
| buf[4] = hexDig[(val >> 12) & 0x0f]; |
| buf[5] = hexDig[(val >> 8) & 0x0f]; |
| buf[6] = hexDig[(val >> 4) & 0x0f]; |
| buf[7] = hexDig[(val >> 0) & 0x0f]; |
| buf[8] = '\0'; |
| |
| return buf; |
| } |
| |
| STATIC void print_reg(const char *label, uint32_t val) { |
| char hexStr[9]; |
| |
| mp_hal_stdout_tx_str(label); |
| mp_hal_stdout_tx_str(fmt_hex(val, hexStr)); |
| mp_hal_stdout_tx_str("\r\n"); |
| } |
| |
| STATIC void print_hex_hex(const char *label, uint32_t val1, uint32_t val2) { |
| char hex_str[9]; |
| mp_hal_stdout_tx_str(label); |
| mp_hal_stdout_tx_str(fmt_hex(val1, hex_str)); |
| mp_hal_stdout_tx_str(" "); |
| mp_hal_stdout_tx_str(fmt_hex(val2, hex_str)); |
| mp_hal_stdout_tx_str("\r\n"); |
| } |
| |
| // The ARMv7M Architecture manual (section B.1.5.6) says that upon entry |
| // to an exception, that the registers will be in the following order on the |
| // // stack: R0, R1, R2, R3, R12, LR, PC, XPSR |
| |
| typedef struct { |
| uint32_t r0, r1, r2, r3, r12, lr, pc, xpsr; |
| } ExceptionRegisters_t; |
| |
| int pyb_hard_fault_debug = 0; |
| |
| void HardFault_C_Handler(ExceptionRegisters_t *regs) { |
| if (!pyb_hard_fault_debug) { |
| powerctrl_mcu_reset(); |
| } |
| |
| #if MICROPY_HW_ENABLE_USB |
| // We need to disable the USB so it doesn't try to write data out on |
| // the VCP and then block indefinitely waiting for the buffer to drain. |
| pyb_usb_flags = 0; |
| #endif |
| |
| mp_hal_stdout_tx_str("HardFault\r\n"); |
| |
| print_reg("R0 ", regs->r0); |
| print_reg("R1 ", regs->r1); |
| print_reg("R2 ", regs->r2); |
| print_reg("R3 ", regs->r3); |
| print_reg("R12 ", regs->r12); |
| print_reg("SP ", (uint32_t)regs); |
| print_reg("LR ", regs->lr); |
| print_reg("PC ", regs->pc); |
| print_reg("XPSR ", regs->xpsr); |
| |
| #if __CORTEX_M >= 3 |
| uint32_t cfsr = SCB->CFSR; |
| |
| print_reg("HFSR ", SCB->HFSR); |
| print_reg("CFSR ", cfsr); |
| if (cfsr & 0x80) { |
| print_reg("MMFAR ", SCB->MMFAR); |
| } |
| if (cfsr & 0x8000) { |
| print_reg("BFAR ", SCB->BFAR); |
| } |
| #endif |
| |
| if ((void *)&_ram_start <= (void *)regs && (void *)regs < (void *)&_ram_end) { |
| mp_hal_stdout_tx_str("Stack:\r\n"); |
| uint32_t *stack_top = &_estack; |
| if ((void *)regs < (void *)&_sstack) { |
| // stack not in static stack area so limit the amount we print |
| stack_top = (uint32_t *)regs + 32; |
| } |
| for (uint32_t *sp = (uint32_t *)regs; sp < stack_top; ++sp) { |
| print_hex_hex(" ", (uint32_t)sp, *sp); |
| } |
| } |
| |
| /* Go to infinite loop when Hard Fault exception occurs */ |
| while (1) { |
| __fatal_error("HardFault"); |
| } |
| } |
| |
| // Naked functions have no compiler generated gunk, so are the best thing to |
| // use for asm functions. |
| __attribute__((naked)) |
| void HardFault_Handler(void) { |
| |
| // From the ARMv7M Architecture Reference Manual, section B.1.5.6 |
| // on entry to the Exception, the LR register contains, amongst other |
| // things, the value of CONTROL.SPSEL. This can be found in bit 3. |
| // |
| // If CONTROL.SPSEL is 0, then the exception was stacked up using the |
| // main stack pointer (aka MSP). If CONTROL.SPSEL is 1, then the exception |
| // was stacked up using the process stack pointer (aka PSP). |
| |
| #if __CORTEX_M == 0 |
| __asm volatile ( |
| " mov r0, lr \n" |
| " lsr r0, r0, #3 \n" // Shift Bit 3 into carry to see which stack pointer we should use. |
| " mrs r0, msp \n" // Make R0 point to main stack pointer |
| " bcc .use_msp \n" // Keep MSP in R0 if SPSEL (carry) is 0 |
| " mrs r0, psp \n" // Make R0 point to process stack pointer |
| " .use_msp: \n" |
| " b HardFault_C_Handler \n" // Off to C land |
| ); |
| #else |
| __asm volatile ( |
| " tst lr, #4 \n" // Test Bit 3 to see which stack pointer we should use. |
| " ite eq \n" // Tell the assembler that the nest 2 instructions are if-then-else |
| " mrseq r0, msp \n" // Make R0 point to main stack pointer |
| " mrsne r0, psp \n" // Make R0 point to process stack pointer |
| " b HardFault_C_Handler \n" // Off to C land |
| ); |
| #endif |
| } |
| |
| /** |
| * @brief This function handles NMI exception. |
| * @param None |
| * @retval None |
| */ |
| void NMI_Handler(void) { |
| } |
| |
| /** |
| * @brief This function handles Memory Manage exception. |
| * @param None |
| * @retval None |
| */ |
| void MemManage_Handler(void) { |
| /* Go to infinite loop when Memory Manage exception occurs */ |
| while (1) { |
| __fatal_error("MemManage"); |
| } |
| } |
| |
| /** |
| * @brief This function handles Bus Fault exception. |
| * @param None |
| * @retval None |
| */ |
| void BusFault_Handler(void) { |
| /* Go to infinite loop when Bus Fault exception occurs */ |
| while (1) { |
| __fatal_error("BusFault"); |
| } |
| } |
| |
| /** |
| * @brief This function handles Usage Fault exception. |
| * @param None |
| * @retval None |
| */ |
| void UsageFault_Handler(void) { |
| /* Go to infinite loop when Usage Fault exception occurs */ |
| while (1) { |
| __fatal_error("UsageFault"); |
| } |
| } |
| |
| /** |
| * @brief This function handles SVCall exception. |
| * @param None |
| * @retval None |
| */ |
| void SVC_Handler(void) { |
| } |
| |
| /** |
| * @brief This function handles Debug Monitor exception. |
| * @param None |
| * @retval None |
| */ |
| void DebugMon_Handler(void) { |
| } |
| |
| /******************************************************************************/ |
| /* STM32F4xx Peripherals Interrupt Handlers */ |
| /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ |
| /* available peripheral interrupt handler's name please refer to the startup */ |
| /* file (startup_stm32f4xx.s). */ |
| /******************************************************************************/ |
| |
| #if defined(STM32L0) || defined(STM32L432xx) |
| |
| #if MICROPY_HW_USB_FS |
| void USB_IRQHandler(void) { |
| HAL_PCD_IRQHandler(&pcd_fs_handle); |
| } |
| #endif |
| |
| #elif defined(STM32WB) |
| |
| #if MICROPY_HW_USB_FS |
| void USB_LP_IRQHandler(void) { |
| HAL_PCD_IRQHandler(&pcd_fs_handle); |
| } |
| #endif |
| |
| #else |
| |
| /** |
| * @brief This function handles USB-On-The-Go FS global interrupt request. |
| * @param None |
| * @retval None |
| */ |
| #if MICROPY_HW_USB_FS |
| void OTG_FS_IRQHandler(void) { |
| IRQ_ENTER(OTG_FS_IRQn); |
| HAL_PCD_IRQHandler(&pcd_fs_handle); |
| IRQ_EXIT(OTG_FS_IRQn); |
| } |
| #endif |
| #if MICROPY_HW_USB_HS |
| void OTG_HS_IRQHandler(void) { |
| IRQ_ENTER(OTG_HS_IRQn); |
| HAL_PCD_IRQHandler(&pcd_hs_handle); |
| IRQ_EXIT(OTG_HS_IRQn); |
| } |
| #endif |
| |
| #if MICROPY_HW_USB_FS || MICROPY_HW_USB_HS |
| /** |
| * @brief This function handles USB OTG Common FS/HS Wakeup functions. |
| * @param *pcd_handle for FS or HS |
| * @retval None |
| */ |
| STATIC void OTG_CMD_WKUP_Handler(PCD_HandleTypeDef *pcd_handle) { |
| |
| if (pcd_handle->Init.low_power_enable) { |
| /* Reset SLEEPDEEP bit of Cortex System Control Register */ |
| SCB->SCR &= (uint32_t) ~((uint32_t)(SCB_SCR_SLEEPDEEP_Msk | SCB_SCR_SLEEPONEXIT_Msk)); |
| |
| /* Configures system clock after wake-up from STOP: enable HSE/HSI, PLL and select |
| PLL as system clock source (HSE/HSI and PLL are disabled in STOP mode) */ |
| |
| __HAL_RCC_HSE_CONFIG(MICROPY_HW_RCC_HSE_STATE); |
| #if MICROPY_HW_CLK_USE_HSI |
| __HAL_RCC_HSI_ENABLE(); |
| #endif |
| |
| /* Wait till HSE/HSI is ready */ |
| while (__HAL_RCC_GET_FLAG(MICROPY_HW_RCC_FLAG_HSxRDY) == RESET) { |
| } |
| |
| /* Enable the main PLL. */ |
| __HAL_RCC_PLL_ENABLE(); |
| |
| /* Wait till PLL is ready */ |
| while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) { |
| } |
| |
| /* Select PLL as SYSCLK */ |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK); |
| |
| #if defined(STM32H7) |
| while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL1) { |
| } |
| #else |
| while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) { |
| } |
| #endif |
| |
| /* ungate PHY clock */ |
| __HAL_PCD_UNGATE_PHYCLOCK(pcd_handle); |
| } |
| |
| } |
| #endif |
| |
| #if MICROPY_HW_USB_FS |
| /** |
| * @brief This function handles USB OTG FS Wakeup IRQ Handler. |
| * @param None |
| * @retval None |
| */ |
| void OTG_FS_WKUP_IRQHandler(void) { |
| IRQ_ENTER(OTG_FS_WKUP_IRQn); |
| |
| OTG_CMD_WKUP_Handler(&pcd_fs_handle); |
| |
| #if !defined(STM32H7) |
| /* Clear EXTI pending Bit*/ |
| __HAL_USB_FS_EXTI_CLEAR_FLAG(); |
| #endif |
| |
| IRQ_EXIT(OTG_FS_WKUP_IRQn); |
| } |
| #endif |
| |
| #if MICROPY_HW_USB_HS |
| /** |
| * @brief This function handles USB OTG HS Wakeup IRQ Handler. |
| * @param None |
| * @retval None |
| */ |
| void OTG_HS_WKUP_IRQHandler(void) { |
| IRQ_ENTER(OTG_HS_WKUP_IRQn); |
| |
| OTG_CMD_WKUP_Handler(&pcd_hs_handle); |
| |
| #if !defined(STM32H7) |
| /* Clear EXTI pending Bit*/ |
| __HAL_USB_HS_EXTI_CLEAR_FLAG(); |
| #endif |
| |
| IRQ_EXIT(OTG_HS_WKUP_IRQn); |
| } |
| #endif |
| |
| #endif // !defined(STM32L0) |
| |
| /** |
| * @brief This function handles PPP interrupt request. |
| * @param None |
| * @retval None |
| */ |
| /*void PPP_IRQHandler(void) |
| { |
| }*/ |
| |
| /** |
| * @brief These functions handle the EXTI interrupt requests. |
| * @param None |
| * @retval None |
| */ |
| void EXTI0_IRQHandler(void) { |
| IRQ_ENTER(EXTI0_IRQn); |
| Handle_EXTI_Irq(0); |
| IRQ_EXIT(EXTI0_IRQn); |
| } |
| |
| void EXTI1_IRQHandler(void) { |
| IRQ_ENTER(EXTI1_IRQn); |
| Handle_EXTI_Irq(1); |
| IRQ_EXIT(EXTI1_IRQn); |
| } |
| |
| void EXTI2_IRQHandler(void) { |
| IRQ_ENTER(EXTI2_IRQn); |
| Handle_EXTI_Irq(2); |
| IRQ_EXIT(EXTI2_IRQn); |
| } |
| |
| void EXTI3_IRQHandler(void) { |
| IRQ_ENTER(EXTI3_IRQn); |
| Handle_EXTI_Irq(3); |
| IRQ_EXIT(EXTI3_IRQn); |
| } |
| |
| void EXTI4_IRQHandler(void) { |
| IRQ_ENTER(EXTI4_IRQn); |
| Handle_EXTI_Irq(4); |
| IRQ_EXIT(EXTI4_IRQn); |
| } |
| |
| void EXTI9_5_IRQHandler(void) { |
| IRQ_ENTER(EXTI9_5_IRQn); |
| Handle_EXTI_Irq(5); |
| Handle_EXTI_Irq(6); |
| Handle_EXTI_Irq(7); |
| Handle_EXTI_Irq(8); |
| Handle_EXTI_Irq(9); |
| IRQ_EXIT(EXTI9_5_IRQn); |
| } |
| |
| void EXTI15_10_IRQHandler(void) { |
| IRQ_ENTER(EXTI15_10_IRQn); |
| Handle_EXTI_Irq(10); |
| Handle_EXTI_Irq(11); |
| Handle_EXTI_Irq(12); |
| Handle_EXTI_Irq(13); |
| Handle_EXTI_Irq(14); |
| Handle_EXTI_Irq(15); |
| IRQ_EXIT(EXTI15_10_IRQn); |
| } |
| |
| void PVD_IRQHandler(void) { |
| IRQ_ENTER(PVD_IRQn); |
| Handle_EXTI_Irq(EXTI_PVD_OUTPUT); |
| IRQ_EXIT(PVD_IRQn); |
| } |
| |
| #if defined(STM32L4) |
| void PVD_PVM_IRQHandler(void) { |
| IRQ_ENTER(PVD_PVM_IRQn); |
| Handle_EXTI_Irq(EXTI_PVD_OUTPUT); |
| IRQ_EXIT(PVD_PVM_IRQn); |
| } |
| #endif |
| |
| void RTC_Alarm_IRQHandler(void) { |
| IRQ_ENTER(RTC_Alarm_IRQn); |
| Handle_EXTI_Irq(EXTI_RTC_ALARM); |
| IRQ_EXIT(RTC_Alarm_IRQn); |
| } |
| |
| #if defined(ETH) // The 407 has ETH, the 405 doesn't |
| void ETH_WKUP_IRQHandler(void) { |
| IRQ_ENTER(ETH_WKUP_IRQn); |
| Handle_EXTI_Irq(EXTI_ETH_WAKEUP); |
| IRQ_EXIT(ETH_WKUP_IRQn); |
| } |
| #endif |
| |
| void TAMP_STAMP_IRQHandler(void) { |
| IRQ_ENTER(TAMP_STAMP_IRQn); |
| Handle_EXTI_Irq(EXTI_RTC_TIMESTAMP); |
| IRQ_EXIT(TAMP_STAMP_IRQn); |
| } |
| |
| void RTC_WKUP_IRQHandler(void) { |
| IRQ_ENTER(RTC_WKUP_IRQn); |
| RTC->ISR &= ~RTC_ISR_WUTF; // clear wakeup interrupt flag |
| Handle_EXTI_Irq(EXTI_RTC_WAKEUP); // clear EXTI flag and execute optional callback |
| IRQ_EXIT(RTC_WKUP_IRQn); |
| } |
| |
| #if defined(STM32F0) || defined(STM32L0) |
| |
| void RTC_IRQHandler(void) { |
| IRQ_ENTER(RTC_IRQn); |
| if (RTC->ISR & RTC_ISR_WUTF) { |
| RTC->ISR &= ~RTC_ISR_WUTF; // clear wakeup interrupt flag |
| Handle_EXTI_Irq(EXTI_RTC_WAKEUP); // clear EXTI flag and execute optional callback |
| } |
| if (RTC->ISR & RTC_ISR_ALRAF) { |
| RTC->ISR &= ~RTC_ISR_ALRAF; // clear Alarm A flag |
| Handle_EXTI_Irq(EXTI_RTC_ALARM); // clear EXTI flag and execute optional callback |
| } |
| if (RTC->ISR & RTC_ISR_TSF) { |
| RTC->ISR &= ~RTC_ISR_TSF; // clear timestamp flag |
| Handle_EXTI_Irq(EXTI_RTC_TIMESTAMP); // clear EXTI flag and execute optional callback |
| } |
| IRQ_EXIT(RTC_IRQn); |
| } |
| |
| void EXTI0_1_IRQHandler(void) { |
| IRQ_ENTER(EXTI0_1_IRQn); |
| Handle_EXTI_Irq(0); |
| Handle_EXTI_Irq(1); |
| IRQ_EXIT(EXTI0_1_IRQn); |
| } |
| |
| void EXTI2_3_IRQHandler(void) { |
| IRQ_ENTER(EXTI2_3_IRQn); |
| Handle_EXTI_Irq(2); |
| Handle_EXTI_Irq(3); |
| IRQ_EXIT(EXTI2_3_IRQn); |
| } |
| |
| void EXTI4_15_IRQHandler(void) { |
| IRQ_ENTER(EXTI4_15_IRQn); |
| for (int i = 4; i <= 15; ++i) { |
| Handle_EXTI_Irq(i); |
| } |
| IRQ_EXIT(EXTI4_15_IRQn); |
| } |
| |
| void TIM1_BRK_UP_TRG_COM_IRQHandler(void) { |
| IRQ_ENTER(TIM1_BRK_UP_TRG_COM_IRQn); |
| timer_irq_handler(1); |
| IRQ_EXIT(TIM1_BRK_UP_TRG_COM_IRQn); |
| } |
| |
| #endif |
| |
| void TIM1_BRK_TIM9_IRQHandler(void) { |
| IRQ_ENTER(TIM1_BRK_TIM9_IRQn); |
| timer_irq_handler(9); |
| IRQ_EXIT(TIM1_BRK_TIM9_IRQn); |
| } |
| |
| #if defined(STM32L4) |
| void TIM1_BRK_TIM15_IRQHandler(void) { |
| IRQ_ENTER(TIM1_BRK_TIM15_IRQn); |
| timer_irq_handler(15); |
| IRQ_EXIT(TIM1_BRK_TIM15_IRQn); |
| } |
| #endif |
| |
| void TIM1_UP_TIM10_IRQHandler(void) { |
| IRQ_ENTER(TIM1_UP_TIM10_IRQn); |
| timer_irq_handler(1); |
| timer_irq_handler(10); |
| IRQ_EXIT(TIM1_UP_TIM10_IRQn); |
| } |
| |
| #if defined(STM32L4) |
| void TIM1_UP_TIM16_IRQHandler(void) { |
| IRQ_ENTER(TIM1_UP_TIM16_IRQn); |
| timer_irq_handler(1); |
| timer_irq_handler(16); |
| IRQ_EXIT(TIM1_UP_TIM16_IRQn); |
| } |
| #endif |
| |
| #if defined(STM32H7) |
| void TIM1_UP_IRQHandler(void) { |
| IRQ_ENTER(TIM1_UP_IRQn); |
| timer_irq_handler(1); |
| IRQ_EXIT(TIM1_UP_IRQn); |
| } |
| #endif |
| |
| void TIM1_TRG_COM_TIM11_IRQHandler(void) { |
| IRQ_ENTER(TIM1_TRG_COM_TIM11_IRQn); |
| timer_irq_handler(11); |
| IRQ_EXIT(TIM1_TRG_COM_TIM11_IRQn); |
| } |
| |
| #if defined(STM32L4) |
| void TIM1_TRG_COM_TIM17_IRQHandler(void) { |
| IRQ_ENTER(TIM1_TRG_COM_TIM17_IRQn); |
| timer_irq_handler(17); |
| IRQ_EXIT(TIM1_TRG_COM_TIM17_IRQn); |
| } |
| #endif |
| |
| void TIM1_CC_IRQHandler(void) { |
| IRQ_ENTER(TIM1_CC_IRQn); |
| timer_irq_handler(1); |
| IRQ_EXIT(TIM1_CC_IRQn); |
| } |
| |
| void TIM2_IRQHandler(void) { |
| IRQ_ENTER(TIM2_IRQn); |
| timer_irq_handler(2); |
| IRQ_EXIT(TIM2_IRQn); |
| } |
| |
| void TIM3_IRQHandler(void) { |
| IRQ_ENTER(TIM3_IRQn); |
| timer_irq_handler(3); |
| IRQ_EXIT(TIM3_IRQn); |
| } |
| |
| void TIM4_IRQHandler(void) { |
| IRQ_ENTER(TIM4_IRQn); |
| timer_irq_handler(4); |
| IRQ_EXIT(TIM4_IRQn); |
| } |
| |
| void TIM5_IRQHandler(void) { |
| IRQ_ENTER(TIM5_IRQn); |
| timer_irq_handler(5); |
| HAL_TIM_IRQHandler(&TIM5_Handle); |
| IRQ_EXIT(TIM5_IRQn); |
| } |
| |
| #if defined(TIM6) // STM32F401 doesn't have TIM6 |
| void TIM6_DAC_IRQHandler(void) { |
| IRQ_ENTER(TIM6_DAC_IRQn); |
| timer_irq_handler(6); |
| IRQ_EXIT(TIM6_DAC_IRQn); |
| } |
| #endif |
| |
| #if defined(TIM7) // STM32F401 doesn't have TIM7 |
| void TIM7_IRQHandler(void) { |
| IRQ_ENTER(TIM7_IRQn); |
| timer_irq_handler(7); |
| IRQ_EXIT(TIM7_IRQn); |
| } |
| #endif |
| |
| #if defined(TIM8) // STM32F401 doesn't have TIM8 |
| void TIM8_BRK_TIM12_IRQHandler(void) { |
| IRQ_ENTER(TIM8_BRK_TIM12_IRQn); |
| timer_irq_handler(12); |
| IRQ_EXIT(TIM8_BRK_TIM12_IRQn); |
| } |
| |
| void TIM8_UP_TIM13_IRQHandler(void) { |
| IRQ_ENTER(TIM8_UP_TIM13_IRQn); |
| timer_irq_handler(8); |
| timer_irq_handler(13); |
| IRQ_EXIT(TIM8_UP_TIM13_IRQn); |
| } |
| |
| #if defined(STM32L4) |
| void TIM8_UP_IRQHandler(void) { |
| IRQ_ENTER(TIM8_UP_IRQn); |
| timer_irq_handler(8); |
| IRQ_EXIT(TIM8_UP_IRQn); |
| } |
| #endif |
| |
| void TIM8_CC_IRQHandler(void) { |
| IRQ_ENTER(TIM8_CC_IRQn); |
| timer_irq_handler(8); |
| IRQ_EXIT(TIM8_CC_IRQn); |
| } |
| |
| void TIM8_TRG_COM_TIM14_IRQHandler(void) { |
| IRQ_ENTER(TIM8_TRG_COM_TIM14_IRQn); |
| timer_irq_handler(14); |
| IRQ_EXIT(TIM8_TRG_COM_TIM14_IRQn); |
| } |
| #endif |
| |
| #if defined(STM32H7) |
| void TIM15_IRQHandler(void) { |
| IRQ_ENTER(TIM15_IRQn); |
| timer_irq_handler(15); |
| IRQ_EXIT(TIM15_IRQn); |
| } |
| |
| void TIM16_IRQHandler(void) { |
| IRQ_ENTER(TIM16_IRQn); |
| timer_irq_handler(16); |
| IRQ_EXIT(TIM16_IRQn); |
| } |
| |
| void TIM17_IRQHandler(void) { |
| IRQ_ENTER(TIM17_IRQn); |
| timer_irq_handler(17); |
| IRQ_EXIT(TIM17_IRQn); |
| } |
| #endif |
| |
| // UART/USART IRQ handlers |
| void USART1_IRQHandler(void) { |
| IRQ_ENTER(USART1_IRQn); |
| uart_irq_handler(1); |
| IRQ_EXIT(USART1_IRQn); |
| } |
| |
| void USART2_IRQHandler(void) { |
| IRQ_ENTER(USART2_IRQn); |
| uart_irq_handler(2); |
| IRQ_EXIT(USART2_IRQn); |
| } |
| |
| #if defined(STM32F0) |
| |
| void USART3_8_IRQHandler(void) { |
| IRQ_ENTER(USART3_8_IRQn); |
| uart_irq_handler(3); |
| uart_irq_handler(4); |
| uart_irq_handler(5); |
| uart_irq_handler(6); |
| uart_irq_handler(7); |
| uart_irq_handler(8); |
| IRQ_EXIT(USART3_8_IRQn); |
| } |
| |
| #elif defined(STM32L0) |
| |
| void USART4_5_IRQHandler(void) { |
| IRQ_ENTER(USART4_5_IRQn); |
| uart_irq_handler(4); |
| uart_irq_handler(5); |
| IRQ_EXIT(USART4_5_IRQn); |
| } |
| |
| #else |
| |
| void USART3_IRQHandler(void) { |
| IRQ_ENTER(USART3_IRQn); |
| uart_irq_handler(3); |
| IRQ_EXIT(USART3_IRQn); |
| } |
| |
| void UART4_IRQHandler(void) { |
| IRQ_ENTER(UART4_IRQn); |
| uart_irq_handler(4); |
| IRQ_EXIT(UART4_IRQn); |
| } |
| |
| void UART5_IRQHandler(void) { |
| IRQ_ENTER(UART5_IRQn); |
| uart_irq_handler(5); |
| IRQ_EXIT(UART5_IRQn); |
| } |
| |
| void USART6_IRQHandler(void) { |
| IRQ_ENTER(USART6_IRQn); |
| uart_irq_handler(6); |
| IRQ_EXIT(USART6_IRQn); |
| } |
| |
| #if defined(UART7) |
| void UART7_IRQHandler(void) { |
| IRQ_ENTER(UART7_IRQn); |
| uart_irq_handler(7); |
| IRQ_EXIT(UART7_IRQn); |
| } |
| #endif |
| |
| #if defined(UART8) |
| void UART8_IRQHandler(void) { |
| IRQ_ENTER(UART8_IRQn); |
| uart_irq_handler(8); |
| IRQ_EXIT(UART8_IRQn); |
| } |
| #endif |
| |
| #if defined(UART9) |
| void UART9_IRQHandler(void) { |
| IRQ_ENTER(UART9_IRQn); |
| uart_irq_handler(9); |
| IRQ_EXIT(UART9_IRQn); |
| } |
| #endif |
| |
| #if defined(UART10) |
| void UART10_IRQHandler(void) { |
| IRQ_ENTER(UART10_IRQn); |
| uart_irq_handler(10); |
| IRQ_EXIT(UART10_IRQn); |
| } |
| #endif |
| |
| #endif |
| |
| #if MICROPY_PY_PYB_LEGACY |
| |
| #if defined(MICROPY_HW_I2C1_SCL) |
| void I2C1_EV_IRQHandler(void) { |
| IRQ_ENTER(I2C1_EV_IRQn); |
| i2c_ev_irq_handler(1); |
| IRQ_EXIT(I2C1_EV_IRQn); |
| } |
| |
| void I2C1_ER_IRQHandler(void) { |
| IRQ_ENTER(I2C1_ER_IRQn); |
| i2c_er_irq_handler(1); |
| IRQ_EXIT(I2C1_ER_IRQn); |
| } |
| #endif // defined(MICROPY_HW_I2C1_SCL) |
| |
| #if defined(MICROPY_HW_I2C2_SCL) |
| void I2C2_EV_IRQHandler(void) { |
| IRQ_ENTER(I2C2_EV_IRQn); |
| i2c_ev_irq_handler(2); |
| IRQ_EXIT(I2C2_EV_IRQn); |
| } |
| |
| void I2C2_ER_IRQHandler(void) { |
| IRQ_ENTER(I2C2_ER_IRQn); |
| i2c_er_irq_handler(2); |
| IRQ_EXIT(I2C2_ER_IRQn); |
| } |
| #endif // defined(MICROPY_HW_I2C2_SCL) |
| |
| #if defined(MICROPY_HW_I2C3_SCL) |
| void I2C3_EV_IRQHandler(void) { |
| IRQ_ENTER(I2C3_EV_IRQn); |
| i2c_ev_irq_handler(3); |
| IRQ_EXIT(I2C3_EV_IRQn); |
| } |
| |
| void I2C3_ER_IRQHandler(void) { |
| IRQ_ENTER(I2C3_ER_IRQn); |
| i2c_er_irq_handler(3); |
| IRQ_EXIT(I2C3_ER_IRQn); |
| } |
| #endif // defined(MICROPY_HW_I2C3_SCL) |
| |
| #if defined(MICROPY_HW_I2C4_SCL) |
| void I2C4_EV_IRQHandler(void) { |
| IRQ_ENTER(I2C4_EV_IRQn); |
| i2c_ev_irq_handler(4); |
| IRQ_EXIT(I2C4_EV_IRQn); |
| } |
| |
| void I2C4_ER_IRQHandler(void) { |
| IRQ_ENTER(I2C4_ER_IRQn); |
| i2c_er_irq_handler(4); |
| IRQ_EXIT(I2C4_ER_IRQn); |
| } |
| #endif // defined(MICROPY_HW_I2C4_SCL) |
| |
| #endif // MICROPY_PY_PYB_LEGACY |