| /* |
| * This file is part of the MicroPython project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include "py/runtime.h" |
| #include "py/mphal.h" |
| #include "irq.h" |
| #include "pin.h" |
| #include "bufhelper.h" |
| #include "dma.h" |
| #include "i2c.h" |
| |
| #if MICROPY_PY_PYB_LEGACY && MICROPY_HW_ENABLE_HW_I2C |
| |
| /// \moduleref pyb |
| /// \class I2C - a two-wire serial protocol |
| /// |
| /// I2C is a two-wire protocol for communicating between devices. At the physical |
| /// level it consists of 2 wires: SCL and SDA, the clock and data lines respectively. |
| /// |
| /// I2C objects are created attached to a specific bus. They can be initialised |
| /// when created, or initialised later on: |
| /// |
| /// from pyb import I2C |
| /// |
| /// i2c = I2C(1) # create on bus 1 |
| /// i2c = I2C(1, I2C.MASTER) # create and init as a master |
| /// i2c.init(I2C.MASTER, baudrate=20000) # init as a master |
| /// i2c.init(I2C.SLAVE, addr=0x42) # init as a slave with given address |
| /// i2c.deinit() # turn off the peripheral |
| /// |
| /// Printing the i2c object gives you information about its configuration. |
| /// |
| /// Basic methods for slave are send and recv: |
| /// |
| /// i2c.send('abc') # send 3 bytes |
| /// i2c.send(0x42) # send a single byte, given by the number |
| /// data = i2c.recv(3) # receive 3 bytes |
| /// |
| /// To receive inplace, first create a bytearray: |
| /// |
| /// data = bytearray(3) # create a buffer |
| /// i2c.recv(data) # receive 3 bytes, writing them into data |
| /// |
| /// You can specify a timeout (in ms): |
| /// |
| /// i2c.send(b'123', timeout=2000) # timout after 2 seconds |
| /// |
| /// A master must specify the recipient's address: |
| /// |
| /// i2c.init(I2C.MASTER) |
| /// i2c.send('123', 0x42) # send 3 bytes to slave with address 0x42 |
| /// i2c.send(b'456', addr=0x42) # keyword for address |
| /// |
| /// Master also has other methods: |
| /// |
| /// i2c.is_ready(0x42) # check if slave 0x42 is ready |
| /// i2c.scan() # scan for slaves on the bus, returning |
| /// # a list of valid addresses |
| /// i2c.mem_read(3, 0x42, 2) # read 3 bytes from memory of slave 0x42, |
| /// # starting at address 2 in the slave |
| /// i2c.mem_write('abc', 0x42, 2, timeout=1000) |
| #define PYB_I2C_MASTER (0) |
| #define PYB_I2C_SLAVE (1) |
| |
| #define PYB_I2C_SPEED_STANDARD (100000L) |
| #define PYB_I2C_SPEED_FULL (400000L) |
| #define PYB_I2C_SPEED_FAST (1000000L) |
| |
| #if defined(MICROPY_HW_I2C1_SCL) |
| I2C_HandleTypeDef I2CHandle1 = {.Instance = NULL}; |
| #endif |
| #if defined(MICROPY_HW_I2C2_SCL) |
| I2C_HandleTypeDef I2CHandle2 = {.Instance = NULL}; |
| #endif |
| #if defined(MICROPY_HW_I2C3_SCL) |
| I2C_HandleTypeDef I2CHandle3 = {.Instance = NULL}; |
| #endif |
| #if defined(MICROPY_HW_I2C4_SCL) |
| I2C_HandleTypeDef I2CHandle4 = {.Instance = NULL}; |
| #endif |
| |
| STATIC bool pyb_i2c_use_dma[4]; |
| |
| const pyb_i2c_obj_t pyb_i2c_obj[] = { |
| #if defined(MICROPY_HW_I2C1_SCL) |
| {{&pyb_i2c_type}, &I2CHandle1, &dma_I2C_1_TX, &dma_I2C_1_RX, &pyb_i2c_use_dma[0]}, |
| #else |
| {{&pyb_i2c_type}, NULL, NULL, NULL, NULL}, |
| #endif |
| #if defined(MICROPY_HW_I2C2_SCL) |
| {{&pyb_i2c_type}, &I2CHandle2, &dma_I2C_2_TX, &dma_I2C_2_RX, &pyb_i2c_use_dma[1]}, |
| #else |
| {{&pyb_i2c_type}, NULL, NULL, NULL, NULL}, |
| #endif |
| #if defined(MICROPY_HW_I2C3_SCL) |
| {{&pyb_i2c_type}, &I2CHandle3, &dma_I2C_3_TX, &dma_I2C_3_RX, &pyb_i2c_use_dma[2]}, |
| #else |
| {{&pyb_i2c_type}, NULL, NULL, NULL, NULL}, |
| #endif |
| #if defined(MICROPY_HW_I2C4_SCL) |
| {{&pyb_i2c_type}, &I2CHandle4, &dma_I2C_4_TX, &dma_I2C_4_RX, &pyb_i2c_use_dma[3]}, |
| #else |
| {{&pyb_i2c_type}, NULL, NULL, NULL, NULL}, |
| #endif |
| }; |
| |
| #if defined(STM32F7) || defined(STM32L4) || defined(STM32H7) |
| |
| // The STM32F0, F3, F7, H7 and L4 use a TIMINGR register rather than ClockSpeed and |
| // DutyCycle. |
| |
| #define PYB_I2C_TIMINGR (1) |
| |
| #if defined(STM32F746xx) |
| |
| // The value 0x40912732 was obtained from the DISCOVERY_I2Cx_TIMING constant |
| // defined in the STM32F7Cube file Drivers/BSP/STM32F746G-Discovery/stm32f7456g_discovery.h |
| #define MICROPY_HW_I2C_BAUDRATE_TIMING { \ |
| {PYB_I2C_SPEED_STANDARD, 0x40912732}, \ |
| {PYB_I2C_SPEED_FULL, 0x10911823}, \ |
| {PYB_I2C_SPEED_FAST, 0x00611116}, \ |
| } |
| #define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_FULL) |
| #define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_FAST) |
| |
| #elif defined(STM32F722xx) || defined(STM32F723xx) \ |
| || defined(STM32F732xx) || defined(STM32F733xx) \ |
| || defined(STM32F765xx) || defined(STM32F767xx) \ |
| || defined(STM32F769xx) |
| |
| // These timing values are for f_I2CCLK=54MHz and are only approximate |
| #define MICROPY_HW_I2C_BAUDRATE_TIMING { \ |
| {PYB_I2C_SPEED_STANDARD, 0xb0420f13}, \ |
| {PYB_I2C_SPEED_FULL, 0x70330309}, \ |
| {PYB_I2C_SPEED_FAST, 0x50100103}, \ |
| } |
| #define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_FULL) |
| #define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_FAST) |
| |
| #elif defined(STM32H7) |
| |
| // I2C TIMINGs obtained from the STHAL examples. |
| #define MICROPY_HW_I2C_BAUDRATE_TIMING { \ |
| {PYB_I2C_SPEED_STANDARD, 0x40604E73}, \ |
| {PYB_I2C_SPEED_FULL, 0x00901954}, \ |
| {PYB_I2C_SPEED_FAST, 0x10810915}, \ |
| } |
| #define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_FULL) |
| #define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_FAST) |
| |
| #elif defined(STM32L4) |
| |
| // The value 0x90112626 was obtained from the DISCOVERY_I2C1_TIMING constant |
| // defined in the STM32L4Cube file Drivers/BSP/STM32L476G-Discovery/stm32l476g_discovery.h |
| #define MICROPY_HW_I2C_BAUDRATE_TIMING {{PYB_I2C_SPEED_STANDARD, 0x90112626}} |
| #define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_STANDARD) |
| #define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_STANDARD) |
| |
| #else |
| #error "no I2C timings for this MCU" |
| #endif |
| |
| STATIC const struct { |
| uint32_t baudrate; |
| uint32_t timing; |
| } pyb_i2c_baudrate_timing[] = MICROPY_HW_I2C_BAUDRATE_TIMING; |
| |
| #define NUM_BAUDRATE_TIMINGS MP_ARRAY_SIZE(pyb_i2c_baudrate_timing) |
| |
| STATIC void i2c_set_baudrate(I2C_InitTypeDef *init, uint32_t baudrate) { |
| for (int i = 0; i < NUM_BAUDRATE_TIMINGS; i++) { |
| if (pyb_i2c_baudrate_timing[i].baudrate == baudrate) { |
| init->Timing = pyb_i2c_baudrate_timing[i].timing; |
| return; |
| } |
| } |
| mp_raise_msg_varg(&mp_type_ValueError, "Unsupported I2C baudrate: %u", baudrate); |
| } |
| |
| uint32_t pyb_i2c_get_baudrate(I2C_HandleTypeDef *i2c) { |
| for (int i = 0; i < NUM_BAUDRATE_TIMINGS; i++) { |
| if (pyb_i2c_baudrate_timing[i].timing == i2c->Init.Timing) { |
| return pyb_i2c_baudrate_timing[i].baudrate; |
| } |
| } |
| return 0; |
| } |
| |
| #else |
| |
| #define PYB_I2C_TIMINGR (0) |
| |
| #define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_FULL) |
| #define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_FULL) |
| |
| STATIC void i2c_set_baudrate(I2C_InitTypeDef *init, uint32_t baudrate) { |
| init->ClockSpeed = baudrate; |
| init->DutyCycle = I2C_DUTYCYCLE_16_9; |
| } |
| |
| uint32_t pyb_i2c_get_baudrate(I2C_HandleTypeDef *i2c) { |
| uint32_t pfreq = i2c->Instance->CR2 & 0x3f; |
| uint32_t ccr = i2c->Instance->CCR & 0xfff; |
| if (i2c->Instance->CCR & 0x8000) { |
| // Fast mode, assume duty cycle of 16/9 |
| return pfreq * 40000 / ccr; |
| } else { |
| // Standard mode |
| return pfreq * 500000 / ccr; |
| } |
| } |
| |
| #endif |
| |
| void i2c_init0(void) { |
| // Initialise the I2C handles. |
| // The structs live on the BSS so all other fields will be zero after a reset. |
| #if defined(MICROPY_HW_I2C1_SCL) |
| I2CHandle1.Instance = I2C1; |
| #endif |
| #if defined(MICROPY_HW_I2C2_SCL) |
| I2CHandle2.Instance = I2C2; |
| #endif |
| #if defined(MICROPY_HW_I2C3_SCL) |
| I2CHandle3.Instance = I2C3; |
| #endif |
| #if defined(MICROPY_HW_I2C4_SCL) |
| I2CHandle4.Instance = I2C4; |
| #endif |
| } |
| |
| void pyb_i2c_init(I2C_HandleTypeDef *i2c) { |
| int i2c_unit; |
| const pin_obj_t *scl_pin; |
| const pin_obj_t *sda_pin; |
| |
| if (0) { |
| #if defined(MICROPY_HW_I2C1_SCL) |
| } else if (i2c == &I2CHandle1) { |
| i2c_unit = 1; |
| scl_pin = MICROPY_HW_I2C1_SCL; |
| sda_pin = MICROPY_HW_I2C1_SDA; |
| __HAL_RCC_I2C1_CLK_ENABLE(); |
| #endif |
| #if defined(MICROPY_HW_I2C2_SCL) |
| } else if (i2c == &I2CHandle2) { |
| i2c_unit = 2; |
| scl_pin = MICROPY_HW_I2C2_SCL; |
| sda_pin = MICROPY_HW_I2C2_SDA; |
| __HAL_RCC_I2C2_CLK_ENABLE(); |
| #endif |
| #if defined(MICROPY_HW_I2C3_SCL) |
| } else if (i2c == &I2CHandle3) { |
| i2c_unit = 3; |
| scl_pin = MICROPY_HW_I2C3_SCL; |
| sda_pin = MICROPY_HW_I2C3_SDA; |
| __HAL_RCC_I2C3_CLK_ENABLE(); |
| #endif |
| #if defined(MICROPY_HW_I2C4_SCL) |
| } else if (i2c == &I2CHandle4) { |
| i2c_unit = 4; |
| scl_pin = MICROPY_HW_I2C4_SCL; |
| sda_pin = MICROPY_HW_I2C4_SDA; |
| __HAL_RCC_I2C4_CLK_ENABLE(); |
| #endif |
| } else { |
| // I2C does not exist for this board (shouldn't get here, should be checked by caller) |
| return; |
| } |
| |
| // init the GPIO lines |
| uint32_t mode = MP_HAL_PIN_MODE_ALT_OPEN_DRAIN; |
| uint32_t pull = MP_HAL_PIN_PULL_NONE; // have external pull-up resistors on both lines |
| mp_hal_pin_config_alt(scl_pin, mode, pull, AF_FN_I2C, i2c_unit); |
| mp_hal_pin_config_alt(sda_pin, mode, pull, AF_FN_I2C, i2c_unit); |
| |
| // init the I2C device |
| if (HAL_I2C_Init(i2c) != HAL_OK) { |
| // init error |
| // TODO should raise an exception, but this function is not necessarily going to be |
| // called via Python, so may not be properly wrapped in an NLR handler |
| printf("OSError: HAL_I2C_Init failed\n"); |
| return; |
| } |
| |
| // invalidate the DMA channels so they are initialised on first use |
| const pyb_i2c_obj_t *self = &pyb_i2c_obj[i2c_unit - 1]; |
| dma_invalidate_channel(self->tx_dma_descr); |
| dma_invalidate_channel(self->rx_dma_descr); |
| |
| if (0) { |
| #if defined(MICROPY_HW_I2C1_SCL) |
| } else if (i2c->Instance == I2C1) { |
| HAL_NVIC_EnableIRQ(I2C1_EV_IRQn); |
| HAL_NVIC_EnableIRQ(I2C1_ER_IRQn); |
| #endif |
| #if defined(MICROPY_HW_I2C2_SCL) |
| } else if (i2c->Instance == I2C2) { |
| HAL_NVIC_EnableIRQ(I2C2_EV_IRQn); |
| HAL_NVIC_EnableIRQ(I2C2_ER_IRQn); |
| #endif |
| #if defined(MICROPY_HW_I2C3_SCL) |
| } else if (i2c->Instance == I2C3) { |
| HAL_NVIC_EnableIRQ(I2C3_EV_IRQn); |
| HAL_NVIC_EnableIRQ(I2C3_ER_IRQn); |
| #endif |
| #if defined(MICROPY_HW_I2C4_SCL) |
| } else if (i2c->Instance == I2C4) { |
| HAL_NVIC_EnableIRQ(I2C4_EV_IRQn); |
| HAL_NVIC_EnableIRQ(I2C4_ER_IRQn); |
| #endif |
| } |
| } |
| |
| void i2c_deinit(I2C_HandleTypeDef *i2c) { |
| HAL_I2C_DeInit(i2c); |
| if (0) { |
| #if defined(MICROPY_HW_I2C1_SCL) |
| } else if (i2c->Instance == I2C1) { |
| __HAL_RCC_I2C1_FORCE_RESET(); |
| __HAL_RCC_I2C1_RELEASE_RESET(); |
| __HAL_RCC_I2C1_CLK_DISABLE(); |
| HAL_NVIC_DisableIRQ(I2C1_EV_IRQn); |
| HAL_NVIC_DisableIRQ(I2C1_ER_IRQn); |
| #endif |
| #if defined(MICROPY_HW_I2C2_SCL) |
| } else if (i2c->Instance == I2C2) { |
| __HAL_RCC_I2C2_FORCE_RESET(); |
| __HAL_RCC_I2C2_RELEASE_RESET(); |
| __HAL_RCC_I2C2_CLK_DISABLE(); |
| HAL_NVIC_DisableIRQ(I2C2_EV_IRQn); |
| HAL_NVIC_DisableIRQ(I2C2_ER_IRQn); |
| #endif |
| #if defined(MICROPY_HW_I2C3_SCL) |
| } else if (i2c->Instance == I2C3) { |
| __HAL_RCC_I2C3_FORCE_RESET(); |
| __HAL_RCC_I2C3_RELEASE_RESET(); |
| __HAL_RCC_I2C3_CLK_DISABLE(); |
| HAL_NVIC_DisableIRQ(I2C3_EV_IRQn); |
| HAL_NVIC_DisableIRQ(I2C3_ER_IRQn); |
| #endif |
| #if defined(MICROPY_HW_I2C4_SCL) |
| } else if (i2c->Instance == I2C4) { |
| __HAL_RCC_I2C4_FORCE_RESET(); |
| __HAL_RCC_I2C4_RELEASE_RESET(); |
| __HAL_RCC_I2C4_CLK_DISABLE(); |
| HAL_NVIC_DisableIRQ(I2C4_EV_IRQn); |
| HAL_NVIC_DisableIRQ(I2C4_ER_IRQn); |
| #endif |
| } |
| } |
| |
| void pyb_i2c_init_freq(const pyb_i2c_obj_t *self, mp_int_t freq) { |
| I2C_InitTypeDef *init = &self->i2c->Init; |
| |
| init->AddressingMode = I2C_ADDRESSINGMODE_7BIT; |
| init->DualAddressMode = I2C_DUALADDRESS_DISABLED; |
| init->GeneralCallMode = I2C_GENERALCALL_DISABLED; |
| init->NoStretchMode = I2C_NOSTRETCH_DISABLE; |
| init->OwnAddress1 = PYB_I2C_MASTER_ADDRESS; |
| init->OwnAddress2 = 0; // unused |
| if (freq != -1) { |
| i2c_set_baudrate(init, MIN(freq, MICROPY_HW_I2C_BAUDRATE_MAX)); |
| } |
| |
| *self->use_dma = false; |
| |
| // init the I2C bus |
| i2c_deinit(self->i2c); |
| pyb_i2c_init(self->i2c); |
| } |
| |
| STATIC void i2c_reset_after_error(I2C_HandleTypeDef *i2c) { |
| // wait for bus-busy flag to be cleared, with a timeout |
| for (int timeout = 50; timeout > 0; --timeout) { |
| if (!__HAL_I2C_GET_FLAG(i2c, I2C_FLAG_BUSY)) { |
| // stop bit was generated and bus is back to normal |
| return; |
| } |
| mp_hal_delay_ms(1); |
| } |
| // bus was/is busy, need to reset the peripheral to get it to work again |
| i2c_deinit(i2c); |
| pyb_i2c_init(i2c); |
| } |
| |
| void i2c_ev_irq_handler(mp_uint_t i2c_id) { |
| I2C_HandleTypeDef *hi2c; |
| |
| switch (i2c_id) { |
| #if defined(MICROPY_HW_I2C1_SCL) |
| case 1: |
| hi2c = &I2CHandle1; |
| break; |
| #endif |
| #if defined(MICROPY_HW_I2C2_SCL) |
| case 2: |
| hi2c = &I2CHandle2; |
| break; |
| #endif |
| #if defined(MICROPY_HW_I2C3_SCL) |
| case 3: |
| hi2c = &I2CHandle3; |
| break; |
| #endif |
| #if defined(MICROPY_HW_I2C4_SCL) |
| case 4: |
| hi2c = &I2CHandle4; |
| break; |
| #endif |
| default: |
| return; |
| } |
| |
| #if defined(STM32F4) |
| |
| if (hi2c->Instance->SR1 & I2C_FLAG_BTF && hi2c->State == HAL_I2C_STATE_BUSY_TX) { |
| if (hi2c->XferCount != 0U) { |
| hi2c->Instance->DR = *hi2c->pBuffPtr++; |
| hi2c->XferCount--; |
| } else { |
| __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR); |
| if (hi2c->XferOptions != I2C_FIRST_FRAME) { |
| hi2c->Instance->CR1 |= I2C_CR1_STOP; |
| } |
| hi2c->Mode = HAL_I2C_MODE_NONE; |
| hi2c->State = HAL_I2C_STATE_READY; |
| } |
| } |
| |
| #else |
| |
| // if not an F4 MCU, use the HAL's IRQ handler |
| HAL_I2C_EV_IRQHandler(hi2c); |
| |
| #endif |
| } |
| |
| void i2c_er_irq_handler(mp_uint_t i2c_id) { |
| I2C_HandleTypeDef *hi2c; |
| |
| switch (i2c_id) { |
| #if defined(MICROPY_HW_I2C1_SCL) |
| case 1: |
| hi2c = &I2CHandle1; |
| break; |
| #endif |
| #if defined(MICROPY_HW_I2C2_SCL) |
| case 2: |
| hi2c = &I2CHandle2; |
| break; |
| #endif |
| #if defined(MICROPY_HW_I2C3_SCL) |
| case 3: |
| hi2c = &I2CHandle3; |
| break; |
| #endif |
| #if defined(MICROPY_HW_I2C4_SCL) |
| case 4: |
| hi2c = &I2CHandle4; |
| break; |
| #endif |
| default: |
| return; |
| } |
| |
| #if defined(STM32F4) |
| |
| uint32_t sr1 = hi2c->Instance->SR1; |
| |
| // I2C Bus error |
| if (sr1 & I2C_FLAG_BERR) { |
| hi2c->ErrorCode |= HAL_I2C_ERROR_BERR; |
| __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_BERR); |
| } |
| |
| // I2C Arbitration Loss error |
| if (sr1 & I2C_FLAG_ARLO) { |
| hi2c->ErrorCode |= HAL_I2C_ERROR_ARLO; |
| __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ARLO); |
| } |
| |
| // I2C Acknowledge failure |
| if (sr1 & I2C_FLAG_AF) { |
| hi2c->ErrorCode |= HAL_I2C_ERROR_AF; |
| SET_BIT(hi2c->Instance->CR1,I2C_CR1_STOP); |
| __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); |
| } |
| |
| // I2C Over-Run/Under-Run |
| if (sr1 & I2C_FLAG_OVR) { |
| hi2c->ErrorCode |= HAL_I2C_ERROR_OVR; |
| __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_OVR); |
| } |
| |
| #else |
| |
| // if not an F4 MCU, use the HAL's IRQ handler |
| HAL_I2C_ER_IRQHandler(hi2c); |
| |
| #endif |
| } |
| |
| STATIC HAL_StatusTypeDef i2c_wait_dma_finished(I2C_HandleTypeDef *i2c, uint32_t timeout) { |
| // Note: we can't use WFI to idle in this loop because the DMA completion |
| // interrupt may occur before the WFI. Hence we miss it and have to wait |
| // until the next sys-tick (up to 1ms). |
| uint32_t start = HAL_GetTick(); |
| while (HAL_I2C_GetState(i2c) != HAL_I2C_STATE_READY) { |
| if (HAL_GetTick() - start >= timeout) { |
| return HAL_TIMEOUT; |
| } |
| } |
| return HAL_OK; |
| } |
| |
| /******************************************************************************/ |
| /* MicroPython bindings */ |
| |
| static inline bool in_master_mode(pyb_i2c_obj_t *self) { |
| return self->i2c->Init.OwnAddress1 == PYB_I2C_MASTER_ADDRESS; |
| } |
| |
| STATIC void pyb_i2c_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { |
| pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in); |
| |
| uint i2c_num = 0; |
| if (0) { |
| } |
| #if defined(MICROPY_HW_I2C1_SCL) |
| else if (self->i2c->Instance == I2C1) { |
| i2c_num = 1; |
| } |
| #endif |
| #if defined(MICROPY_HW_I2C2_SCL) |
| else if (self->i2c->Instance == I2C2) { |
| i2c_num = 2; |
| } |
| #endif |
| #if defined(MICROPY_HW_I2C3_SCL) |
| else if (self->i2c->Instance == I2C3) { |
| i2c_num = 3; |
| } |
| #endif |
| #if defined(MICROPY_HW_I2C4_SCL) |
| else if (self->i2c->Instance == I2C4) { |
| i2c_num = 4; |
| } |
| #endif |
| |
| if (self->i2c->State == HAL_I2C_STATE_RESET) { |
| mp_printf(print, "I2C(%u)", i2c_num); |
| } else { |
| if (in_master_mode(self)) { |
| mp_printf(print, "I2C(%u, I2C.MASTER, baudrate=%u" |
| #if PYB_I2C_TIMINGR |
| ", timingr=0x%08x" |
| #endif |
| ")", i2c_num, pyb_i2c_get_baudrate(self->i2c) |
| #if PYB_I2C_TIMINGR |
| , self->i2c->Init.Timing |
| #endif |
| ); |
| } else { |
| mp_printf(print, "I2C(%u, I2C.SLAVE, addr=0x%02x)", i2c_num, (self->i2c->Instance->OAR1 >> 1) & 0x7f); |
| } |
| } |
| } |
| |
| /// \method init(mode, *, addr=0x12, baudrate=400000, gencall=False) |
| /// |
| /// Initialise the I2C bus with the given parameters: |
| /// |
| /// - `mode` must be either `I2C.MASTER` or `I2C.SLAVE` |
| /// - `addr` is the 7-bit address (only sensible for a slave) |
| /// - `baudrate` is the SCL clock rate (only sensible for a master) |
| /// - `gencall` is whether to support general call mode |
| STATIC mp_obj_t pyb_i2c_init_helper(const pyb_i2c_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { |
| static const mp_arg_t allowed_args[] = { |
| { MP_QSTR_mode, MP_ARG_INT, {.u_int = PYB_I2C_MASTER} }, |
| { MP_QSTR_addr, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0x12} }, |
| { MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = MICROPY_HW_I2C_BAUDRATE_DEFAULT} }, |
| { MP_QSTR_gencall, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, |
| { MP_QSTR_dma, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, |
| #if PYB_I2C_TIMINGR |
| { MP_QSTR_timingr, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, |
| #endif |
| }; |
| |
| // parse args |
| mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; |
| mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); |
| |
| // set the I2C configuration values |
| I2C_InitTypeDef *init = &self->i2c->Init; |
| |
| if (args[0].u_int == PYB_I2C_MASTER) { |
| // use a special address to indicate we are a master |
| init->OwnAddress1 = PYB_I2C_MASTER_ADDRESS; |
| } else { |
| init->OwnAddress1 = (args[1].u_int << 1) & 0xfe; |
| } |
| |
| // Set baudrate or timing value (if supported) |
| #if PYB_I2C_TIMINGR |
| if (args[5].u_obj != mp_const_none) { |
| init->Timing = mp_obj_get_int_truncated(args[5].u_obj); |
| } else |
| #endif |
| { |
| i2c_set_baudrate(init, MIN(args[2].u_int, MICROPY_HW_I2C_BAUDRATE_MAX)); |
| } |
| |
| init->AddressingMode = I2C_ADDRESSINGMODE_7BIT; |
| init->DualAddressMode = I2C_DUALADDRESS_DISABLED; |
| init->GeneralCallMode = args[3].u_bool ? I2C_GENERALCALL_ENABLED : I2C_GENERALCALL_DISABLED; |
| init->OwnAddress2 = 0; // unused |
| init->NoStretchMode = I2C_NOSTRETCH_DISABLE; |
| |
| *self->use_dma = args[4].u_bool; |
| |
| // init the I2C bus |
| i2c_deinit(self->i2c); |
| pyb_i2c_init(self->i2c); |
| |
| return mp_const_none; |
| } |
| |
| /// \classmethod \constructor(bus, ...) |
| /// |
| /// Construct an I2C object on the given bus. `bus` can be 1 or 2. |
| /// With no additional parameters, the I2C object is created but not |
| /// initialised (it has the settings from the last initialisation of |
| /// the bus, if any). If extra arguments are given, the bus is initialised. |
| /// See `init` for parameters of initialisation. |
| /// |
| /// The physical pins of the I2C busses are: |
| /// |
| /// - `I2C(1)` is on the X position: `(SCL, SDA) = (X9, X10) = (PB6, PB7)` |
| /// - `I2C(2)` is on the Y position: `(SCL, SDA) = (Y9, Y10) = (PB10, PB11)` |
| STATIC mp_obj_t pyb_i2c_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
| // check arguments |
| mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); |
| |
| // work out i2c bus |
| int i2c_id = 0; |
| if (mp_obj_is_str(args[0])) { |
| const char *port = mp_obj_str_get_str(args[0]); |
| if (0) { |
| #ifdef MICROPY_HW_I2C1_NAME |
| } else if (strcmp(port, MICROPY_HW_I2C1_NAME) == 0) { |
| i2c_id = 1; |
| #endif |
| #ifdef MICROPY_HW_I2C2_NAME |
| } else if (strcmp(port, MICROPY_HW_I2C2_NAME) == 0) { |
| i2c_id = 2; |
| #endif |
| #ifdef MICROPY_HW_I2C3_NAME |
| } else if (strcmp(port, MICROPY_HW_I2C3_NAME) == 0) { |
| i2c_id = 3; |
| #endif |
| #ifdef MICROPY_HW_I2C4_NAME |
| } else if (strcmp(port, MICROPY_HW_I2C4_NAME) == 0) { |
| i2c_id = 4; |
| #endif |
| } else { |
| mp_raise_msg_varg(&mp_type_ValueError, "I2C(%s) doesn't exist", port); |
| } |
| } else { |
| i2c_id = mp_obj_get_int(args[0]); |
| if (i2c_id < 1 || i2c_id > MP_ARRAY_SIZE(pyb_i2c_obj) |
| || pyb_i2c_obj[i2c_id - 1].i2c == NULL) { |
| mp_raise_msg_varg(&mp_type_ValueError, "I2C(%d) doesn't exist", i2c_id); |
| } |
| } |
| |
| // get I2C object |
| const pyb_i2c_obj_t *i2c_obj = &pyb_i2c_obj[i2c_id - 1]; |
| |
| if (n_args > 1 || n_kw > 0) { |
| // start the peripheral |
| mp_map_t kw_args; |
| mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); |
| pyb_i2c_init_helper(i2c_obj, n_args - 1, args + 1, &kw_args); |
| } |
| |
| return MP_OBJ_FROM_PTR(i2c_obj); |
| } |
| |
| STATIC mp_obj_t pyb_i2c_init_(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| return pyb_i2c_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_init_obj, 1, pyb_i2c_init_); |
| |
| /// \method deinit() |
| /// Turn off the I2C bus. |
| STATIC mp_obj_t pyb_i2c_deinit(mp_obj_t self_in) { |
| pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in); |
| i2c_deinit(self->i2c); |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_deinit_obj, pyb_i2c_deinit); |
| |
| /// \method is_ready(addr) |
| /// Check if an I2C device responds to the given address. Only valid when in master mode. |
| STATIC mp_obj_t pyb_i2c_is_ready(mp_obj_t self_in, mp_obj_t i2c_addr_o) { |
| pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in); |
| |
| if (!in_master_mode(self)) { |
| mp_raise_TypeError("I2C must be a master"); |
| } |
| |
| mp_uint_t i2c_addr = mp_obj_get_int(i2c_addr_o) << 1; |
| |
| for (int i = 0; i < 10; i++) { |
| HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, i2c_addr, 10, 200); |
| if (status == HAL_OK) { |
| return mp_const_true; |
| } |
| } |
| |
| return mp_const_false; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_i2c_is_ready_obj, pyb_i2c_is_ready); |
| |
| /// \method scan() |
| /// Scan all I2C addresses from 0x08 to 0x77 and return a list of those that respond. |
| /// Only valid when in master mode. |
| STATIC mp_obj_t pyb_i2c_scan(mp_obj_t self_in) { |
| pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in); |
| |
| if (!in_master_mode(self)) { |
| mp_raise_TypeError("I2C must be a master"); |
| } |
| |
| mp_obj_t list = mp_obj_new_list(0, NULL); |
| |
| for (uint addr = 0x08; addr <= 0x77; addr++) { |
| HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, addr << 1, 1, 200); |
| if (status == HAL_OK) { |
| mp_obj_list_append(list, MP_OBJ_NEW_SMALL_INT(addr)); |
| } |
| } |
| |
| return list; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_scan_obj, pyb_i2c_scan); |
| |
| /// \method send(send, addr=0x00, timeout=5000) |
| /// Send data on the bus: |
| /// |
| /// - `send` is the data to send (an integer to send, or a buffer object) |
| /// - `addr` is the address to send to (only required in master mode) |
| /// - `timeout` is the timeout in milliseconds to wait for the send |
| /// |
| /// Return value: `None`. |
| STATIC mp_obj_t pyb_i2c_send(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { |
| static const mp_arg_t allowed_args[] = { |
| { MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, |
| { MP_QSTR_addr, MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} }, |
| { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, |
| }; |
| |
| // parse args |
| pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); |
| mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; |
| mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); |
| |
| // get the buffer to send from |
| mp_buffer_info_t bufinfo; |
| uint8_t data[1]; |
| pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data); |
| |
| // if option is set and IRQs are enabled then we can use DMA |
| bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED; |
| |
| DMA_HandleTypeDef tx_dma; |
| if (use_dma) { |
| dma_init(&tx_dma, self->tx_dma_descr, DMA_MEMORY_TO_PERIPH, self->i2c); |
| self->i2c->hdmatx = &tx_dma; |
| self->i2c->hdmarx = NULL; |
| } |
| |
| // send the data |
| HAL_StatusTypeDef status; |
| if (in_master_mode(self)) { |
| if (args[1].u_int == PYB_I2C_MASTER_ADDRESS) { |
| if (use_dma) { |
| dma_deinit(self->tx_dma_descr); |
| } |
| mp_raise_TypeError("addr argument required"); |
| } |
| mp_uint_t i2c_addr = args[1].u_int << 1; |
| if (!use_dma) { |
| status = HAL_I2C_Master_Transmit(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len, args[2].u_int); |
| } else { |
| MP_HAL_CLEAN_DCACHE(bufinfo.buf, bufinfo.len); |
| status = HAL_I2C_Master_Transmit_DMA(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len); |
| } |
| } else { |
| if (!use_dma) { |
| status = HAL_I2C_Slave_Transmit(self->i2c, bufinfo.buf, bufinfo.len, args[2].u_int); |
| } else { |
| MP_HAL_CLEAN_DCACHE(bufinfo.buf, bufinfo.len); |
| status = HAL_I2C_Slave_Transmit_DMA(self->i2c, bufinfo.buf, bufinfo.len); |
| } |
| } |
| |
| // if we used DMA, wait for it to finish |
| if (use_dma) { |
| if (status == HAL_OK) { |
| status = i2c_wait_dma_finished(self->i2c, args[2].u_int); |
| } |
| dma_deinit(self->tx_dma_descr); |
| } |
| |
| if (status != HAL_OK) { |
| i2c_reset_after_error(self->i2c); |
| mp_hal_raise(status); |
| } |
| |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_send_obj, 1, pyb_i2c_send); |
| |
| /// \method recv(recv, addr=0x00, timeout=5000) |
| /// |
| /// Receive data on the bus: |
| /// |
| /// - `recv` can be an integer, which is the number of bytes to receive, |
| /// or a mutable buffer, which will be filled with received bytes |
| /// - `addr` is the address to receive from (only required in master mode) |
| /// - `timeout` is the timeout in milliseconds to wait for the receive |
| /// |
| /// Return value: if `recv` is an integer then a new buffer of the bytes received, |
| /// otherwise the same buffer that was passed in to `recv`. |
| STATIC mp_obj_t pyb_i2c_recv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { |
| static const mp_arg_t allowed_args[] = { |
| { MP_QSTR_recv, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, |
| { MP_QSTR_addr, MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} }, |
| { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, |
| }; |
| |
| // parse args |
| pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); |
| mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; |
| mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); |
| |
| // get the buffer to receive into |
| vstr_t vstr; |
| mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr); |
| |
| // if option is set and IRQs are enabled then we can use DMA |
| bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED; |
| |
| DMA_HandleTypeDef rx_dma; |
| if (use_dma) { |
| dma_init(&rx_dma, self->rx_dma_descr, DMA_PERIPH_TO_MEMORY, self->i2c); |
| self->i2c->hdmatx = NULL; |
| self->i2c->hdmarx = &rx_dma; |
| } |
| |
| // receive the data |
| HAL_StatusTypeDef status; |
| if (in_master_mode(self)) { |
| if (args[1].u_int == PYB_I2C_MASTER_ADDRESS) { |
| mp_raise_TypeError("addr argument required"); |
| } |
| mp_uint_t i2c_addr = args[1].u_int << 1; |
| if (!use_dma) { |
| status = HAL_I2C_Master_Receive(self->i2c, i2c_addr, (uint8_t *)vstr.buf, vstr.len, args[2].u_int); |
| } else { |
| MP_HAL_CLEANINVALIDATE_DCACHE(vstr.buf, vstr.len); |
| status = HAL_I2C_Master_Receive_DMA(self->i2c, i2c_addr, (uint8_t *)vstr.buf, vstr.len); |
| } |
| } else { |
| if (!use_dma) { |
| status = HAL_I2C_Slave_Receive(self->i2c, (uint8_t *)vstr.buf, vstr.len, args[2].u_int); |
| } else { |
| MP_HAL_CLEANINVALIDATE_DCACHE(vstr.buf, vstr.len); |
| status = HAL_I2C_Slave_Receive_DMA(self->i2c, (uint8_t *)vstr.buf, vstr.len); |
| } |
| } |
| |
| // if we used DMA, wait for it to finish |
| if (use_dma) { |
| if (status == HAL_OK) { |
| status = i2c_wait_dma_finished(self->i2c, args[2].u_int); |
| } |
| dma_deinit(self->rx_dma_descr); |
| } |
| |
| if (status != HAL_OK) { |
| i2c_reset_after_error(self->i2c); |
| mp_hal_raise(status); |
| } |
| |
| // return the received data |
| if (o_ret != MP_OBJ_NULL) { |
| return o_ret; |
| } else { |
| return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_recv_obj, 1, pyb_i2c_recv); |
| |
| /// \method mem_read(data, addr, memaddr, timeout=5000, addr_size=8) |
| /// |
| /// Read from the memory of an I2C device: |
| /// |
| /// - `data` can be an integer or a buffer to read into |
| /// - `addr` is the I2C device address |
| /// - `memaddr` is the memory location within the I2C device |
| /// - `timeout` is the timeout in milliseconds to wait for the read |
| /// - `addr_size` selects width of memaddr: 8 or 16 bits |
| /// |
| /// Returns the read data. |
| /// This is only valid in master mode. |
| STATIC const mp_arg_t pyb_i2c_mem_read_allowed_args[] = { |
| { MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, |
| { MP_QSTR_addr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, |
| { MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, |
| { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, |
| { MP_QSTR_addr_size, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, |
| }; |
| |
| STATIC mp_obj_t pyb_i2c_mem_read(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { |
| // parse args |
| pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); |
| mp_arg_val_t args[MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args)]; |
| mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args), pyb_i2c_mem_read_allowed_args, args); |
| |
| if (!in_master_mode(self)) { |
| mp_raise_TypeError("I2C must be a master"); |
| } |
| |
| // get the buffer to read into |
| vstr_t vstr; |
| mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr); |
| |
| // get the addresses |
| mp_uint_t i2c_addr = args[1].u_int << 1; |
| mp_uint_t mem_addr = args[2].u_int; |
| // determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width |
| mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT; |
| if (args[4].u_int != 8) { |
| mem_addr_size = I2C_MEMADD_SIZE_16BIT; |
| } |
| |
| // if option is set and IRQs are enabled then we can use DMA |
| bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED; |
| |
| HAL_StatusTypeDef status; |
| if (!use_dma) { |
| status = HAL_I2C_Mem_Read(self->i2c, i2c_addr, mem_addr, mem_addr_size, (uint8_t *)vstr.buf, vstr.len, args[3].u_int); |
| } else { |
| DMA_HandleTypeDef rx_dma; |
| dma_init(&rx_dma, self->rx_dma_descr, DMA_PERIPH_TO_MEMORY, self->i2c); |
| self->i2c->hdmatx = NULL; |
| self->i2c->hdmarx = &rx_dma; |
| MP_HAL_CLEANINVALIDATE_DCACHE(vstr.buf, vstr.len); |
| status = HAL_I2C_Mem_Read_DMA(self->i2c, i2c_addr, mem_addr, mem_addr_size, (uint8_t *)vstr.buf, vstr.len); |
| if (status == HAL_OK) { |
| status = i2c_wait_dma_finished(self->i2c, args[3].u_int); |
| } |
| dma_deinit(self->rx_dma_descr); |
| } |
| |
| if (status != HAL_OK) { |
| i2c_reset_after_error(self->i2c); |
| mp_hal_raise(status); |
| } |
| |
| // return the read data |
| if (o_ret != MP_OBJ_NULL) { |
| return o_ret; |
| } else { |
| return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_read_obj, 1, pyb_i2c_mem_read); |
| |
| /// \method mem_write(data, addr, memaddr, timeout=5000, addr_size=8) |
| /// |
| /// Write to the memory of an I2C device: |
| /// |
| /// - `data` can be an integer or a buffer to write from |
| /// - `addr` is the I2C device address |
| /// - `memaddr` is the memory location within the I2C device |
| /// - `timeout` is the timeout in milliseconds to wait for the write |
| /// - `addr_size` selects width of memaddr: 8 or 16 bits |
| /// |
| /// Returns `None`. |
| /// This is only valid in master mode. |
| STATIC mp_obj_t pyb_i2c_mem_write(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { |
| // parse args (same as mem_read) |
| pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); |
| mp_arg_val_t args[MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args)]; |
| mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args), pyb_i2c_mem_read_allowed_args, args); |
| |
| if (!in_master_mode(self)) { |
| mp_raise_TypeError("I2C must be a master"); |
| } |
| |
| // get the buffer to write from |
| mp_buffer_info_t bufinfo; |
| uint8_t data[1]; |
| pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data); |
| |
| // get the addresses |
| mp_uint_t i2c_addr = args[1].u_int << 1; |
| mp_uint_t mem_addr = args[2].u_int; |
| // determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width |
| mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT; |
| if (args[4].u_int != 8) { |
| mem_addr_size = I2C_MEMADD_SIZE_16BIT; |
| } |
| |
| // if option is set and IRQs are enabled then we can use DMA |
| bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED; |
| |
| HAL_StatusTypeDef status; |
| if (!use_dma) { |
| status = HAL_I2C_Mem_Write(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len, args[3].u_int); |
| } else { |
| DMA_HandleTypeDef tx_dma; |
| dma_init(&tx_dma, self->tx_dma_descr, DMA_MEMORY_TO_PERIPH, self->i2c); |
| self->i2c->hdmatx = &tx_dma; |
| self->i2c->hdmarx = NULL; |
| MP_HAL_CLEAN_DCACHE(bufinfo.buf, bufinfo.len); |
| status = HAL_I2C_Mem_Write_DMA(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len); |
| if (status == HAL_OK) { |
| status = i2c_wait_dma_finished(self->i2c, args[3].u_int); |
| } |
| dma_deinit(self->tx_dma_descr); |
| } |
| |
| if (status != HAL_OK) { |
| i2c_reset_after_error(self->i2c); |
| mp_hal_raise(status); |
| } |
| |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_write_obj, 1, pyb_i2c_mem_write); |
| |
| STATIC const mp_rom_map_elem_t pyb_i2c_locals_dict_table[] = { |
| // instance methods |
| { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_i2c_init_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_i2c_deinit_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_is_ready), MP_ROM_PTR(&pyb_i2c_is_ready_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_scan), MP_ROM_PTR(&pyb_i2c_scan_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&pyb_i2c_send_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&pyb_i2c_recv_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_mem_read), MP_ROM_PTR(&pyb_i2c_mem_read_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_mem_write), MP_ROM_PTR(&pyb_i2c_mem_write_obj) }, |
| |
| // class constants |
| /// \constant MASTER - for initialising the bus to master mode |
| /// \constant SLAVE - for initialising the bus to slave mode |
| { MP_ROM_QSTR(MP_QSTR_MASTER), MP_ROM_INT(PYB_I2C_MASTER) }, |
| { MP_ROM_QSTR(MP_QSTR_SLAVE), MP_ROM_INT(PYB_I2C_SLAVE) }, |
| }; |
| |
| STATIC MP_DEFINE_CONST_DICT(pyb_i2c_locals_dict, pyb_i2c_locals_dict_table); |
| |
| const mp_obj_type_t pyb_i2c_type = { |
| { &mp_type_type }, |
| .name = MP_QSTR_I2C, |
| .print = pyb_i2c_print, |
| .make_new = pyb_i2c_make_new, |
| .locals_dict = (mp_obj_dict_t *)&pyb_i2c_locals_dict, |
| }; |
| |
| #endif // MICROPY_PY_PYB_LEGACY && MICROPY_HW_ENABLE_HW_I2C |