| /* |
| * This file is part of the MicroPython project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| #include <stdarg.h> |
| |
| #include "py/nlr.h" |
| #include "py/runtime.h" |
| #include "py/stream.h" |
| #include "py/mperrno.h" |
| #include "py/mphal.h" |
| #include "uart.h" |
| #include "irq.h" |
| #include "genhdr/pins.h" |
| |
| /// \moduleref pyb |
| /// \class UART - duplex serial communication bus |
| /// |
| /// UART implements the standard UART/USART duplex serial communications protocol. At |
| /// the physical level it consists of 2 lines: RX and TX. The unit of communication |
| /// is a character (not to be confused with a string character) which can be 8 or 9 |
| /// bits wide. |
| /// |
| /// UART objects can be created and initialised using: |
| /// |
| /// from pyb import UART |
| /// |
| /// uart = UART(1, 9600) # init with given baudrate |
| /// uart.init(9600, bits=8, parity=None, stop=1) # init with given parameters |
| /// |
| /// Bits can be 8 or 9. Parity can be None, 0 (even) or 1 (odd). Stop can be 1 or 2. |
| /// |
| /// A UART object acts like a stream object and reading and writing is done |
| /// using the standard stream methods: |
| /// |
| /// uart.read(10) # read 10 characters, returns a bytes object |
| /// uart.read() # read all available characters |
| /// uart.readline() # read a line |
| /// uart.readinto(buf) # read and store into the given buffer |
| /// uart.write('abc') # write the 3 characters |
| /// |
| /// Individual characters can be read/written using: |
| /// |
| /// uart.readchar() # read 1 character and returns it as an integer |
| /// uart.writechar(42) # write 1 character |
| /// |
| /// To check if there is anything to be read, use: |
| /// |
| /// uart.any() # returns True if any characters waiting |
| |
| #define CHAR_WIDTH_8BIT (0) |
| #define CHAR_WIDTH_9BIT (1) |
| |
| struct _pyb_uart_obj_t { |
| mp_obj_base_t base; |
| UART_HandleTypeDef uart; // this is 17 words big |
| IRQn_Type irqn; |
| pyb_uart_t uart_id : 8; |
| bool is_enabled : 1; |
| byte char_width; // 0 for 7,8 bit chars, 1 for 9 bit chars |
| uint16_t char_mask; // 0x7f for 7 bit, 0xff for 8 bit, 0x1ff for 9 bit |
| uint16_t timeout; // timeout waiting for first char |
| uint16_t timeout_char; // timeout waiting between chars |
| uint16_t read_buf_len; // len in chars; buf can hold len-1 chars |
| volatile uint16_t read_buf_head; // indexes first empty slot |
| uint16_t read_buf_tail; // indexes first full slot (not full if equals head) |
| byte *read_buf; // byte or uint16_t, depending on char size |
| }; |
| |
| STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in); |
| |
| void uart_init0(void) { |
| for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) { |
| MP_STATE_PORT(pyb_uart_obj_all)[i] = NULL; |
| } |
| } |
| |
| // unregister all interrupt sources |
| void uart_deinit(void) { |
| for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) { |
| pyb_uart_obj_t *uart_obj = MP_STATE_PORT(pyb_uart_obj_all)[i]; |
| if (uart_obj != NULL) { |
| pyb_uart_deinit(uart_obj); |
| } |
| } |
| } |
| |
| STATIC bool uart_exists(int uart_id) { |
| if (uart_id > MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all))) { |
| // safeguard against pyb_uart_obj_all array being configured too small |
| return false; |
| } |
| switch (uart_id) { |
| #if defined(MICROPY_HW_UART1_TX) && defined(MICROPY_HW_UART1_RX) |
| case PYB_UART_1: return true; |
| #endif |
| |
| #if defined(MICROPY_HW_UART2_TX) && defined(MICROPY_HW_UART2_RX) |
| case PYB_UART_2: return true; |
| #endif |
| |
| #if defined(MICROPY_HW_UART3_TX) && defined(MICROPY_HW_UART3_RX) |
| case PYB_UART_3: return true; |
| #endif |
| |
| #if defined(MICROPY_HW_UART4_TX) && defined(MICROPY_HW_UART4_RX) |
| case PYB_UART_4: return true; |
| #endif |
| |
| #if defined(MICROPY_HW_UART5_TX) && defined(MICROPY_HW_UART5_RX) |
| case PYB_UART_5: return true; |
| #endif |
| |
| #if defined(MICROPY_HW_UART6_TX) && defined(MICROPY_HW_UART6_RX) |
| case PYB_UART_6: return true; |
| #endif |
| |
| #if defined(MICROPY_HW_UART7_TX) && defined(MICROPY_HW_UART7_RX) |
| case PYB_UART_7: return true; |
| #endif |
| |
| #if defined(MICROPY_HW_UART8_TX) && defined(MICROPY_HW_UART8_RX) |
| case PYB_UART_8: return true; |
| #endif |
| |
| default: return false; |
| } |
| } |
| |
| // assumes Init parameters have been set up correctly |
| STATIC bool uart_init2(pyb_uart_obj_t *uart_obj) { |
| USART_TypeDef *UARTx; |
| IRQn_Type irqn; |
| int uart_unit; |
| |
| const pin_obj_t *pins[4] = {0}; |
| |
| switch (uart_obj->uart_id) { |
| #if defined(MICROPY_HW_UART1_TX) && defined(MICROPY_HW_UART1_RX) |
| case PYB_UART_1: |
| uart_unit = 1; |
| UARTx = USART1; |
| irqn = USART1_IRQn; |
| pins[0] = &MICROPY_HW_UART1_TX; |
| pins[1] = &MICROPY_HW_UART1_RX; |
| __USART1_CLK_ENABLE(); |
| break; |
| #endif |
| |
| #if defined(MICROPY_HW_UART2_TX) && defined(MICROPY_HW_UART2_RX) |
| case PYB_UART_2: |
| uart_unit = 2; |
| UARTx = USART2; |
| irqn = USART2_IRQn; |
| pins[0] = &MICROPY_HW_UART2_TX; |
| pins[1] = &MICROPY_HW_UART2_RX; |
| #if defined(MICROPY_HW_UART2_RTS) |
| if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_RTS) { |
| pins[2] = &MICROPY_HW_UART2_RTS; |
| } |
| #endif |
| #if defined(MICROPY_HW_UART2_CTS) |
| if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) { |
| pins[3] = &MICROPY_HW_UART2_CTS; |
| } |
| #endif |
| __USART2_CLK_ENABLE(); |
| break; |
| #endif |
| |
| #if defined(MICROPY_HW_UART3_TX) && defined(MICROPY_HW_UART3_RX) |
| case PYB_UART_3: |
| uart_unit = 3; |
| UARTx = USART3; |
| irqn = USART3_IRQn; |
| pins[0] = &MICROPY_HW_UART3_TX; |
| pins[1] = &MICROPY_HW_UART3_RX; |
| #if defined(MICROPY_HW_UART3_RTS) |
| if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_RTS) { |
| pins[2] = &MICROPY_HW_UART3_RTS; |
| } |
| #endif |
| #if defined(MICROPY_HW_UART3_CTS) |
| if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) { |
| pins[3] = &MICROPY_HW_UART3_CTS; |
| } |
| #endif |
| __USART3_CLK_ENABLE(); |
| break; |
| #endif |
| |
| #if defined(MICROPY_HW_UART4_TX) && defined(MICROPY_HW_UART4_RX) |
| case PYB_UART_4: |
| uart_unit = 4; |
| UARTx = UART4; |
| irqn = UART4_IRQn; |
| pins[0] = &MICROPY_HW_UART4_TX; |
| pins[1] = &MICROPY_HW_UART4_RX; |
| __UART4_CLK_ENABLE(); |
| break; |
| #endif |
| |
| #if defined(MICROPY_HW_UART5_TX) && defined(MICROPY_HW_UART5_RX) |
| case PYB_UART_5: |
| uart_unit = 5; |
| UARTx = UART5; |
| irqn = UART5_IRQn; |
| pins[0] = &MICROPY_HW_UART5_TX; |
| pins[1] = &MICROPY_HW_UART5_RX; |
| __UART5_CLK_ENABLE(); |
| break; |
| #endif |
| |
| #if defined(MICROPY_HW_UART6_TX) && defined(MICROPY_HW_UART6_RX) |
| case PYB_UART_6: |
| uart_unit = 6; |
| UARTx = USART6; |
| irqn = USART6_IRQn; |
| pins[0] = &MICROPY_HW_UART6_TX; |
| pins[1] = &MICROPY_HW_UART6_RX; |
| __USART6_CLK_ENABLE(); |
| break; |
| #endif |
| |
| #if defined(MICROPY_HW_UART7_TX) && defined(MICROPY_HW_UART7_RX) |
| case PYB_UART_7: |
| uart_unit = 7; |
| UARTx = UART7; |
| irqn = UART7_IRQn; |
| pins[0] = &MICROPY_HW_UART7_TX; |
| pins[1] = &MICROPY_HW_UART7_RX; |
| __UART7_CLK_ENABLE(); |
| break; |
| #endif |
| |
| #if defined(MICROPY_HW_UART8_TX) && defined(MICROPY_HW_UART8_RX) |
| case PYB_UART_8: |
| uart_unit = 8; |
| UARTx = UART8; |
| irqn = UART8_IRQn; |
| pins[0] = &MICROPY_HW_UART8_TX; |
| pins[1] = &MICROPY_HW_UART8_RX; |
| __UART8_CLK_ENABLE(); |
| break; |
| #endif |
| |
| default: |
| // UART does not exist or is not configured for this board |
| return false; |
| } |
| |
| uint32_t mode = MP_HAL_PIN_MODE_ALT; |
| uint32_t pull = MP_HAL_PIN_PULL_UP; |
| |
| for (uint i = 0; i < 4; i++) { |
| if (pins[i] != NULL) { |
| bool ret = mp_hal_pin_config_alt(pins[i], mode, pull, AF_FN_UART, uart_unit); |
| if (!ret) { |
| return false; |
| } |
| } |
| } |
| |
| uart_obj->irqn = irqn; |
| uart_obj->uart.Instance = UARTx; |
| |
| // init UARTx |
| HAL_UART_Init(&uart_obj->uart); |
| |
| uart_obj->is_enabled = true; |
| |
| return true; |
| } |
| |
| /* obsolete and unused |
| bool uart_init(pyb_uart_obj_t *uart_obj, uint32_t baudrate) { |
| UART_HandleTypeDef *uh = &uart_obj->uart; |
| memset(uh, 0, sizeof(*uh)); |
| uh->Init.BaudRate = baudrate; |
| uh->Init.WordLength = UART_WORDLENGTH_8B; |
| uh->Init.StopBits = UART_STOPBITS_1; |
| uh->Init.Parity = UART_PARITY_NONE; |
| uh->Init.Mode = UART_MODE_TX_RX; |
| uh->Init.HwFlowCtl = UART_HWCONTROL_NONE; |
| uh->Init.OverSampling = UART_OVERSAMPLING_16; |
| return uart_init2(uart_obj); |
| } |
| */ |
| |
| mp_uint_t uart_rx_any(pyb_uart_obj_t *self) { |
| int buffer_bytes = self->read_buf_head - self->read_buf_tail; |
| if (buffer_bytes < 0) { |
| return buffer_bytes + self->read_buf_len; |
| } else if (buffer_bytes > 0) { |
| return buffer_bytes; |
| } else { |
| return __HAL_UART_GET_FLAG(&self->uart, UART_FLAG_RXNE) != RESET; |
| } |
| } |
| |
| // Waits at most timeout milliseconds for at least 1 char to become ready for |
| // reading (from buf or for direct reading). |
| // Returns true if something available, false if not. |
| STATIC bool uart_rx_wait(pyb_uart_obj_t *self, uint32_t timeout) { |
| uint32_t start = HAL_GetTick(); |
| for (;;) { |
| if (self->read_buf_tail != self->read_buf_head || __HAL_UART_GET_FLAG(&self->uart, UART_FLAG_RXNE) != RESET) { |
| return true; // have at least 1 char ready for reading |
| } |
| if (HAL_GetTick() - start >= timeout) { |
| return false; // timeout |
| } |
| MICROPY_EVENT_POLL_HOOK |
| } |
| } |
| |
| // assumes there is a character available |
| int uart_rx_char(pyb_uart_obj_t *self) { |
| if (self->read_buf_tail != self->read_buf_head) { |
| // buffering via IRQ |
| int data; |
| if (self->char_width == CHAR_WIDTH_9BIT) { |
| data = ((uint16_t*)self->read_buf)[self->read_buf_tail]; |
| } else { |
| data = self->read_buf[self->read_buf_tail]; |
| } |
| self->read_buf_tail = (self->read_buf_tail + 1) % self->read_buf_len; |
| if (__HAL_UART_GET_FLAG(&self->uart, UART_FLAG_RXNE) != RESET) { |
| // UART was stalled by flow ctrl: re-enable IRQ now we have room in buffer |
| __HAL_UART_ENABLE_IT(&self->uart, UART_IT_RXNE); |
| } |
| return data; |
| } else { |
| // no buffering |
| #if defined(MCU_SERIES_F7) || defined(MCU_SERIES_L4) |
| return self->uart.Instance->RDR & self->char_mask; |
| #else |
| return self->uart.Instance->DR & self->char_mask; |
| #endif |
| } |
| } |
| |
| // Waits at most timeout milliseconds for TX register to become empty. |
| // Returns true if can write, false if can't. |
| STATIC bool uart_tx_wait(pyb_uart_obj_t *self, uint32_t timeout) { |
| uint32_t start = HAL_GetTick(); |
| for (;;) { |
| if (__HAL_UART_GET_FLAG(&self->uart, UART_FLAG_TXE)) { |
| return true; // tx register is empty |
| } |
| if (HAL_GetTick() - start >= timeout) { |
| return false; // timeout |
| } |
| MICROPY_EVENT_POLL_HOOK |
| } |
| } |
| |
| // Waits at most timeout milliseconds for UART flag to be set. |
| // Returns true if flag is/was set, false on timeout. |
| STATIC bool uart_wait_flag_set(pyb_uart_obj_t *self, uint32_t flag, uint32_t timeout) { |
| // Note: we don't use WFI to idle in this loop because UART tx doesn't generate |
| // an interrupt and the flag can be set quickly if the baudrate is large. |
| uint32_t start = HAL_GetTick(); |
| for (;;) { |
| if (__HAL_UART_GET_FLAG(&self->uart, flag)) { |
| return true; |
| } |
| if (timeout == 0 || HAL_GetTick() - start >= timeout) { |
| return false; // timeout |
| } |
| } |
| } |
| |
| // src - a pointer to the data to send (16-bit aligned for 9-bit chars) |
| // num_chars - number of characters to send (9-bit chars count for 2 bytes from src) |
| // *errcode - returns 0 for success, MP_Exxx on error |
| // returns the number of characters sent (valid even if there was an error) |
| STATIC size_t uart_tx_data(pyb_uart_obj_t *self, const void *src_in, size_t num_chars, int *errcode) { |
| if (num_chars == 0) { |
| *errcode = 0; |
| return 0; |
| } |
| |
| uint32_t timeout; |
| if (self->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) { |
| // CTS can hold off transmission for an arbitrarily long time. Apply |
| // the overall timeout rather than the character timeout. |
| timeout = self->timeout; |
| } else { |
| // The timeout specified here is for waiting for the TX data register to |
| // become empty (ie between chars), as well as for the final char to be |
| // completely transferred. The default value for timeout_char is long |
| // enough for 1 char, but we need to double it to wait for the last char |
| // to be transferred to the data register, and then to be transmitted. |
| timeout = 2 * self->timeout_char; |
| } |
| |
| const uint8_t *src = (const uint8_t*)src_in; |
| size_t num_tx = 0; |
| USART_TypeDef *uart = self->uart.Instance; |
| |
| while (num_tx < num_chars) { |
| if (!uart_wait_flag_set(self, UART_FLAG_TXE, timeout)) { |
| *errcode = MP_ETIMEDOUT; |
| return num_tx; |
| } |
| uint32_t data; |
| if (self->char_width == CHAR_WIDTH_9BIT) { |
| data = *((uint16_t*)src) & 0x1ff; |
| src += 2; |
| } else { |
| data = *src++; |
| } |
| #if defined(MCU_SERIES_F4) |
| uart->DR = data; |
| #else |
| uart->TDR = data; |
| #endif |
| ++num_tx; |
| } |
| |
| // wait for the UART frame to complete |
| if (!uart_wait_flag_set(self, UART_FLAG_TC, timeout)) { |
| *errcode = MP_ETIMEDOUT; |
| return num_tx; |
| } |
| |
| *errcode = 0; |
| return num_tx; |
| } |
| |
| STATIC void uart_tx_char(pyb_uart_obj_t *uart_obj, int c) { |
| uint16_t ch = c; |
| int errcode; |
| uart_tx_data(uart_obj, &ch, 1, &errcode); |
| } |
| |
| void uart_tx_strn(pyb_uart_obj_t *uart_obj, const char *str, uint len) { |
| int errcode; |
| uart_tx_data(uart_obj, str, len, &errcode); |
| } |
| |
| void uart_tx_strn_cooked(pyb_uart_obj_t *uart_obj, const char *str, uint len) { |
| for (const char *top = str + len; str < top; str++) { |
| if (*str == '\n') { |
| uart_tx_char(uart_obj, '\r'); |
| } |
| uart_tx_char(uart_obj, *str); |
| } |
| } |
| |
| // this IRQ handler is set up to handle RXNE interrupts only |
| void uart_irq_handler(mp_uint_t uart_id) { |
| // get the uart object |
| pyb_uart_obj_t *self = MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1]; |
| |
| if (self == NULL) { |
| // UART object has not been set, so we can't do anything, not |
| // even disable the IRQ. This should never happen. |
| return; |
| } |
| |
| if (__HAL_UART_GET_FLAG(&self->uart, UART_FLAG_RXNE) != RESET) { |
| if (self->read_buf_len != 0) { |
| uint16_t next_head = (self->read_buf_head + 1) % self->read_buf_len; |
| if (next_head != self->read_buf_tail) { |
| // only read data if room in buf |
| #if defined(MCU_SERIES_F7) || defined(MCU_SERIES_L4) |
| int data = self->uart.Instance->RDR; // clears UART_FLAG_RXNE |
| #else |
| int data = self->uart.Instance->DR; // clears UART_FLAG_RXNE |
| #endif |
| data &= self->char_mask; |
| if (self->char_width == CHAR_WIDTH_9BIT) { |
| ((uint16_t*)self->read_buf)[self->read_buf_head] = data; |
| } else { |
| self->read_buf[self->read_buf_head] = data; |
| } |
| self->read_buf_head = next_head; |
| } else { // No room: leave char in buf, disable interrupt |
| __HAL_UART_DISABLE_IT(&self->uart, UART_IT_RXNE); |
| } |
| } |
| } |
| } |
| |
| /******************************************************************************/ |
| /* MicroPython bindings */ |
| |
| STATIC void pyb_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { |
| pyb_uart_obj_t *self = self_in; |
| if (!self->is_enabled) { |
| mp_printf(print, "UART(%u)", self->uart_id); |
| } else { |
| mp_int_t bits = (self->uart.Init.WordLength == UART_WORDLENGTH_8B ? 8 : 9); |
| if (self->uart.Init.Parity != UART_PARITY_NONE) { |
| bits -= 1; |
| } |
| mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=", |
| self->uart_id, self->uart.Init.BaudRate, bits); |
| if (self->uart.Init.Parity == UART_PARITY_NONE) { |
| mp_print_str(print, "None"); |
| } else { |
| mp_printf(print, "%u", self->uart.Init.Parity == UART_PARITY_EVEN ? 0 : 1); |
| } |
| if (self->uart.Init.HwFlowCtl) { |
| mp_printf(print, ", flow="); |
| if (self->uart.Init.HwFlowCtl & UART_HWCONTROL_RTS) { |
| mp_printf(print, "RTS%s", self->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS ? "|" : ""); |
| } |
| if (self->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) { |
| mp_printf(print, "CTS"); |
| } |
| } |
| mp_printf(print, ", stop=%u, timeout=%u, timeout_char=%u, read_buf_len=%u)", |
| self->uart.Init.StopBits == UART_STOPBITS_1 ? 1 : 2, |
| self->timeout, self->timeout_char, |
| self->read_buf_len == 0 ? 0 : self->read_buf_len - 1); // -1 to adjust for usable length of buffer |
| } |
| } |
| |
| /// \method init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0, flow=0, read_buf_len=64) |
| /// |
| /// Initialise the UART bus with the given parameters: |
| /// |
| /// - `baudrate` is the clock rate. |
| /// - `bits` is the number of bits per byte, 7, 8 or 9. |
| /// - `parity` is the parity, `None`, 0 (even) or 1 (odd). |
| /// - `stop` is the number of stop bits, 1 or 2. |
| /// - `timeout` is the timeout in milliseconds to wait for the first character. |
| /// - `timeout_char` is the timeout in milliseconds to wait between characters. |
| /// - `flow` is RTS | CTS where RTS == 256, CTS == 512 |
| /// - `read_buf_len` is the character length of the read buffer (0 to disable). |
| STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { |
| static const mp_arg_t allowed_args[] = { |
| { MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} }, |
| { MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} }, |
| { MP_QSTR_parity, MP_ARG_OBJ, {.u_obj = mp_const_none} }, |
| { MP_QSTR_stop, MP_ARG_INT, {.u_int = 1} }, |
| { MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = UART_HWCONTROL_NONE} }, |
| { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} }, |
| { MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, |
| { MP_QSTR_read_buf_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 64} }, |
| }; |
| |
| // parse args |
| struct { |
| mp_arg_val_t baudrate, bits, parity, stop, flow, timeout, timeout_char, read_buf_len; |
| } args; |
| mp_arg_parse_all(n_args, pos_args, kw_args, |
| MP_ARRAY_SIZE(allowed_args), allowed_args, (mp_arg_val_t*)&args); |
| |
| // set the UART configuration values |
| memset(&self->uart, 0, sizeof(self->uart)); |
| UART_InitTypeDef *init = &self->uart.Init; |
| |
| // baudrate |
| init->BaudRate = args.baudrate.u_int; |
| |
| // parity |
| mp_int_t bits = args.bits.u_int; |
| if (args.parity.u_obj == mp_const_none) { |
| init->Parity = UART_PARITY_NONE; |
| } else { |
| mp_int_t parity = mp_obj_get_int(args.parity.u_obj); |
| init->Parity = (parity & 1) ? UART_PARITY_ODD : UART_PARITY_EVEN; |
| bits += 1; // STs convention has bits including parity |
| } |
| |
| // number of bits |
| if (bits == 8) { |
| init->WordLength = UART_WORDLENGTH_8B; |
| } else if (bits == 9) { |
| init->WordLength = UART_WORDLENGTH_9B; |
| } else { |
| mp_raise_ValueError("unsupported combination of bits and parity"); |
| } |
| |
| // stop bits |
| switch (args.stop.u_int) { |
| case 1: init->StopBits = UART_STOPBITS_1; break; |
| default: init->StopBits = UART_STOPBITS_2; break; |
| } |
| |
| // flow control |
| init->HwFlowCtl = args.flow.u_int; |
| |
| // extra config (not yet configurable) |
| init->Mode = UART_MODE_TX_RX; |
| init->OverSampling = UART_OVERSAMPLING_16; |
| |
| // init UART (if it fails, it's because the port doesn't exist) |
| if (!uart_init2(self)) { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) doesn't exist", self->uart_id)); |
| } |
| |
| // set timeout |
| self->timeout = args.timeout.u_int; |
| |
| // set timeout_char |
| // make sure it is at least as long as a whole character (13 bits to be safe) |
| // minimum value is 2ms because sys-tick has a resolution of only 1ms |
| self->timeout_char = args.timeout_char.u_int; |
| uint32_t min_timeout_char = 13000 / init->BaudRate + 2; |
| if (self->timeout_char < min_timeout_char) { |
| self->timeout_char = min_timeout_char; |
| } |
| |
| // setup the read buffer |
| m_del(byte, self->read_buf, self->read_buf_len << self->char_width); |
| if (init->WordLength == UART_WORDLENGTH_9B && init->Parity == UART_PARITY_NONE) { |
| self->char_mask = 0x1ff; |
| self->char_width = CHAR_WIDTH_9BIT; |
| } else { |
| if (init->WordLength == UART_WORDLENGTH_9B || init->Parity == UART_PARITY_NONE) { |
| self->char_mask = 0xff; |
| } else { |
| self->char_mask = 0x7f; |
| } |
| self->char_width = CHAR_WIDTH_8BIT; |
| } |
| self->read_buf_head = 0; |
| self->read_buf_tail = 0; |
| if (args.read_buf_len.u_int <= 0) { |
| // no read buffer |
| self->read_buf_len = 0; |
| self->read_buf = NULL; |
| HAL_NVIC_DisableIRQ(self->irqn); |
| __HAL_UART_DISABLE_IT(&self->uart, UART_IT_RXNE); |
| } else { |
| // read buffer using interrupts |
| self->read_buf_len = args.read_buf_len.u_int + 1; // +1 to adjust for usable length of buffer |
| self->read_buf = m_new(byte, self->read_buf_len << self->char_width); |
| __HAL_UART_ENABLE_IT(&self->uart, UART_IT_RXNE); |
| HAL_NVIC_SetPriority(self->irqn, IRQ_PRI_UART, IRQ_SUBPRI_UART); |
| HAL_NVIC_EnableIRQ(self->irqn); |
| } |
| |
| // compute actual baudrate that was configured |
| // (this formula assumes UART_OVERSAMPLING_16) |
| uint32_t actual_baudrate = 0; |
| #if defined(MCU_SERIES_F7) |
| UART_ClockSourceTypeDef clocksource = UART_CLOCKSOURCE_UNDEFINED; |
| UART_GETCLOCKSOURCE(&self->uart, clocksource); |
| switch (clocksource) { |
| case UART_CLOCKSOURCE_PCLK1: actual_baudrate = HAL_RCC_GetPCLK1Freq(); break; |
| case UART_CLOCKSOURCE_PCLK2: actual_baudrate = HAL_RCC_GetPCLK2Freq(); break; |
| case UART_CLOCKSOURCE_HSI: actual_baudrate = HSI_VALUE; break; |
| case UART_CLOCKSOURCE_SYSCLK: actual_baudrate = HAL_RCC_GetSysClockFreq(); break; |
| case UART_CLOCKSOURCE_LSE: actual_baudrate = LSE_VALUE; break; |
| case UART_CLOCKSOURCE_UNDEFINED: break; |
| } |
| #else |
| if (self->uart.Instance == USART1 |
| #if defined(USART6) |
| || self->uart.Instance == USART6 |
| #endif |
| ) { |
| actual_baudrate = HAL_RCC_GetPCLK2Freq(); |
| } else { |
| actual_baudrate = HAL_RCC_GetPCLK1Freq(); |
| } |
| #endif |
| actual_baudrate /= self->uart.Instance->BRR; |
| |
| // check we could set the baudrate within 5% |
| uint32_t baudrate_diff; |
| if (actual_baudrate > init->BaudRate) { |
| baudrate_diff = actual_baudrate - init->BaudRate; |
| } else { |
| baudrate_diff = init->BaudRate - actual_baudrate; |
| } |
| init->BaudRate = actual_baudrate; // remember actual baudrate for printing |
| if (20 * baudrate_diff > init->BaudRate) { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "set baudrate %d is not within 5%% of desired value", actual_baudrate)); |
| } |
| |
| return mp_const_none; |
| } |
| |
| /// \classmethod \constructor(bus, ...) |
| /// |
| /// Construct a UART object on the given bus. `bus` can be 1-6, or 'XA', 'XB', 'YA', or 'YB'. |
| /// With no additional parameters, the UART object is created but not |
| /// initialised (it has the settings from the last initialisation of |
| /// the bus, if any). If extra arguments are given, the bus is initialised. |
| /// See `init` for parameters of initialisation. |
| /// |
| /// The physical pins of the UART busses are: |
| /// |
| /// - `UART(4)` is on `XA`: `(TX, RX) = (X1, X2) = (PA0, PA1)` |
| /// - `UART(1)` is on `XB`: `(TX, RX) = (X9, X10) = (PB6, PB7)` |
| /// - `UART(6)` is on `YA`: `(TX, RX) = (Y1, Y2) = (PC6, PC7)` |
| /// - `UART(3)` is on `YB`: `(TX, RX) = (Y9, Y10) = (PB10, PB11)` |
| /// - `UART(2)` is on: `(TX, RX) = (X3, X4) = (PA2, PA3)` |
| STATIC mp_obj_t pyb_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
| // check arguments |
| mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); |
| |
| // work out port |
| int uart_id = 0; |
| if (MP_OBJ_IS_STR(args[0])) { |
| const char *port = mp_obj_str_get_str(args[0]); |
| if (0) { |
| #ifdef MICROPY_HW_UART1_NAME |
| } else if (strcmp(port, MICROPY_HW_UART1_NAME) == 0) { |
| uart_id = PYB_UART_1; |
| #endif |
| #ifdef MICROPY_HW_UART2_NAME |
| } else if (strcmp(port, MICROPY_HW_UART2_NAME) == 0) { |
| uart_id = PYB_UART_2; |
| #endif |
| #ifdef MICROPY_HW_UART3_NAME |
| } else if (strcmp(port, MICROPY_HW_UART3_NAME) == 0) { |
| uart_id = PYB_UART_3; |
| #endif |
| #ifdef MICROPY_HW_UART4_NAME |
| } else if (strcmp(port, MICROPY_HW_UART4_NAME) == 0) { |
| uart_id = PYB_UART_4; |
| #endif |
| #ifdef MICROPY_HW_UART5_NAME |
| } else if (strcmp(port, MICROPY_HW_UART5_NAME) == 0) { |
| uart_id = PYB_UART_5; |
| #endif |
| #ifdef MICROPY_HW_UART6_NAME |
| } else if (strcmp(port, MICROPY_HW_UART6_NAME) == 0) { |
| uart_id = PYB_UART_6; |
| #endif |
| } else { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%s) doesn't exist", port)); |
| } |
| } else { |
| uart_id = mp_obj_get_int(args[0]); |
| if (!uart_exists(uart_id)) { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) doesn't exist", uart_id)); |
| } |
| } |
| |
| pyb_uart_obj_t *self; |
| if (MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] == NULL) { |
| // create new UART object |
| self = m_new0(pyb_uart_obj_t, 1); |
| self->base.type = &pyb_uart_type; |
| self->uart_id = uart_id; |
| MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] = self; |
| } else { |
| // reference existing UART object |
| self = MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1]; |
| } |
| |
| if (n_args > 1 || n_kw > 0) { |
| // start the peripheral |
| mp_map_t kw_args; |
| mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); |
| pyb_uart_init_helper(self, n_args - 1, args + 1, &kw_args); |
| } |
| |
| return self; |
| } |
| |
| STATIC mp_obj_t pyb_uart_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| return pyb_uart_init_helper(args[0], n_args - 1, args + 1, kw_args); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_init_obj, 1, pyb_uart_init); |
| |
| /// \method deinit() |
| /// Turn off the UART bus. |
| STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in) { |
| pyb_uart_obj_t *self = self_in; |
| self->is_enabled = false; |
| UART_HandleTypeDef *uart = &self->uart; |
| HAL_UART_DeInit(uart); |
| if (uart->Instance == USART1) { |
| HAL_NVIC_DisableIRQ(USART1_IRQn); |
| __USART1_FORCE_RESET(); |
| __USART1_RELEASE_RESET(); |
| __USART1_CLK_DISABLE(); |
| } else if (uart->Instance == USART2) { |
| HAL_NVIC_DisableIRQ(USART2_IRQn); |
| __USART2_FORCE_RESET(); |
| __USART2_RELEASE_RESET(); |
| __USART2_CLK_DISABLE(); |
| #if defined(USART3) |
| } else if (uart->Instance == USART3) { |
| HAL_NVIC_DisableIRQ(USART3_IRQn); |
| __USART3_FORCE_RESET(); |
| __USART3_RELEASE_RESET(); |
| __USART3_CLK_DISABLE(); |
| #endif |
| #if defined(UART4) |
| } else if (uart->Instance == UART4) { |
| HAL_NVIC_DisableIRQ(UART4_IRQn); |
| __UART4_FORCE_RESET(); |
| __UART4_RELEASE_RESET(); |
| __UART4_CLK_DISABLE(); |
| #endif |
| #if defined(UART5) |
| } else if (uart->Instance == UART5) { |
| HAL_NVIC_DisableIRQ(UART5_IRQn); |
| __UART5_FORCE_RESET(); |
| __UART5_RELEASE_RESET(); |
| __UART5_CLK_DISABLE(); |
| #endif |
| #if defined(UART6) |
| } else if (uart->Instance == USART6) { |
| HAL_NVIC_DisableIRQ(USART6_IRQn); |
| __USART6_FORCE_RESET(); |
| __USART6_RELEASE_RESET(); |
| __USART6_CLK_DISABLE(); |
| #endif |
| #if defined(UART7) |
| } else if (uart->Instance == UART7) { |
| HAL_NVIC_DisableIRQ(UART7_IRQn); |
| __UART7_FORCE_RESET(); |
| __UART7_RELEASE_RESET(); |
| __UART7_CLK_DISABLE(); |
| #endif |
| #if defined(UART8) |
| } else if (uart->Instance == UART8) { |
| HAL_NVIC_DisableIRQ(UART8_IRQn); |
| __UART8_FORCE_RESET(); |
| __UART8_RELEASE_RESET(); |
| __UART8_CLK_DISABLE(); |
| #endif |
| } |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_deinit_obj, pyb_uart_deinit); |
| |
| /// \method any() |
| /// Return `True` if any characters waiting, else `False`. |
| STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) { |
| pyb_uart_obj_t *self = self_in; |
| return MP_OBJ_NEW_SMALL_INT(uart_rx_any(self)); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any); |
| |
| /// \method writechar(char) |
| /// Write a single character on the bus. `char` is an integer to write. |
| /// Return value: `None`. |
| STATIC mp_obj_t pyb_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) { |
| pyb_uart_obj_t *self = self_in; |
| |
| // get the character to write (might be 9 bits) |
| uint16_t data = mp_obj_get_int(char_in); |
| |
| // write the character |
| int errcode; |
| if (uart_tx_wait(self, self->timeout)) { |
| uart_tx_data(self, &data, 1, &errcode); |
| } else { |
| errcode = MP_ETIMEDOUT; |
| } |
| |
| if (errcode != 0) { |
| mp_raise_OSError(errcode); |
| } |
| |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_uart_writechar_obj, pyb_uart_writechar); |
| |
| /// \method readchar() |
| /// Receive a single character on the bus. |
| /// Return value: The character read, as an integer. Returns -1 on timeout. |
| STATIC mp_obj_t pyb_uart_readchar(mp_obj_t self_in) { |
| pyb_uart_obj_t *self = self_in; |
| if (uart_rx_wait(self, self->timeout)) { |
| return MP_OBJ_NEW_SMALL_INT(uart_rx_char(self)); |
| } else { |
| // return -1 on timeout |
| return MP_OBJ_NEW_SMALL_INT(-1); |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_readchar_obj, pyb_uart_readchar); |
| |
| // uart.sendbreak() |
| STATIC mp_obj_t pyb_uart_sendbreak(mp_obj_t self_in) { |
| pyb_uart_obj_t *self = self_in; |
| #if defined(MCU_SERIES_F7) || defined(MCU_SERIES_L4) |
| self->uart.Instance->RQR = USART_RQR_SBKRQ; // write-only register |
| #else |
| self->uart.Instance->CR1 |= USART_CR1_SBK; |
| #endif |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_sendbreak_obj, pyb_uart_sendbreak); |
| |
| STATIC const mp_rom_map_elem_t pyb_uart_locals_dict_table[] = { |
| // instance methods |
| |
| { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_uart_init_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_uart_deinit_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&pyb_uart_any_obj) }, |
| |
| /// \method read([nbytes]) |
| { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) }, |
| /// \method readline() |
| { MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj)}, |
| /// \method readinto(buf[, nbytes]) |
| { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) }, |
| /// \method write(buf) |
| { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) }, |
| |
| { MP_ROM_QSTR(MP_QSTR_writechar), MP_ROM_PTR(&pyb_uart_writechar_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_readchar), MP_ROM_PTR(&pyb_uart_readchar_obj) }, |
| { MP_ROM_QSTR(MP_QSTR_sendbreak), MP_ROM_PTR(&pyb_uart_sendbreak_obj) }, |
| |
| // class constants |
| { MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HWCONTROL_RTS) }, |
| { MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HWCONTROL_CTS) }, |
| }; |
| |
| STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table); |
| |
| STATIC mp_uint_t pyb_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) { |
| pyb_uart_obj_t *self = self_in; |
| byte *buf = buf_in; |
| |
| // check that size is a multiple of character width |
| if (size & self->char_width) { |
| *errcode = MP_EIO; |
| return MP_STREAM_ERROR; |
| } |
| |
| // convert byte size to char size |
| size >>= self->char_width; |
| |
| // make sure we want at least 1 char |
| if (size == 0) { |
| return 0; |
| } |
| |
| // wait for first char to become available |
| if (!uart_rx_wait(self, self->timeout)) { |
| // return EAGAIN error to indicate non-blocking (then read() method returns None) |
| *errcode = MP_EAGAIN; |
| return MP_STREAM_ERROR; |
| } |
| |
| // read the data |
| byte *orig_buf = buf; |
| for (;;) { |
| int data = uart_rx_char(self); |
| if (self->char_width == CHAR_WIDTH_9BIT) { |
| *(uint16_t*)buf = data; |
| buf += 2; |
| } else { |
| *buf++ = data; |
| } |
| if (--size == 0 || !uart_rx_wait(self, self->timeout_char)) { |
| // return number of bytes read |
| return buf - orig_buf; |
| } |
| } |
| } |
| |
| STATIC mp_uint_t pyb_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) { |
| pyb_uart_obj_t *self = self_in; |
| const byte *buf = buf_in; |
| |
| // check that size is a multiple of character width |
| if (size & self->char_width) { |
| *errcode = MP_EIO; |
| return MP_STREAM_ERROR; |
| } |
| |
| // wait to be able to write the first character. EAGAIN causes write to return None |
| if (!uart_tx_wait(self, self->timeout)) { |
| *errcode = MP_EAGAIN; |
| return MP_STREAM_ERROR; |
| } |
| |
| // write the data |
| size_t num_tx = uart_tx_data(self, buf, size >> self->char_width, errcode); |
| |
| if (*errcode == 0 || *errcode == MP_ETIMEDOUT) { |
| // return number of bytes written, even if there was a timeout |
| return num_tx << self->char_width; |
| } else { |
| return MP_STREAM_ERROR; |
| } |
| } |
| |
| STATIC mp_uint_t pyb_uart_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) { |
| pyb_uart_obj_t *self = self_in; |
| mp_uint_t ret; |
| if (request == MP_STREAM_POLL) { |
| mp_uint_t flags = arg; |
| ret = 0; |
| if ((flags & MP_STREAM_POLL_RD) && uart_rx_any(self)) { |
| ret |= MP_STREAM_POLL_RD; |
| } |
| if ((flags & MP_STREAM_POLL_WR) && __HAL_UART_GET_FLAG(&self->uart, UART_FLAG_TXE)) { |
| ret |= MP_STREAM_POLL_WR; |
| } |
| } else { |
| *errcode = MP_EINVAL; |
| ret = MP_STREAM_ERROR; |
| } |
| return ret; |
| } |
| |
| STATIC const mp_stream_p_t uart_stream_p = { |
| .read = pyb_uart_read, |
| .write = pyb_uart_write, |
| .ioctl = pyb_uart_ioctl, |
| .is_text = false, |
| }; |
| |
| const mp_obj_type_t pyb_uart_type = { |
| { &mp_type_type }, |
| .name = MP_QSTR_UART, |
| .print = pyb_uart_print, |
| .make_new = pyb_uart_make_new, |
| .getiter = mp_identity_getiter, |
| .iternext = mp_stream_unbuffered_iter, |
| .protocol = &uart_stream_p, |
| .locals_dict = (mp_obj_dict_t*)&pyb_uart_locals_dict, |
| }; |