| /* |
| * This file is part of the Micro Python project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include "py/nlr.h" |
| #include "py/runtime.h" |
| #include "py/binary.h" |
| #include "py/mphal.h" |
| #include "adc.h" |
| #include "pin.h" |
| #include "genhdr/pins.h" |
| #include "timer.h" |
| |
| /// \moduleref pyb |
| /// \class ADC - analog to digital conversion: read analog values on a pin |
| /// |
| /// Usage: |
| /// |
| /// adc = pyb.ADC(pin) # create an analog object from a pin |
| /// val = adc.read() # read an analog value |
| /// |
| /// adc = pyb.ADCAll(resolution) # creale an ADCAll object |
| /// val = adc.read_channel(channel) # read the given channel |
| /// val = adc.read_core_temp() # read MCU temperature |
| /// val = adc.read_core_vbat() # read MCU VBAT |
| /// val = adc.read_core_vref() # read MCU VREF |
| |
| /* ADC defintions */ |
| #define ADCx (ADC1) |
| #define ADCx_CLK_ENABLE __ADC1_CLK_ENABLE |
| #define ADC_NUM_CHANNELS (19) |
| #define ADC_NUM_GPIO_CHANNELS (16) |
| |
| #if defined(STM32F405xx) || defined(STM32F415xx) || \ |
| defined(STM32F407xx) || defined(STM32F417xx) || \ |
| defined(STM32F401xC) || defined(STM32F401xE) || \ |
| defined(STM32F411xE) |
| #define VBAT_DIV (2) |
| #elif defined(STM32F427xx) || defined(STM32F429xx) || \ |
| defined(STM32F437xx) || defined(STM32F439xx) || \ |
| defined(STM32F746xx) |
| #define VBAT_DIV (4) |
| #else |
| #error Unsupported processor |
| #endif |
| |
| /* Core temperature sensor definitions */ |
| #define CORE_TEMP_V25 (943) /* (0.76v/3.3v)*(2^ADC resoultion) */ |
| #define CORE_TEMP_AVG_SLOPE (3) /* (2.5mv/3.3v)*(2^ADC resoultion) */ |
| |
| typedef struct _pyb_obj_adc_t { |
| mp_obj_base_t base; |
| mp_obj_t pin_name; |
| int channel; |
| ADC_HandleTypeDef handle; |
| } pyb_obj_adc_t; |
| |
| STATIC void adc_init_single(pyb_obj_adc_t *adc_obj) { |
| if (!IS_ADC_CHANNEL(adc_obj->channel)) { |
| return; |
| } |
| |
| if (adc_obj->channel < ADC_NUM_GPIO_CHANNELS) { |
| // Channels 0-16 correspond to real pins. Configure the GPIO pin in |
| // ADC mode. |
| const pin_obj_t *pin = pin_adc1[adc_obj->channel]; |
| mp_hal_gpio_clock_enable(pin->gpio); |
| GPIO_InitTypeDef GPIO_InitStructure; |
| GPIO_InitStructure.Pin = pin->pin_mask; |
| GPIO_InitStructure.Mode = GPIO_MODE_ANALOG; |
| GPIO_InitStructure.Pull = GPIO_NOPULL; |
| HAL_GPIO_Init(pin->gpio, &GPIO_InitStructure); |
| } |
| |
| ADCx_CLK_ENABLE(); |
| |
| ADC_HandleTypeDef *adcHandle = &adc_obj->handle; |
| adcHandle->Instance = ADCx; |
| adcHandle->Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2; |
| adcHandle->Init.Resolution = ADC_RESOLUTION12b; |
| adcHandle->Init.ScanConvMode = DISABLE; |
| adcHandle->Init.ContinuousConvMode = DISABLE; |
| adcHandle->Init.DiscontinuousConvMode = DISABLE; |
| adcHandle->Init.NbrOfDiscConversion = 0; |
| adcHandle->Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; |
| adcHandle->Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1; |
| adcHandle->Init.DataAlign = ADC_DATAALIGN_RIGHT; |
| adcHandle->Init.NbrOfConversion = 1; |
| adcHandle->Init.DMAContinuousRequests = DISABLE; |
| adcHandle->Init.EOCSelection = DISABLE; |
| |
| HAL_ADC_Init(adcHandle); |
| } |
| |
| STATIC void adc_config_channel(pyb_obj_adc_t *adc_obj) { |
| ADC_ChannelConfTypeDef sConfig; |
| |
| sConfig.Channel = adc_obj->channel; |
| sConfig.Rank = 1; |
| sConfig.SamplingTime = ADC_SAMPLETIME_15CYCLES; |
| sConfig.Offset = 0; |
| |
| HAL_ADC_ConfigChannel(&adc_obj->handle, &sConfig); |
| } |
| |
| STATIC uint32_t adc_read_channel(ADC_HandleTypeDef *adcHandle) { |
| uint32_t rawValue = 0; |
| |
| HAL_ADC_Start(adcHandle); |
| if (HAL_ADC_PollForConversion(adcHandle, 10) == HAL_OK && HAL_ADC_GetState(adcHandle) == HAL_ADC_STATE_EOC_REG) { |
| rawValue = HAL_ADC_GetValue(adcHandle); |
| } |
| HAL_ADC_Stop(adcHandle); |
| |
| return rawValue; |
| } |
| |
| /******************************************************************************/ |
| /* Micro Python bindings : adc object (single channel) */ |
| |
| STATIC void adc_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { |
| pyb_obj_adc_t *self = self_in; |
| mp_print_str(print, "<ADC on "); |
| mp_obj_print_helper(print, self->pin_name, PRINT_STR); |
| mp_printf(print, " channel=%lu>", self->channel); |
| } |
| |
| /// \classmethod \constructor(pin) |
| /// Create an ADC object associated with the given pin. |
| /// This allows you to then read analog values on that pin. |
| STATIC mp_obj_t adc_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { |
| // check number of arguments |
| mp_arg_check_num(n_args, n_kw, 1, 1, false); |
| |
| // 1st argument is the pin name |
| mp_obj_t pin_obj = args[0]; |
| |
| uint32_t channel; |
| |
| if (MP_OBJ_IS_INT(pin_obj)) { |
| channel = mp_obj_get_int(pin_obj); |
| } else { |
| const pin_obj_t *pin = pin_find(pin_obj); |
| if ((pin->adc_num & PIN_ADC1) == 0) { |
| // No ADC1 function on that pin |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %q does not have ADC capabilities", pin->name)); |
| } |
| channel = pin->adc_channel; |
| } |
| |
| if (!IS_ADC_CHANNEL(channel)) { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "not a valid ADC Channel: %d", channel)); |
| } |
| if (pin_adc1[channel] == NULL) { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "channel %d not available on this board", channel)); |
| } |
| |
| pyb_obj_adc_t *o = m_new_obj(pyb_obj_adc_t); |
| memset(o, 0, sizeof(*o)); |
| o->base.type = &pyb_adc_type; |
| o->pin_name = pin_obj; |
| o->channel = channel; |
| adc_init_single(o); |
| |
| return o; |
| } |
| |
| /// \method read() |
| /// Read the value on the analog pin and return it. The returned value |
| /// will be between 0 and 4095. |
| STATIC mp_obj_t adc_read(mp_obj_t self_in) { |
| pyb_obj_adc_t *self = self_in; |
| |
| adc_config_channel(self); |
| uint32_t data = adc_read_channel(&self->handle); |
| return mp_obj_new_int(data); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_read_obj, adc_read); |
| |
| /// \method read_timed(buf, timer) |
| /// |
| /// Read analog values into `buf` at a rate set by the `timer` object. |
| /// |
| /// `buf` can be bytearray or array.array for example. The ADC values have |
| /// 12-bit resolution and are stored directly into `buf` if its element size is |
| /// 16 bits or greater. If `buf` has only 8-bit elements (eg a bytearray) then |
| /// the sample resolution will be reduced to 8 bits. |
| /// |
| /// `timer` should be a Timer object, and a sample is read each time the timer |
| /// triggers. The timer must already be initialised and running at the desired |
| /// sampling frequency. |
| /// |
| /// To support previous behaviour of this function, `timer` can also be an |
| /// integer which specifies the frequency (in Hz) to sample at. In this case |
| /// Timer(6) will be automatically configured to run at the given frequency. |
| /// |
| /// Example using a Timer object (preferred way): |
| /// |
| /// adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19 |
| /// tim = pyb.Timer(6, freq=10) # create a timer running at 10Hz |
| /// buf = bytearray(100) # creat a buffer to store the samples |
| /// adc.read_timed(buf, tim) # sample 100 values, taking 10s |
| /// |
| /// Example using an integer for the frequency: |
| /// |
| /// adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19 |
| /// buf = bytearray(100) # create a buffer of 100 bytes |
| /// adc.read_timed(buf, 10) # read analog values into buf at 10Hz |
| /// # this will take 10 seconds to finish |
| /// for val in buf: # loop over all values |
| /// print(val) # print the value out |
| /// |
| /// This function does not allocate any memory. |
| STATIC mp_obj_t adc_read_timed(mp_obj_t self_in, mp_obj_t buf_in, mp_obj_t freq_in) { |
| pyb_obj_adc_t *self = self_in; |
| |
| mp_buffer_info_t bufinfo; |
| mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_WRITE); |
| size_t typesize = mp_binary_get_size('@', bufinfo.typecode, NULL); |
| |
| TIM_HandleTypeDef *tim; |
| #if defined(TIM6) |
| if (mp_obj_is_integer(freq_in)) { |
| // freq in Hz given so init TIM6 (legacy behaviour) |
| tim = timer_tim6_init(mp_obj_get_int(freq_in)); |
| HAL_TIM_Base_Start(tim); |
| } else |
| #endif |
| { |
| // use the supplied timer object as the sampling time base |
| tim = pyb_timer_get_handle(freq_in); |
| } |
| |
| // configure the ADC channel |
| adc_config_channel(self); |
| |
| // This uses the timer in polling mode to do the sampling |
| // TODO use DMA |
| |
| uint nelems = bufinfo.len / typesize; |
| for (uint index = 0; index < nelems; index++) { |
| // Wait for the timer to trigger so we sample at the correct frequency |
| while (__HAL_TIM_GET_FLAG(tim, TIM_FLAG_UPDATE) == RESET) { |
| } |
| __HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE); |
| |
| if (index == 0) { |
| // for the first sample we need to turn the ADC on |
| HAL_ADC_Start(&self->handle); |
| } else { |
| // for subsequent samples we can just set the "start sample" bit |
| ADCx->CR2 |= (uint32_t)ADC_CR2_SWSTART; |
| } |
| |
| // wait for sample to complete |
| uint32_t tickstart = HAL_GetTick(); |
| while ((ADCx->SR & ADC_FLAG_EOC) != ADC_FLAG_EOC) { |
| #define READ_TIMED_TIMEOUT (10) // in ms |
| if (((HAL_GetTick() - tickstart ) > READ_TIMED_TIMEOUT)) { |
| break; // timeout |
| } |
| } |
| |
| // read value |
| uint value = ADCx->DR; |
| |
| // store value in buffer |
| if (typesize == 1) { |
| value >>= 4; |
| } |
| mp_binary_set_val_array_from_int(bufinfo.typecode, bufinfo.buf, index, value); |
| } |
| |
| // turn the ADC off |
| HAL_ADC_Stop(&self->handle); |
| |
| #if defined(TIM6) |
| if (mp_obj_is_integer(freq_in)) { |
| // stop timer if we initialised TIM6 in this function (legacy behaviour) |
| HAL_TIM_Base_Stop(tim); |
| } |
| #endif |
| |
| return mp_obj_new_int(bufinfo.len); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_3(adc_read_timed_obj, adc_read_timed); |
| |
| STATIC const mp_map_elem_t adc_locals_dict_table[] = { |
| { MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&adc_read_obj}, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_read_timed), (mp_obj_t)&adc_read_timed_obj}, |
| }; |
| |
| STATIC MP_DEFINE_CONST_DICT(adc_locals_dict, adc_locals_dict_table); |
| |
| const mp_obj_type_t pyb_adc_type = { |
| { &mp_type_type }, |
| .name = MP_QSTR_ADC, |
| .print = adc_print, |
| .make_new = adc_make_new, |
| .locals_dict = (mp_obj_t)&adc_locals_dict, |
| }; |
| |
| /******************************************************************************/ |
| /* adc all object */ |
| |
| typedef struct _pyb_adc_all_obj_t { |
| mp_obj_base_t base; |
| ADC_HandleTypeDef handle; |
| } pyb_adc_all_obj_t; |
| |
| void adc_init_all(pyb_adc_all_obj_t *adc_all, uint32_t resolution) { |
| |
| switch (resolution) { |
| case 6: resolution = ADC_RESOLUTION6b; break; |
| case 8: resolution = ADC_RESOLUTION8b; break; |
| case 10: resolution = ADC_RESOLUTION10b; break; |
| case 12: resolution = ADC_RESOLUTION12b; break; |
| default: |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, |
| "resolution %d not supported", resolution)); |
| } |
| |
| for (uint32_t channel = 0; channel < ADC_NUM_GPIO_CHANNELS; channel++) { |
| // Channels 0-16 correspond to real pins. Configure the GPIO pin in |
| // ADC mode. |
| const pin_obj_t *pin = pin_adc1[channel]; |
| mp_hal_gpio_clock_enable(pin->gpio); |
| GPIO_InitTypeDef GPIO_InitStructure; |
| GPIO_InitStructure.Pin = pin->pin_mask; |
| GPIO_InitStructure.Mode = GPIO_MODE_ANALOG; |
| GPIO_InitStructure.Pull = GPIO_NOPULL; |
| HAL_GPIO_Init(pin->gpio, &GPIO_InitStructure); |
| } |
| |
| ADCx_CLK_ENABLE(); |
| |
| ADC_HandleTypeDef *adcHandle = &adc_all->handle; |
| adcHandle->Instance = ADCx; |
| adcHandle->Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2; |
| adcHandle->Init.Resolution = resolution; |
| adcHandle->Init.ScanConvMode = DISABLE; |
| adcHandle->Init.ContinuousConvMode = DISABLE; |
| adcHandle->Init.DiscontinuousConvMode = DISABLE; |
| adcHandle->Init.NbrOfDiscConversion = 0; |
| adcHandle->Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; |
| adcHandle->Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1; |
| adcHandle->Init.DataAlign = ADC_DATAALIGN_RIGHT; |
| adcHandle->Init.NbrOfConversion = 1; |
| adcHandle->Init.DMAContinuousRequests = DISABLE; |
| adcHandle->Init.EOCSelection = DISABLE; |
| |
| HAL_ADC_Init(adcHandle); |
| } |
| |
| uint32_t adc_config_and_read_channel(ADC_HandleTypeDef *adcHandle, uint32_t channel) { |
| ADC_ChannelConfTypeDef sConfig; |
| sConfig.Channel = channel; |
| sConfig.Rank = 1; |
| sConfig.SamplingTime = ADC_SAMPLETIME_15CYCLES; |
| sConfig.Offset = 0; |
| HAL_ADC_ConfigChannel(adcHandle, &sConfig); |
| |
| return adc_read_channel(adcHandle); |
| } |
| |
| int adc_get_resolution(ADC_HandleTypeDef *adcHandle) { |
| uint32_t res_reg = __HAL_ADC_GET_RESOLUTION(adcHandle); |
| |
| switch (res_reg) { |
| case ADC_RESOLUTION6b: return 6; |
| case ADC_RESOLUTION8b: return 8; |
| case ADC_RESOLUTION10b: return 10; |
| } |
| return 12; |
| } |
| |
| int adc_read_core_temp(ADC_HandleTypeDef *adcHandle) { |
| int32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_TEMPSENSOR); |
| |
| // Note: constants assume 12-bit resolution, so we scale the raw value to |
| // be 12-bits. |
| raw_value <<= (12 - adc_get_resolution(adcHandle)); |
| |
| return ((raw_value - CORE_TEMP_V25) / CORE_TEMP_AVG_SLOPE) + 25; |
| } |
| |
| #if MICROPY_PY_BUILTINS_FLOAT |
| float adc_read_core_vbat(ADC_HandleTypeDef *adcHandle) { |
| uint32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_VBAT); |
| |
| // Note: constants assume 12-bit resolution, so we scale the raw value to |
| // be 12-bits. |
| raw_value <<= (12 - adc_get_resolution(adcHandle)); |
| |
| // multiplier is 3.3/4095 |
| return raw_value * VBAT_DIV * 0.8058608058608059e-3f; |
| } |
| |
| float adc_read_core_vref(ADC_HandleTypeDef *adcHandle) { |
| uint32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_VREFINT); |
| |
| // Note: constants assume 12-bit resolution, so we scale the raw value to |
| // be 12-bits. |
| raw_value <<= (12 - adc_get_resolution(adcHandle)); |
| |
| // multiplier is 3.3/4095 |
| return raw_value * 0.8058608058608059e-3f; |
| } |
| #endif |
| |
| /******************************************************************************/ |
| /* Micro Python bindings : adc_all object */ |
| |
| STATIC mp_obj_t adc_all_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { |
| // check number of arguments |
| mp_arg_check_num(n_args, n_kw, 1, 1, false); |
| |
| // make ADCAll object |
| pyb_adc_all_obj_t *o = m_new_obj(pyb_adc_all_obj_t); |
| o->base.type = &pyb_adc_all_type; |
| adc_init_all(o, mp_obj_get_int(args[0])); // args[0] is the resolution |
| |
| return o; |
| } |
| |
| STATIC mp_obj_t adc_all_read_channel(mp_obj_t self_in, mp_obj_t channel) { |
| pyb_adc_all_obj_t *self = self_in; |
| uint32_t chan = mp_obj_get_int(channel); |
| uint32_t data = adc_config_and_read_channel(&self->handle, chan); |
| return mp_obj_new_int(data); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_2(adc_all_read_channel_obj, adc_all_read_channel); |
| |
| STATIC mp_obj_t adc_all_read_core_temp(mp_obj_t self_in) { |
| pyb_adc_all_obj_t *self = self_in; |
| int data = adc_read_core_temp(&self->handle); |
| return mp_obj_new_int(data); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_temp_obj, adc_all_read_core_temp); |
| |
| #if MICROPY_PY_BUILTINS_FLOAT |
| STATIC mp_obj_t adc_all_read_core_vbat(mp_obj_t self_in) { |
| pyb_adc_all_obj_t *self = self_in; |
| float data = adc_read_core_vbat(&self->handle); |
| return mp_obj_new_float(data); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_vbat_obj, adc_all_read_core_vbat); |
| |
| STATIC mp_obj_t adc_all_read_core_vref(mp_obj_t self_in) { |
| pyb_adc_all_obj_t *self = self_in; |
| float data = adc_read_core_vref(&self->handle); |
| return mp_obj_new_float(data); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_vref_obj, adc_all_read_core_vref); |
| #endif |
| |
| STATIC const mp_map_elem_t adc_all_locals_dict_table[] = { |
| { MP_OBJ_NEW_QSTR(MP_QSTR_read_channel), (mp_obj_t)&adc_all_read_channel_obj}, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_read_core_temp), (mp_obj_t)&adc_all_read_core_temp_obj}, |
| #if MICROPY_PY_BUILTINS_FLOAT |
| { MP_OBJ_NEW_QSTR(MP_QSTR_read_core_vbat), (mp_obj_t)&adc_all_read_core_vbat_obj}, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_read_core_vref), (mp_obj_t)&adc_all_read_core_vref_obj}, |
| #endif |
| }; |
| |
| STATIC MP_DEFINE_CONST_DICT(adc_all_locals_dict, adc_all_locals_dict_table); |
| |
| const mp_obj_type_t pyb_adc_all_type = { |
| { &mp_type_type }, |
| .name = MP_QSTR_ADCAll, |
| .make_new = adc_all_make_new, |
| .locals_dict = (mp_obj_t)&adc_all_locals_dict, |
| }; |