| /* |
| * This file is part of the Micro Python project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include "stm32f4xx_hal.h" |
| |
| #include "mpconfig.h" |
| #include "nlr.h" |
| #include "misc.h" |
| #include "qstr.h" |
| #include "obj.h" |
| #include "runtime.h" |
| #include "bufhelper.h" |
| #include "uart.h" |
| |
| /// \moduleref pyb |
| /// \class UART - duplex serial communication bus |
| /// |
| /// UART implements the standard UART/USART duplex serial communications protocol. At |
| /// the physical level it consists of 2 lines: RX and TX. |
| /// |
| /// See usage model of I2C. UART is very similar. Main difference is |
| /// parameters to init the UART bus: |
| /// |
| /// from pyb import UART |
| /// |
| /// uart = UART(1, 9600) # init with given baudrate |
| /// uart.init(9600, bits=8, stop=1, parity=None) # init with given parameters |
| /// |
| /// Bits can be 8 or 9, stop can be 1 or 2, parity can be None, 0 (even), 1 (odd). |
| /// |
| /// Extra method: |
| /// |
| /// uart.any() # returns True if any characters waiting |
| |
| struct _pyb_uart_obj_t { |
| mp_obj_base_t base; |
| pyb_uart_t uart_id; |
| bool is_enabled; |
| UART_HandleTypeDef uart; |
| }; |
| |
| pyb_uart_obj_t *pyb_uart_global_debug = NULL; |
| |
| // assumes Init parameters have been set up correctly |
| bool uart_init2(pyb_uart_obj_t *uart_obj) { |
| USART_TypeDef *UARTx = NULL; |
| |
| uint32_t GPIO_Pin = 0; |
| uint8_t GPIO_AF_UARTx = 0; |
| GPIO_TypeDef* GPIO_Port = NULL; |
| |
| switch (uart_obj->uart_id) { |
| // USART1 is on PA9/PA10 (CK on PA8), PB6/PB7 |
| case PYB_UART_1: |
| UARTx = USART1; |
| GPIO_AF_UARTx = GPIO_AF7_USART1; |
| |
| #if defined (PYBV4) || defined(PYBV10) |
| GPIO_Port = GPIOB; |
| GPIO_Pin = GPIO_PIN_6 | GPIO_PIN_7; |
| #else |
| GPIO_Port = GPIOA; |
| GPIO_Pin = GPIO_PIN_9 | GPIO_PIN_10; |
| #endif |
| |
| __USART1_CLK_ENABLE(); |
| break; |
| |
| // USART2 is on PA2/PA3 (CK on PA4), PD5/PD6 (CK on PD7) |
| case PYB_UART_2: |
| UARTx = USART2; |
| GPIO_AF_UARTx = GPIO_AF7_USART2; |
| |
| GPIO_Port = GPIOA; |
| GPIO_Pin = GPIO_PIN_2 | GPIO_PIN_3; |
| |
| __USART2_CLK_ENABLE(); |
| break; |
| |
| // USART3 is on PB10/PB11 (CK on PB12), PC10/PC11 (CK on PC12), PD8/PD9 (CK on PD10) |
| case PYB_UART_3: |
| UARTx = USART3; |
| GPIO_AF_UARTx = GPIO_AF7_USART3; |
| |
| #if defined(PYBV3) || defined(PYBV4) | defined(PYBV10) |
| GPIO_Port = GPIOB; |
| GPIO_Pin = GPIO_PIN_10 | GPIO_PIN_11; |
| #else |
| GPIO_Port = GPIOD; |
| GPIO_Pin = GPIO_PIN_8 | GPIO_PIN_9; |
| #endif |
| __USART3_CLK_ENABLE(); |
| break; |
| |
| // UART4 is on PA0/PA1, PC10/PC11 |
| case PYB_UART_4: |
| UARTx = UART4; |
| GPIO_AF_UARTx = GPIO_AF8_UART4; |
| |
| GPIO_Port = GPIOA; |
| GPIO_Pin = GPIO_PIN_0 | GPIO_PIN_1; |
| |
| __UART4_CLK_ENABLE(); |
| break; |
| |
| // USART6 is on PC6/PC7 (CK on PC8) |
| case PYB_UART_6: |
| UARTx = USART6; |
| GPIO_AF_UARTx = GPIO_AF8_USART6; |
| |
| GPIO_Port = GPIOC; |
| GPIO_Pin = GPIO_PIN_6 | GPIO_PIN_7; |
| |
| __USART6_CLK_ENABLE(); |
| break; |
| |
| default: |
| return false; |
| } |
| |
| // init GPIO |
| GPIO_InitTypeDef GPIO_InitStructure; |
| GPIO_InitStructure.Pin = GPIO_Pin; |
| GPIO_InitStructure.Speed = GPIO_SPEED_HIGH; |
| GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; |
| GPIO_InitStructure.Pull = GPIO_PULLUP; |
| GPIO_InitStructure.Alternate = GPIO_AF_UARTx; |
| HAL_GPIO_Init(GPIO_Port, &GPIO_InitStructure); |
| |
| // init UARTx |
| uart_obj->uart.Instance = UARTx; |
| HAL_UART_Init(&uart_obj->uart); |
| |
| uart_obj->is_enabled = true; |
| |
| return true; |
| } |
| |
| bool uart_init(pyb_uart_obj_t *uart_obj, uint32_t baudrate) { |
| UART_HandleTypeDef *uh = &uart_obj->uart; |
| memset(uh, 0, sizeof(*uh)); |
| uh->Init.BaudRate = baudrate; |
| uh->Init.WordLength = UART_WORDLENGTH_8B; |
| uh->Init.StopBits = UART_STOPBITS_1; |
| uh->Init.Parity = UART_PARITY_NONE; |
| uh->Init.Mode = UART_MODE_TX_RX; |
| uh->Init.HwFlowCtl = UART_HWCONTROL_NONE; |
| uh->Init.OverSampling = UART_OVERSAMPLING_16; |
| return uart_init2(uart_obj); |
| } |
| |
| void uart_deinit(pyb_uart_obj_t *uart_obj) { |
| uart_obj->is_enabled = false; |
| UART_HandleTypeDef *uart = &uart_obj->uart; |
| HAL_UART_DeInit(uart); |
| if (uart->Instance == USART1) { |
| __USART1_FORCE_RESET(); |
| __USART1_RELEASE_RESET(); |
| __USART1_CLK_DISABLE(); |
| } else if (uart->Instance == USART2) { |
| __USART2_FORCE_RESET(); |
| __USART2_RELEASE_RESET(); |
| __USART2_CLK_DISABLE(); |
| } else if (uart->Instance == USART3) { |
| __USART3_FORCE_RESET(); |
| __USART3_RELEASE_RESET(); |
| __USART3_CLK_DISABLE(); |
| } else if (uart->Instance == UART4) { |
| __UART4_FORCE_RESET(); |
| __UART4_RELEASE_RESET(); |
| __UART4_CLK_DISABLE(); |
| } else if (uart->Instance == USART6) { |
| __USART6_FORCE_RESET(); |
| __USART6_RELEASE_RESET(); |
| __USART6_CLK_DISABLE(); |
| } |
| } |
| |
| bool uart_rx_any(pyb_uart_obj_t *uart_obj) { |
| return __HAL_UART_GET_FLAG(&uart_obj->uart, UART_FLAG_RXNE); |
| } |
| |
| int uart_rx_char(pyb_uart_obj_t *uart_obj) { |
| uint8_t ch; |
| if (HAL_UART_Receive(&uart_obj->uart, &ch, 1, 0) != HAL_OK) { |
| ch = 0; |
| } |
| return ch; |
| } |
| |
| void uart_tx_char(pyb_uart_obj_t *uart_obj, int c) { |
| uint8_t ch = c; |
| HAL_UART_Transmit(&uart_obj->uart, &ch, 1, 100000); |
| } |
| |
| void uart_tx_str(pyb_uart_obj_t *uart_obj, const char *str) { |
| HAL_UART_Transmit(&uart_obj->uart, (uint8_t*)str, strlen(str), 100000); |
| } |
| |
| void uart_tx_strn(pyb_uart_obj_t *uart_obj, const char *str, uint len) { |
| HAL_UART_Transmit(&uart_obj->uart, (uint8_t*)str, len, 100000); |
| } |
| |
| void uart_tx_strn_cooked(pyb_uart_obj_t *uart_obj, const char *str, uint len) { |
| for (const char *top = str + len; str < top; str++) { |
| if (*str == '\n') { |
| uart_tx_char(uart_obj, '\r'); |
| } |
| uart_tx_char(uart_obj, *str); |
| } |
| } |
| |
| /******************************************************************************/ |
| /* Micro Python bindings */ |
| |
| STATIC void pyb_uart_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { |
| pyb_uart_obj_t *self = self_in; |
| if (!self->is_enabled) { |
| print(env, "UART(%lu)", self->uart_id); |
| } else { |
| print(env, "UART(%lu, baudrate=%u, bits=%u, stop=%u", |
| self->uart_id, self->uart.Init.BaudRate, |
| self->uart.Init.WordLength == UART_WORDLENGTH_8B ? 8 : 9, |
| self->uart.Init.StopBits == UART_STOPBITS_1 ? 1 : 2); |
| if (self->uart.Init.Parity == UART_PARITY_NONE) { |
| print(env, ", parity=None)"); |
| } else { |
| print(env, ", parity=%u)", self->uart.Init.Parity == UART_PARITY_EVEN ? 0 : 1); |
| } |
| } |
| } |
| |
| /// \method init(baudrate, *, bits=8, stop=1, parity=None) |
| /// |
| /// Initialise the SPI bus with the given parameters: |
| /// |
| /// - `baudrate` is the clock rate. |
| /// - `bits` is the number of bits per byte, 8 or 9. |
| /// - `stop` is the number of stop bits, 1 or 2. |
| /// - `parity` is the parity, `None`, 0 (even) or 1 (odd). |
| STATIC const mp_arg_t pyb_uart_init_args[] = { |
| { MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} }, |
| { MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, |
| { MP_QSTR_stop, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, |
| { MP_QSTR_parity, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, |
| }; |
| #define PYB_UART_INIT_NUM_ARGS MP_ARRAY_SIZE(pyb_uart_init_args) |
| |
| STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, uint n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| // parse args |
| mp_arg_val_t vals[PYB_UART_INIT_NUM_ARGS]; |
| mp_arg_parse_all(n_args, args, kw_args, PYB_UART_INIT_NUM_ARGS, pyb_uart_init_args, vals); |
| |
| // set the UART configuration values |
| memset(&self->uart, 0, sizeof(self->uart)); |
| UART_InitTypeDef *init = &self->uart.Init; |
| init->BaudRate = vals[0].u_int; |
| init->WordLength = vals[1].u_int == 8 ? UART_WORDLENGTH_8B : UART_WORDLENGTH_9B; |
| switch (vals[2].u_int) { |
| case 1: init->StopBits = UART_STOPBITS_1; break; |
| default: init->StopBits = UART_STOPBITS_2; break; |
| } |
| if (vals[3].u_obj == mp_const_none) { |
| init->Parity = UART_PARITY_NONE; |
| } else { |
| mp_int_t parity = mp_obj_get_int(vals[3].u_obj); |
| init->Parity = (parity & 1) ? UART_PARITY_ODD : UART_PARITY_EVEN; |
| } |
| init->Mode = UART_MODE_TX_RX; |
| init->HwFlowCtl = UART_HWCONTROL_NONE; |
| init->OverSampling = UART_OVERSAMPLING_16; |
| |
| // init UART (if it fails, it's because the port doesn't exist) |
| if (!uart_init2(self)) { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART port %d does not exist", self->uart_id)); |
| } |
| |
| return mp_const_none; |
| } |
| |
| /// \classmethod \constructor(bus, ...) |
| /// |
| /// Construct a UART object on the given bus. `bus` can be 1-6, or 'XA', 'XB', 'YA', or 'YB'. |
| /// With no additional parameters, the UART object is created but not |
| /// initialised (it has the settings from the last initialisation of |
| /// the bus, if any). If extra arguments are given, the bus is initialised. |
| /// See `init` for parameters of initialisation. |
| /// |
| /// The physical pins of the UART busses are: |
| /// |
| /// - `UART(4)` is on `XA`: `(TX, RX) = (X1, X2) = (PA0, PA1)` |
| /// - `UART(1)` is on `XB`: `(TX, RX) = (X9, X10) = (PB6, PB7)` |
| /// - `UART(6)` is on `YA`: `(TX, RX) = (Y1, Y2) = (PC6, PC7)` |
| /// - `UART(3)` is on `YB`: `(TX, RX) = (Y9, Y10) = (PB10, PB11)` |
| /// - `UART(2)` is on: `(TX, RX) = (X3, X4) = (PA2, PA3)` |
| STATIC mp_obj_t pyb_uart_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) { |
| // check arguments |
| mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); |
| |
| // create object |
| pyb_uart_obj_t *o = m_new_obj(pyb_uart_obj_t); |
| o->base.type = &pyb_uart_type; |
| |
| // work out port |
| o->uart_id = 0; |
| if (MP_OBJ_IS_STR(args[0])) { |
| const char *port = mp_obj_str_get_str(args[0]); |
| if (0) { |
| #if defined(PYBV10) |
| } else if (strcmp(port, "XA") == 0) { |
| o->uart_id = PYB_UART_XA; |
| } else if (strcmp(port, "XB") == 0) { |
| o->uart_id = PYB_UART_XB; |
| } else if (strcmp(port, "YA") == 0) { |
| o->uart_id = PYB_UART_YA; |
| } else if (strcmp(port, "YB") == 0) { |
| o->uart_id = PYB_UART_YB; |
| #endif |
| } else { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART port %s does not exist", port)); |
| } |
| } else { |
| o->uart_id = mp_obj_get_int(args[0]); |
| } |
| |
| if (n_args > 1 || n_kw > 0) { |
| // start the peripheral |
| mp_map_t kw_args; |
| mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); |
| pyb_uart_init_helper(o, n_args - 1, args + 1, &kw_args); |
| } |
| |
| return o; |
| } |
| |
| STATIC mp_obj_t pyb_uart_init(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| return pyb_uart_init_helper(args[0], n_args - 1, args + 1, kw_args); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_init_obj, 1, pyb_uart_init); |
| |
| /// \method deinit() |
| /// Turn off the UART bus. |
| STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in) { |
| pyb_uart_obj_t *self = self_in; |
| uart_deinit(self); |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_deinit_obj, pyb_uart_deinit); |
| |
| /// \method any() |
| /// Return `True` if any characters waiting, else `False`. |
| STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) { |
| pyb_uart_obj_t *self = self_in; |
| if (uart_rx_any(self)) { |
| return mp_const_true; |
| } else { |
| return mp_const_false; |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any); |
| |
| /// \method send(send, *, timeout=5000) |
| /// Send data on the bus: |
| /// |
| /// - `send` is the data to send (an integer to send, or a buffer object). |
| /// - `timeout` is the timeout in milliseconds to wait for the send. |
| /// |
| /// Return value: `None`. |
| STATIC const mp_arg_t pyb_uart_send_args[] = { |
| { MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, |
| { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, |
| }; |
| #define PYB_UART_SEND_NUM_ARGS MP_ARRAY_SIZE(pyb_uart_send_args) |
| |
| STATIC mp_obj_t pyb_uart_send(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| // TODO assumes transmission size is 8-bits wide |
| |
| pyb_uart_obj_t *self = args[0]; |
| |
| // parse args |
| mp_arg_val_t vals[PYB_UART_SEND_NUM_ARGS]; |
| mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_UART_SEND_NUM_ARGS, pyb_uart_send_args, vals); |
| |
| // get the buffer to send from |
| mp_buffer_info_t bufinfo; |
| uint8_t data[1]; |
| pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data); |
| |
| // send the data |
| HAL_StatusTypeDef status = HAL_UART_Transmit(&self->uart, bufinfo.buf, bufinfo.len, vals[1].u_int); |
| |
| if (status != HAL_OK) { |
| // TODO really need a HardwareError object, or something |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_UART_Transmit failed with code %d", status)); |
| } |
| |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_send_obj, 1, pyb_uart_send); |
| |
| /// \method recv(recv, *, timeout=5000) |
| /// |
| /// Receive data on the bus: |
| /// |
| /// - `recv` can be an integer, which is the number of bytes to receive, |
| /// or a mutable buffer, which will be filled with received bytes. |
| /// - `timeout` is the timeout in milliseconds to wait for the receive. |
| /// |
| /// Return value: if `recv` is an integer then a new buffer of the bytes received, |
| /// otherwise the same buffer that was passed in to `recv`. |
| STATIC const mp_arg_t pyb_uart_recv_args[] = { |
| { MP_QSTR_recv, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, |
| { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, |
| }; |
| #define PYB_UART_RECV_NUM_ARGS MP_ARRAY_SIZE(pyb_uart_recv_args) |
| |
| STATIC mp_obj_t pyb_uart_recv(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| // TODO assumes transmission size is 8-bits wide |
| |
| pyb_uart_obj_t *self = args[0]; |
| |
| // parse args |
| mp_arg_val_t vals[PYB_UART_RECV_NUM_ARGS]; |
| mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_UART_RECV_NUM_ARGS, pyb_uart_recv_args, vals); |
| |
| // get the buffer to receive into |
| mp_buffer_info_t bufinfo; |
| mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &bufinfo); |
| |
| // receive the data |
| HAL_StatusTypeDef status = HAL_UART_Receive(&self->uart, bufinfo.buf, bufinfo.len, vals[1].u_int); |
| |
| if (status != HAL_OK) { |
| // TODO really need a HardwareError object, or something |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_UART_Receive failed with code %d", status)); |
| } |
| |
| // return the received data |
| if (o_ret == MP_OBJ_NULL) { |
| return vals[0].u_obj; |
| } else { |
| return mp_obj_str_builder_end(o_ret); |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_recv_obj, 1, pyb_uart_recv); |
| |
| STATIC const mp_map_elem_t pyb_uart_locals_dict_table[] = { |
| // instance methods |
| { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_uart_init_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_uart_deinit_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_any), (mp_obj_t)&pyb_uart_any_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_uart_send_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_uart_recv_obj }, |
| }; |
| |
| STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table); |
| |
| const mp_obj_type_t pyb_uart_type = { |
| { &mp_type_type }, |
| .name = MP_QSTR_UART, |
| .print = pyb_uart_print, |
| .make_new = pyb_uart_make_new, |
| .locals_dict = (mp_obj_t)&pyb_uart_locals_dict, |
| }; |