| /* |
| * This file is part of the Micro Python project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * Copyright (c) 2014 Paul Sokolovsky |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdbool.h> |
| #include <string.h> |
| #include <assert.h> |
| |
| #include "mpconfig.h" |
| #include "nlr.h" |
| #include "misc.h" |
| #include "qstr.h" |
| #include "obj.h" |
| #include "objtuple.h" |
| #include "objfun.h" |
| #include "runtime0.h" |
| #include "runtime.h" |
| #include "bc.h" |
| #include "stackctrl.h" |
| |
| #if 0 // print debugging info |
| #define DEBUG_PRINT (1) |
| #else // don't print debugging info |
| #define DEBUG_printf(...) (void)0 |
| #endif |
| |
| /******************************************************************************/ |
| /* native functions */ |
| |
| // mp_obj_fun_native_t defined in obj.h |
| |
| STATIC mp_obj_t fun_binary_op(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) { |
| switch (op) { |
| case MP_BINARY_OP_EQUAL: |
| // These objects can be equal only if it's the same underlying structure, |
| // we don't even need to check for 2nd arg type. |
| return MP_BOOL(lhs_in == rhs_in); |
| } |
| return MP_OBJ_NULL; // op not supported |
| } |
| |
| STATIC mp_obj_t fun_native_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) { |
| assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_native)); |
| mp_obj_fun_native_t *self = self_in; |
| |
| // check number of arguments |
| mp_arg_check_num(n_args, n_kw, self->n_args_min, self->n_args_max, self->is_kw); |
| |
| if (self->is_kw) { |
| // function allows keywords |
| |
| // we create a map directly from the given args array |
| mp_map_t kw_args; |
| mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); |
| |
| return ((mp_fun_kw_t)self->fun)(n_args, args, &kw_args); |
| |
| } else if (self->n_args_min <= 3 && self->n_args_min == self->n_args_max) { |
| // function requires a fixed number of arguments |
| |
| // dispatch function call |
| switch (self->n_args_min) { |
| case 0: |
| return ((mp_fun_0_t)self->fun)(); |
| |
| case 1: |
| return ((mp_fun_1_t)self->fun)(args[0]); |
| |
| case 2: |
| return ((mp_fun_2_t)self->fun)(args[0], args[1]); |
| |
| case 3: |
| return ((mp_fun_3_t)self->fun)(args[0], args[1], args[2]); |
| |
| default: |
| assert(0); |
| return mp_const_none; |
| } |
| |
| } else { |
| // function takes a variable number of arguments, but no keywords |
| |
| return ((mp_fun_var_t)self->fun)(n_args, args); |
| } |
| } |
| |
| const mp_obj_type_t mp_type_fun_native = { |
| { &mp_type_type }, |
| .name = MP_QSTR_function, |
| .call = fun_native_call, |
| .binary_op = fun_binary_op, |
| }; |
| |
| // fun must have the correct signature for n_args fixed arguments |
| mp_obj_t mp_make_function_n(int n_args, void *fun) { |
| mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t); |
| o->base.type = &mp_type_fun_native; |
| o->is_kw = false; |
| o->n_args_min = n_args; |
| o->n_args_max = n_args; |
| o->fun = fun; |
| return o; |
| } |
| |
| mp_obj_t mp_make_function_var(int n_args_min, mp_fun_var_t fun) { |
| mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t); |
| o->base.type = &mp_type_fun_native; |
| o->is_kw = false; |
| o->n_args_min = n_args_min; |
| o->n_args_max = MP_OBJ_FUN_ARGS_MAX; |
| o->fun = fun; |
| return o; |
| } |
| |
| // min and max are inclusive |
| mp_obj_t mp_make_function_var_between(int n_args_min, int n_args_max, mp_fun_var_t fun) { |
| mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t); |
| o->base.type = &mp_type_fun_native; |
| o->is_kw = false; |
| o->n_args_min = n_args_min; |
| o->n_args_max = n_args_max; |
| o->fun = fun; |
| return o; |
| } |
| |
| /******************************************************************************/ |
| /* byte code functions */ |
| |
| const char *mp_obj_code_get_name(const byte *code_info) { |
| qstr block_name = code_info[8] | (code_info[9] << 8) | (code_info[10] << 16) | (code_info[11] << 24); |
| return qstr_str(block_name); |
| } |
| |
| const char *mp_obj_fun_get_name(mp_const_obj_t fun_in) { |
| const mp_obj_fun_bc_t *fun = fun_in; |
| const byte *code_info = fun->bytecode; |
| return mp_obj_code_get_name(code_info); |
| } |
| |
| #if MICROPY_CPYTHON_COMPAT |
| STATIC void fun_bc_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t o_in, mp_print_kind_t kind) { |
| mp_obj_fun_bc_t *o = o_in; |
| print(env, "<function %s at 0x%x>", mp_obj_fun_get_name(o), o); |
| } |
| #endif |
| |
| #if DEBUG_PRINT |
| STATIC void dump_args(const mp_obj_t *a, int sz) { |
| DEBUG_printf("%p: ", a); |
| for (int i = 0; i < sz; i++) { |
| DEBUG_printf("%p ", a[i]); |
| } |
| DEBUG_printf("\n"); |
| } |
| #else |
| #define dump_args(...) (void)0 |
| #endif |
| |
| STATIC NORETURN void fun_pos_args_mismatch(mp_obj_fun_bc_t *f, uint expected, uint given) { |
| #if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE |
| // Generic message, to be reused for other argument issues |
| nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, |
| "argument num/types mismatch")); |
| #elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NORMAL |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, |
| "function takes %d positional arguments but %d were given", expected, given)); |
| #elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_DETAILED |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, |
| "%s() takes %d positional arguments but %d were given", |
| mp_obj_fun_get_name(f), expected, given)); |
| #endif |
| } |
| |
| // With this macro you can tune the maximum number of function state bytes |
| // that will be allocated on the stack. Any function that needs more |
| // than this will use the heap. |
| #define VM_MAX_STATE_ON_STACK (10 * sizeof(mp_uint_t)) |
| |
| // Set this to enable a simple stack overflow check. |
| #define VM_DETECT_STACK_OVERFLOW (0) |
| |
| // code_state should have ->ip filled in (pointing past code info block), |
| // as well as ->n_state. |
| void mp_setup_code_state(mp_code_state *code_state, mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) { |
| // This function is pretty complicated. It's main aim is to be efficient in speed and RAM |
| // usage for the common case of positional only args. |
| mp_obj_fun_bc_t *self = self_in; |
| mp_uint_t n_state = code_state->n_state; |
| const byte *ip = code_state->ip; |
| |
| code_state->code_info = self->bytecode; |
| code_state->sp = &code_state->state[0] - 1; |
| code_state->exc_sp = (mp_exc_stack_t*)(code_state->state + n_state) - 1; |
| |
| // zero out the local stack to begin with |
| memset(code_state->state, 0, n_state * sizeof(*code_state->state)); |
| |
| const mp_obj_t *kwargs = args + n_args; |
| |
| // var_pos_kw_args points to the stack where the var-args tuple, and var-kw dict, should go (if they are needed) |
| mp_obj_t *var_pos_kw_args = &code_state->state[n_state - 1 - self->n_pos_args - self->n_kwonly_args]; |
| |
| // check positional arguments |
| |
| if (n_args > self->n_pos_args) { |
| // given more than enough arguments |
| if (!self->takes_var_args) { |
| fun_pos_args_mismatch(self, self->n_pos_args, n_args); |
| } |
| // put extra arguments in varargs tuple |
| *var_pos_kw_args-- = mp_obj_new_tuple(n_args - self->n_pos_args, args + self->n_pos_args); |
| n_args = self->n_pos_args; |
| } else { |
| if (self->takes_var_args) { |
| DEBUG_printf("passing empty tuple as *args\n"); |
| *var_pos_kw_args-- = mp_const_empty_tuple; |
| } |
| // Apply processing and check below only if we don't have kwargs, |
| // otherwise, kw handling code below has own extensive checks. |
| if (n_kw == 0 && !self->has_def_kw_args) { |
| if (n_args >= self->n_pos_args - self->n_def_args) { |
| // given enough arguments, but may need to use some default arguments |
| for (uint i = n_args; i < self->n_pos_args; i++) { |
| code_state->state[n_state - 1 - i] = self->extra_args[i - (self->n_pos_args - self->n_def_args)]; |
| } |
| } else { |
| fun_pos_args_mismatch(self, self->n_pos_args - self->n_def_args, n_args); |
| } |
| } |
| } |
| |
| // copy positional args into state |
| for (uint i = 0; i < n_args; i++) { |
| code_state->state[n_state - 1 - i] = args[i]; |
| } |
| |
| // check keyword arguments |
| |
| if (n_kw != 0 || self->has_def_kw_args) { |
| DEBUG_printf("Initial args: "); |
| dump_args(code_state->state + n_state - self->n_pos_args - self->n_kwonly_args, self->n_pos_args + self->n_kwonly_args); |
| |
| mp_obj_t dict = MP_OBJ_NULL; |
| if (self->takes_kw_args) { |
| dict = mp_obj_new_dict(n_kw); // TODO: better go conservative with 0? |
| *var_pos_kw_args = dict; |
| } |
| |
| for (uint i = 0; i < n_kw; i++) { |
| qstr arg_name = MP_OBJ_QSTR_VALUE(kwargs[2 * i]); |
| for (uint j = 0; j < self->n_pos_args + self->n_kwonly_args; j++) { |
| if (arg_name == self->args[j]) { |
| if (code_state->state[n_state - 1 - j] != MP_OBJ_NULL) { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, |
| "function got multiple values for argument '%s'", qstr_str(arg_name))); |
| } |
| code_state->state[n_state - 1 - j] = kwargs[2 * i + 1]; |
| goto continue2; |
| } |
| } |
| // Didn't find name match with positional args |
| if (!self->takes_kw_args) { |
| nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "function does not take keyword arguments")); |
| } |
| mp_obj_dict_store(dict, kwargs[2 * i], kwargs[2 * i + 1]); |
| continue2:; |
| } |
| |
| DEBUG_printf("Args with kws flattened: "); |
| dump_args(code_state->state + n_state - self->n_pos_args - self->n_kwonly_args, self->n_pos_args + self->n_kwonly_args); |
| |
| // fill in defaults for positional args |
| mp_obj_t *d = &code_state->state[n_state - self->n_pos_args]; |
| mp_obj_t *s = &self->extra_args[self->n_def_args - 1]; |
| for (int i = self->n_def_args; i > 0; i--, d++, s--) { |
| if (*d == MP_OBJ_NULL) { |
| *d = *s; |
| } |
| } |
| |
| DEBUG_printf("Args after filling default positional: "); |
| dump_args(code_state->state + n_state - self->n_pos_args - self->n_kwonly_args, self->n_pos_args + self->n_kwonly_args); |
| |
| // Check that all mandatory positional args are specified |
| while (d < &code_state->state[n_state]) { |
| if (*d++ == MP_OBJ_NULL) { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, |
| "function missing required positional argument #%d", &code_state->state[n_state] - d)); |
| } |
| } |
| |
| // Check that all mandatory keyword args are specified |
| // Fill in default kw args if we have them |
| for (uint i = 0; i < self->n_kwonly_args; i++) { |
| if (code_state->state[n_state - 1 - self->n_pos_args - i] == MP_OBJ_NULL) { |
| mp_map_elem_t *elem = NULL; |
| if (self->has_def_kw_args) { |
| elem = mp_map_lookup(&((mp_obj_dict_t*)self->extra_args[self->n_def_args])->map, MP_OBJ_NEW_QSTR(self->args[self->n_pos_args + i]), MP_MAP_LOOKUP); |
| } |
| if (elem != NULL) { |
| code_state->state[n_state - 1 - self->n_pos_args - i] = elem->value; |
| } else { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, |
| "function missing required keyword argument '%s'", qstr_str(self->args[self->n_pos_args + i]))); |
| } |
| } |
| } |
| |
| } else { |
| // no keyword arguments given |
| if (self->n_kwonly_args != 0) { |
| nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, |
| "function missing keyword-only argument")); |
| } |
| if (self->takes_kw_args) { |
| *var_pos_kw_args = mp_obj_new_dict(0); |
| } |
| } |
| |
| // bytecode prelude: initialise closed over variables |
| for (uint n_local = *ip++; n_local > 0; n_local--) { |
| uint local_num = *ip++; |
| code_state->state[n_state - 1 - local_num] = mp_obj_new_cell(code_state->state[n_state - 1 - local_num]); |
| } |
| |
| // now that we skipped over the prelude, set the ip for the VM |
| code_state->ip = ip; |
| |
| DEBUG_printf("Calling: n_pos_args=%d, n_kwonly_args=%d\n", self->n_pos_args, self->n_kwonly_args); |
| dump_args(code_state->state + n_state - self->n_pos_args - self->n_kwonly_args, self->n_pos_args + self->n_kwonly_args); |
| dump_args(code_state->state, n_state); |
| } |
| |
| |
| STATIC mp_obj_t fun_bc_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) { |
| MP_STACK_CHECK(); |
| |
| DEBUG_printf("Input n_args: %d, n_kw: %d\n", n_args, n_kw); |
| DEBUG_printf("Input pos args: "); |
| dump_args(args, n_args); |
| DEBUG_printf("Input kw args: "); |
| dump_args(args + n_args, n_kw * 2); |
| mp_obj_fun_bc_t *self = self_in; |
| DEBUG_printf("Func n_def_args: %d\n", self->n_def_args); |
| |
| const byte *ip = self->bytecode; |
| |
| // get code info size, and skip line number table |
| mp_uint_t code_info_size = ip[0] | (ip[1] << 8) | (ip[2] << 16) | (ip[3] << 24); |
| ip += code_info_size; |
| |
| // bytecode prelude: state size and exception stack size; 16 bit uints |
| mp_uint_t n_state = ip[0] | (ip[1] << 8); |
| mp_uint_t n_exc_stack = ip[2] | (ip[3] << 8); |
| ip += 4; |
| |
| #if VM_DETECT_STACK_OVERFLOW |
| n_state += 1; |
| #endif |
| |
| // allocate state for locals and stack |
| uint state_size = n_state * sizeof(mp_obj_t) + n_exc_stack * sizeof(mp_exc_stack_t); |
| mp_code_state *code_state; |
| if (state_size > VM_MAX_STATE_ON_STACK) { |
| code_state = m_new_obj_var(mp_code_state, byte, state_size); |
| } else { |
| code_state = alloca(sizeof(mp_code_state) + state_size); |
| } |
| |
| code_state->n_state = n_state; |
| code_state->ip = ip; |
| mp_setup_code_state(code_state, self_in, n_args, n_kw, args); |
| |
| // execute the byte code with the correct globals context |
| mp_obj_dict_t *old_globals = mp_globals_get(); |
| mp_globals_set(self->globals); |
| mp_vm_return_kind_t vm_return_kind = mp_execute_bytecode(code_state, MP_OBJ_NULL); |
| mp_globals_set(old_globals); |
| |
| #if VM_DETECT_STACK_OVERFLOW |
| if (vm_return_kind == MP_VM_RETURN_NORMAL) { |
| if (code_state->sp < code_state->state) { |
| printf("VM stack underflow: " INT_FMT "\n", code_state->sp - code_state->state); |
| assert(0); |
| } |
| } |
| // We can't check the case when an exception is returned in state[n_state - 1] |
| // and there are no arguments, because in this case our detection slot may have |
| // been overwritten by the returned exception (which is allowed). |
| if (!(vm_return_kind == MP_VM_RETURN_EXCEPTION && self->n_pos_args + self->n_kwonly_args == 0)) { |
| // Just check to see that we have at least 1 null object left in the state. |
| bool overflow = true; |
| for (uint i = 0; i < n_state - self->n_pos_args - self->n_kwonly_args; i++) { |
| if (code_state->state[i] == MP_OBJ_NULL) { |
| overflow = false; |
| break; |
| } |
| } |
| if (overflow) { |
| printf("VM stack overflow state=%p n_state+1=" UINT_FMT "\n", code_state->state, n_state); |
| assert(0); |
| } |
| } |
| #endif |
| |
| mp_obj_t result; |
| switch (vm_return_kind) { |
| case MP_VM_RETURN_NORMAL: |
| // return value is in *sp |
| result = *code_state->sp; |
| break; |
| |
| case MP_VM_RETURN_EXCEPTION: |
| // return value is in state[n_state - 1] |
| result = code_state->state[n_state - 1]; |
| break; |
| |
| case MP_VM_RETURN_YIELD: // byte-code shouldn't yield |
| default: |
| assert(0); |
| result = mp_const_none; |
| vm_return_kind = MP_VM_RETURN_NORMAL; |
| break; |
| } |
| |
| // free the state if it was allocated on the heap |
| if (state_size > VM_MAX_STATE_ON_STACK) { |
| m_del_var(mp_code_state, byte, state_size, code_state); |
| } |
| |
| if (vm_return_kind == MP_VM_RETURN_NORMAL) { |
| return result; |
| } else { // MP_VM_RETURN_EXCEPTION |
| nlr_raise(result); |
| } |
| } |
| |
| const mp_obj_type_t mp_type_fun_bc = { |
| { &mp_type_type }, |
| .name = MP_QSTR_function, |
| #if MICROPY_CPYTHON_COMPAT |
| .print = fun_bc_print, |
| #endif |
| .call = fun_bc_call, |
| .binary_op = fun_binary_op, |
| }; |
| |
| mp_obj_t mp_obj_new_fun_bc(uint scope_flags, qstr *args, uint n_pos_args, uint n_kwonly_args, mp_obj_t def_args_in, mp_obj_t def_kw_args, const byte *code) { |
| uint n_def_args = 0; |
| uint n_extra_args = 0; |
| mp_obj_tuple_t *def_args = def_args_in; |
| if (def_args != MP_OBJ_NULL) { |
| assert(MP_OBJ_IS_TYPE(def_args, &mp_type_tuple)); |
| n_def_args = def_args->len; |
| n_extra_args = def_args->len; |
| } |
| if (def_kw_args != MP_OBJ_NULL) { |
| n_extra_args += 1; |
| } |
| mp_obj_fun_bc_t *o = m_new_obj_var(mp_obj_fun_bc_t, mp_obj_t, n_extra_args); |
| o->base.type = &mp_type_fun_bc; |
| o->globals = mp_globals_get(); |
| o->args = args; |
| o->n_pos_args = n_pos_args; |
| o->n_kwonly_args = n_kwonly_args; |
| o->n_def_args = n_def_args; |
| o->has_def_kw_args = def_kw_args != MP_OBJ_NULL; |
| o->takes_var_args = (scope_flags & MP_SCOPE_FLAG_VARARGS) != 0; |
| o->takes_kw_args = (scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0; |
| o->bytecode = code; |
| if (def_args != MP_OBJ_NULL) { |
| memcpy(o->extra_args, def_args->items, n_def_args * sizeof(mp_obj_t)); |
| } |
| if (def_kw_args != MP_OBJ_NULL) { |
| o->extra_args[n_def_args] = def_kw_args; |
| } |
| return o; |
| } |
| |
| /******************************************************************************/ |
| /* inline assembler functions */ |
| |
| typedef struct _mp_obj_fun_asm_t { |
| mp_obj_base_t base; |
| int n_args; |
| void *fun; |
| } mp_obj_fun_asm_t; |
| |
| typedef mp_uint_t (*inline_asm_fun_0_t)(); |
| typedef mp_uint_t (*inline_asm_fun_1_t)(mp_uint_t); |
| typedef mp_uint_t (*inline_asm_fun_2_t)(mp_uint_t, mp_uint_t); |
| typedef mp_uint_t (*inline_asm_fun_3_t)(mp_uint_t, mp_uint_t, mp_uint_t); |
| |
| // convert a Micro Python object to a sensible value for inline asm |
| STATIC mp_uint_t convert_obj_for_inline_asm(mp_obj_t obj) { |
| // TODO for byte_array, pass pointer to the array |
| if (MP_OBJ_IS_SMALL_INT(obj)) { |
| return MP_OBJ_SMALL_INT_VALUE(obj); |
| } else if (obj == mp_const_none) { |
| return 0; |
| } else if (obj == mp_const_false) { |
| return 0; |
| } else if (obj == mp_const_true) { |
| return 1; |
| } else if (MP_OBJ_IS_STR(obj)) { |
| // pointer to the string (it's probably constant though!) |
| uint l; |
| return (mp_uint_t)mp_obj_str_get_data(obj, &l); |
| } else { |
| mp_obj_type_t *type = mp_obj_get_type(obj); |
| if (0) { |
| #if MICROPY_PY_BUILTINS_FLOAT |
| } else if (type == &mp_type_float) { |
| // convert float to int (could also pass in float registers) |
| return (mp_int_t)mp_obj_float_get(obj); |
| #endif |
| } else if (type == &mp_type_tuple) { |
| // pointer to start of tuple (could pass length, but then could use len(x) for that) |
| uint len; |
| mp_obj_t *items; |
| mp_obj_tuple_get(obj, &len, &items); |
| return (mp_uint_t)items; |
| } else if (type == &mp_type_list) { |
| // pointer to start of list (could pass length, but then could use len(x) for that) |
| uint len; |
| mp_obj_t *items; |
| mp_obj_list_get(obj, &len, &items); |
| return (mp_uint_t)items; |
| } else { |
| mp_buffer_info_t bufinfo; |
| if (mp_get_buffer(obj, &bufinfo, MP_BUFFER_WRITE)) { |
| // supports the buffer protocol, return a pointer to the data |
| return (mp_uint_t)bufinfo.buf; |
| } else { |
| // just pass along a pointer to the object |
| return (mp_uint_t)obj; |
| } |
| } |
| } |
| } |
| |
| // convert a return value from inline asm to a sensible Micro Python object |
| STATIC mp_obj_t convert_val_from_inline_asm(mp_uint_t val) { |
| return MP_OBJ_NEW_SMALL_INT(val); |
| } |
| |
| STATIC mp_obj_t fun_asm_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) { |
| mp_obj_fun_asm_t *self = self_in; |
| |
| mp_arg_check_num(n_args, n_kw, self->n_args, self->n_args, false); |
| |
| mp_uint_t ret; |
| if (n_args == 0) { |
| ret = ((inline_asm_fun_0_t)self->fun)(); |
| } else if (n_args == 1) { |
| ret = ((inline_asm_fun_1_t)self->fun)(convert_obj_for_inline_asm(args[0])); |
| } else if (n_args == 2) { |
| ret = ((inline_asm_fun_2_t)self->fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1])); |
| } else if (n_args == 3) { |
| ret = ((inline_asm_fun_3_t)self->fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[2])); |
| } else { |
| assert(0); |
| ret = 0; |
| } |
| |
| return convert_val_from_inline_asm(ret); |
| } |
| |
| STATIC const mp_obj_type_t mp_type_fun_asm = { |
| { &mp_type_type }, |
| .name = MP_QSTR_function, |
| .call = fun_asm_call, |
| .binary_op = fun_binary_op, |
| }; |
| |
| mp_obj_t mp_obj_new_fun_asm(uint n_args, void *fun) { |
| mp_obj_fun_asm_t *o = m_new_obj(mp_obj_fun_asm_t); |
| o->base.type = &mp_type_fun_asm; |
| o->n_args = n_args; |
| o->fun = fun; |
| return o; |
| } |