| /* |
| * This file is part of the Micro Python project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdint.h> |
| #include <stdio.h> |
| |
| #include "stm32f4xx_hal.h" |
| |
| #include "mpconfig.h" |
| #include "misc.h" |
| #include "nlr.h" |
| #include "qstr.h" |
| #include "obj.h" |
| #include "gc.h" |
| #include "gccollect.h" |
| #include "irq.h" |
| #include "systick.h" |
| #include "pyexec.h" |
| #include "led.h" |
| #include "pin.h" |
| #include "timer.h" |
| #include "extint.h" |
| #include "usrsw.h" |
| #include "rng.h" |
| #include "rtc.h" |
| #include "i2c.h" |
| #include "spi.h" |
| #include "uart.h" |
| #include "can.h" |
| #include "adc.h" |
| #include "storage.h" |
| #include "sdcard.h" |
| #include "accel.h" |
| #include "servo.h" |
| #include "dac.h" |
| #include "lcd.h" |
| #include "usb.h" |
| #include "pybstdio.h" |
| #include "ff.h" |
| #include "portmodules.h" |
| |
| /// \module pyb - functions related to the pyboard |
| /// |
| /// The `pyb` module contains specific functions related to the pyboard. |
| |
| /// \function bootloader() |
| /// Activate the bootloader without BOOT* pins. |
| STATIC NORETURN mp_obj_t pyb_bootloader(void) { |
| pyb_usb_dev_stop(); |
| storage_flush(); |
| |
| HAL_RCC_DeInit(); |
| HAL_DeInit(); |
| |
| __HAL_REMAPMEMORY_SYSTEMFLASH(); |
| |
| // arm-none-eabi-gcc 4.9.0 does not correctly inline this |
| // MSP function, so we write it out explicitly here. |
| //__set_MSP(*((uint32_t*) 0x00000000)); |
| __ASM volatile ("movs r3, #0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp"); |
| |
| ((void (*)(void)) *((uint32_t*) 0x00000004))(); |
| |
| while (1); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_bootloader_obj, pyb_bootloader); |
| |
| /// \function hard_reset() |
| /// Resets the pyboard in a manner similar to pushing the external RESET |
| /// button. |
| STATIC mp_obj_t pyb_hard_reset(void) { |
| NVIC_SystemReset(); |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_hard_reset_obj, pyb_hard_reset); |
| |
| /// \function info([dump_alloc_table]) |
| /// Print out lots of information about the board. |
| STATIC mp_obj_t pyb_info(mp_uint_t n_args, const mp_obj_t *args) { |
| // get and print unique id; 96 bits |
| { |
| byte *id = (byte*)0x1fff7a10; |
| printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]); |
| } |
| |
| // get and print clock speeds |
| // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz |
| { |
| printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n", |
| HAL_RCC_GetSysClockFreq(), |
| HAL_RCC_GetHCLKFreq(), |
| HAL_RCC_GetPCLK1Freq(), |
| HAL_RCC_GetPCLK2Freq()); |
| } |
| |
| // to print info about memory |
| { |
| printf("_etext=%p\n", &_etext); |
| printf("_sidata=%p\n", &_sidata); |
| printf("_sdata=%p\n", &_sdata); |
| printf("_edata=%p\n", &_edata); |
| printf("_sbss=%p\n", &_sbss); |
| printf("_ebss=%p\n", &_ebss); |
| printf("_estack=%p\n", &_estack); |
| printf("_ram_start=%p\n", &_ram_start); |
| printf("_heap_start=%p\n", &_heap_start); |
| printf("_heap_end=%p\n", &_heap_end); |
| printf("_ram_end=%p\n", &_ram_end); |
| } |
| |
| // qstr info |
| { |
| mp_uint_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes; |
| qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes); |
| printf("qstr:\n n_pool=" UINT_FMT "\n n_qstr=" UINT_FMT "\n n_str_data_bytes=" UINT_FMT "\n n_total_bytes=" UINT_FMT "\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes); |
| } |
| |
| // GC info |
| { |
| gc_info_t info; |
| gc_info(&info); |
| printf("GC:\n"); |
| printf(" " UINT_FMT " total\n", info.total); |
| printf(" " UINT_FMT " : " UINT_FMT "\n", info.used, info.free); |
| printf(" 1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block); |
| } |
| |
| // free space on flash |
| { |
| DWORD nclst; |
| FATFS *fatfs; |
| f_getfree("/flash", &nclst, &fatfs); |
| printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512)); |
| } |
| |
| if (n_args == 1) { |
| // arg given means dump gc allocation table |
| gc_dump_alloc_table(); |
| } |
| |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj, 0, 1, pyb_info); |
| |
| /// \function unique_id() |
| /// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU. |
| STATIC mp_obj_t pyb_unique_id(void) { |
| byte *id = (byte*)0x1fff7a10; |
| return mp_obj_new_bytes(id, 12); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_unique_id_obj, pyb_unique_id); |
| |
| /// \function freq([sys_freq]) |
| /// |
| /// If given no arguments, returns a tuple of clock frequencies: |
| /// (SYSCLK, HCLK, PCLK1, PCLK2). |
| /// |
| /// If given an argument, sets the system frequency to that value in Hz. |
| /// Eg freq(120000000) gives 120MHz. Note that not all values are |
| /// supported and the largest supported frequency not greater than |
| /// the given sys_freq will be selected. |
| STATIC mp_obj_t pyb_freq(mp_uint_t n_args, const mp_obj_t *args) { |
| if (n_args == 0) { |
| // get |
| mp_obj_t tuple[4] = { |
| mp_obj_new_int(HAL_RCC_GetSysClockFreq()), |
| mp_obj_new_int(HAL_RCC_GetHCLKFreq()), |
| mp_obj_new_int(HAL_RCC_GetPCLK1Freq()), |
| mp_obj_new_int(HAL_RCC_GetPCLK2Freq()), |
| }; |
| return mp_obj_new_tuple(4, tuple); |
| } else { |
| // set |
| mp_int_t wanted_sysclk = mp_obj_get_int(args[0]) / 1000000; |
| |
| // default PLL parameters that give 48MHz on PLL48CK |
| uint32_t m = HSE_VALUE / 1000000, n = 336, p = 2, q = 7; |
| uint32_t sysclk_source; |
| |
| // the following logic assumes HSE < HSI |
| if (HSE_VALUE / 1000000 <= wanted_sysclk && wanted_sysclk < HSI_VALUE / 1000000) { |
| // use HSE as SYSCLK |
| sysclk_source = RCC_SYSCLKSOURCE_HSE; |
| } else if (HSI_VALUE / 1000000 <= wanted_sysclk && wanted_sysclk < 24) { |
| // use HSI as SYSCLK |
| sysclk_source = RCC_SYSCLKSOURCE_HSI; |
| } else { |
| // search for a valid PLL configuration that keeps USB at 48MHz |
| for (; wanted_sysclk > 0; wanted_sysclk--) { |
| for (p = 2; p <= 8; p += 2) { |
| // compute VCO_OUT |
| mp_uint_t vco_out = wanted_sysclk * p; |
| // make sure VCO_OUT is between 192MHz and 432MHz |
| if (vco_out < 192 || vco_out > 432) { |
| continue; |
| } |
| // make sure Q is an integer |
| if (vco_out % 48 != 0) { |
| continue; |
| } |
| // solve for Q to get PLL48CK at 48MHz |
| q = vco_out / 48; |
| // make sure Q is in range |
| if (q < 2 || q > 15) { |
| continue; |
| } |
| // make sure N/M is an integer |
| if (vco_out % (HSE_VALUE / 1000000) != 0) { |
| continue; |
| } |
| // solve for N/M |
| mp_uint_t n_by_m = vco_out / (HSE_VALUE / 1000000); |
| // solve for M, making sure VCO_IN (=HSE/M) is between 1MHz and 2MHz |
| m = 192 / n_by_m; |
| while (m < (HSE_VALUE / 2000000) || n_by_m * m < 192) { |
| m += 1; |
| } |
| if (m > (HSE_VALUE / 1000000)) { |
| continue; |
| } |
| // solve for N |
| n = n_by_m * m; |
| // make sure N is in range |
| if (n < 192 || n > 432) { |
| continue; |
| } |
| |
| // found values! |
| sysclk_source = RCC_SYSCLKSOURCE_PLLCLK; |
| goto set_clk; |
| } |
| } |
| nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "can't make valid freq")); |
| } |
| |
| set_clk: |
| //printf("%lu %lu %lu %lu %lu\n", sysclk_source, m, n, p, q); |
| |
| // let the USB CDC have a chance to process before we change the clock |
| HAL_Delay(USBD_CDC_POLLING_INTERVAL + 2); |
| |
| // desired system clock source is in sysclk_source |
| RCC_ClkInitTypeDef RCC_ClkInitStruct; |
| RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); |
| if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) { |
| // set HSE as system clock source to allow modification of the PLL configuration |
| // we then change to PLL after re-configuring PLL |
| RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE; |
| } else { |
| // directly set the system clock source as desired |
| RCC_ClkInitStruct.SYSCLKSource = sysclk_source; |
| } |
| RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; |
| RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; |
| RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; |
| if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { |
| goto fail; |
| } |
| |
| // re-configure PLL |
| // even if we don't use the PLL for the system clock, we still need it for USB, RNG and SDIO |
| RCC_OscInitTypeDef RCC_OscInitStruct; |
| RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; |
| RCC_OscInitStruct.HSEState = RCC_HSE_ON; |
| RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; |
| RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; |
| RCC_OscInitStruct.PLL.PLLM = m; |
| RCC_OscInitStruct.PLL.PLLN = n; |
| RCC_OscInitStruct.PLL.PLLP = p; |
| RCC_OscInitStruct.PLL.PLLQ = q; |
| if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { |
| goto fail; |
| } |
| |
| // set PLL as system clock source if wanted |
| if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) { |
| RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK; |
| RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; |
| if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) { |
| goto fail; |
| } |
| } |
| |
| // re-init TIM3 for USB CDC rate |
| timer_tim3_init(); |
| |
| return mp_const_none; |
| |
| fail:; |
| void NORETURN __fatal_error(const char *msg); |
| __fatal_error("can't change freq"); |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_freq_obj, 0, 1, pyb_freq); |
| |
| /// \function sync() |
| /// Sync all file systems. |
| STATIC mp_obj_t pyb_sync(void) { |
| storage_flush(); |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_sync_obj, pyb_sync); |
| |
| /// \function millis() |
| /// Returns the number of milliseconds since the board was last reset. |
| /// |
| /// The result is always a micropython smallint (31-bit signed number), so |
| /// after 2^30 milliseconds (about 12.4 days) this will start to return |
| /// negative numbers. |
| STATIC mp_obj_t pyb_millis(void) { |
| // We want to "cast" the 32 bit unsigned into a small-int. This means |
| // copying the MSB down 1 bit (extending the sign down), which is |
| // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro. |
| return MP_OBJ_NEW_SMALL_INT(HAL_GetTick()); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis); |
| |
| /// \function elapsed_millis(start) |
| /// Returns the number of milliseconds which have elapsed since `start`. |
| /// |
| /// This function takes care of counter wrap, and always returns a positive |
| /// number. This means it can be used to measure periods upto about 12.4 days. |
| /// |
| /// Example: |
| /// start = pyb.millis() |
| /// while pyb.elapsed_millis(start) < 1000: |
| /// # Perform some operation |
| STATIC mp_obj_t pyb_elapsed_millis(mp_obj_t start) { |
| uint32_t startMillis = mp_obj_get_int(start); |
| uint32_t currMillis = HAL_GetTick(); |
| return MP_OBJ_NEW_SMALL_INT((currMillis - startMillis) & 0x3fffffff); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_millis_obj, pyb_elapsed_millis); |
| |
| /// \function micros() |
| /// Returns the number of microseconds since the board was last reset. |
| /// |
| /// The result is always a micropython smallint (31-bit signed number), so |
| /// after 2^30 microseconds (about 17.8 minutes) this will start to return |
| /// negative numbers. |
| STATIC mp_obj_t pyb_micros(void) { |
| // We want to "cast" the 32 bit unsigned into a small-int. This means |
| // copying the MSB down 1 bit (extending the sign down), which is |
| // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro. |
| return MP_OBJ_NEW_SMALL_INT(sys_tick_get_microseconds()); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_micros_obj, pyb_micros); |
| |
| /// \function elapsed_micros(start) |
| /// Returns the number of microseconds which have elapsed since `start`. |
| /// |
| /// This function takes care of counter wrap, and always returns a positive |
| /// number. This means it can be used to measure periods upto about 17.8 minutes. |
| /// |
| /// Example: |
| /// start = pyb.micros() |
| /// while pyb.elapsed_micros(start) < 1000: |
| /// # Perform some operation |
| STATIC mp_obj_t pyb_elapsed_micros(mp_obj_t start) { |
| uint32_t startMicros = mp_obj_get_int(start); |
| uint32_t currMicros = sys_tick_get_microseconds(); |
| return MP_OBJ_NEW_SMALL_INT((currMicros - startMicros) & 0x3fffffff); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_micros_obj, pyb_elapsed_micros); |
| |
| /// \function delay(ms) |
| /// Delay for the given number of milliseconds. |
| STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) { |
| mp_int_t ms = mp_obj_get_int(ms_in); |
| if (ms >= 0) { |
| HAL_Delay(ms); |
| } |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_delay_obj, pyb_delay); |
| |
| /// \function udelay(us) |
| /// Delay for the given number of microseconds. |
| STATIC mp_obj_t pyb_udelay(mp_obj_t usec_in) { |
| mp_int_t usec = mp_obj_get_int(usec_in); |
| if (usec > 0) { |
| uint32_t count = 0; |
| const uint32_t utime = (168 * usec / 4); |
| while (++count <= utime) { |
| } |
| } |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_udelay_obj, pyb_udelay); |
| |
| /// \function stop() |
| STATIC mp_obj_t pyb_stop(void) { |
| HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI); |
| |
| // reconfigure the system clock after waking up |
| |
| // enable HSE |
| __HAL_RCC_HSE_CONFIG(RCC_HSE_ON); |
| while (!__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY)) { |
| } |
| |
| // enable PLL |
| __HAL_RCC_PLL_ENABLE(); |
| while (!__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)) { |
| } |
| |
| // select PLL as system clock source |
| MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK); |
| while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) { |
| } |
| |
| return mp_const_none; |
| } |
| MP_DEFINE_CONST_FUN_OBJ_0(pyb_stop_obj, pyb_stop); |
| |
| /// \function standby() |
| STATIC mp_obj_t pyb_standby(void) { |
| HAL_PWR_EnterSTANDBYMode(); |
| return mp_const_none; |
| } |
| MP_DEFINE_CONST_FUN_OBJ_0(pyb_standby_obj, pyb_standby); |
| |
| /// \function have_cdc() |
| /// Return True if USB is connected as a serial device, False otherwise. |
| STATIC mp_obj_t pyb_have_cdc(void ) { |
| return MP_BOOL(usb_vcp_is_connected()); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_have_cdc_obj, pyb_have_cdc); |
| |
| /// \function repl_uart(uart) |
| /// Get or set the UART object that the REPL is repeated on. |
| STATIC mp_obj_t pyb_repl_uart(mp_uint_t n_args, const mp_obj_t *args) { |
| if (n_args == 0) { |
| if (pyb_stdio_uart == NULL) { |
| return mp_const_none; |
| } else { |
| return pyb_stdio_uart; |
| } |
| } else { |
| if (args[0] == mp_const_none) { |
| pyb_stdio_uart = NULL; |
| } else if (mp_obj_get_type(args[0]) == &pyb_uart_type) { |
| pyb_stdio_uart = args[0]; |
| } else { |
| nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a UART object")); |
| } |
| return mp_const_none; |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_repl_uart_obj, 0, 1, pyb_repl_uart); |
| |
| /// \function hid((buttons, x, y, z)) |
| /// Takes a 4-tuple (or list) and sends it to the USB host (the PC) to |
| /// signal a HID mouse-motion event. |
| STATIC mp_obj_t pyb_hid_send_report(mp_obj_t arg) { |
| mp_obj_t *items; |
| mp_obj_get_array_fixed_n(arg, 4, &items); |
| uint8_t data[4]; |
| data[0] = mp_obj_get_int(items[0]); |
| data[1] = mp_obj_get_int(items[1]); |
| data[2] = mp_obj_get_int(items[2]); |
| data[3] = mp_obj_get_int(items[3]); |
| usb_hid_send_report(data); |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_hid_send_report_obj, pyb_hid_send_report); |
| |
| MP_DECLARE_CONST_FUN_OBJ(pyb_main_obj); // defined in main.c |
| MP_DECLARE_CONST_FUN_OBJ(pyb_usb_mode_obj); // defined in main.c |
| |
| STATIC const mp_map_elem_t pyb_module_globals_table[] = { |
| { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_pyb) }, |
| |
| { MP_OBJ_NEW_QSTR(MP_QSTR_bootloader), (mp_obj_t)&pyb_bootloader_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_hard_reset), (mp_obj_t)&pyb_hard_reset_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_info_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_unique_id), (mp_obj_t)&pyb_unique_id_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_freq_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_repl_info), (mp_obj_t)&pyb_set_repl_info_obj }, |
| |
| { MP_OBJ_NEW_QSTR(MP_QSTR_wfi), (mp_obj_t)&pyb_wfi_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_disable_irq), (mp_obj_t)&pyb_disable_irq_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_enable_irq), (mp_obj_t)&pyb_enable_irq_obj }, |
| |
| { MP_OBJ_NEW_QSTR(MP_QSTR_stop), (mp_obj_t)&pyb_stop_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_standby), (mp_obj_t)&pyb_standby_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_main), (mp_obj_t)&pyb_main_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_usb_mode), (mp_obj_t)&pyb_usb_mode_obj }, |
| |
| { MP_OBJ_NEW_QSTR(MP_QSTR_have_cdc), (mp_obj_t)&pyb_have_cdc_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_repl_uart), (mp_obj_t)&pyb_repl_uart_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_hid), (mp_obj_t)&pyb_hid_send_report_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_USB_VCP), (mp_obj_t)&pyb_usb_vcp_type }, |
| |
| { MP_OBJ_NEW_QSTR(MP_QSTR_millis), (mp_obj_t)&pyb_millis_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_millis), (mp_obj_t)&pyb_elapsed_millis_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_micros), (mp_obj_t)&pyb_micros_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_micros), (mp_obj_t)&pyb_elapsed_micros_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_delay), (mp_obj_t)&pyb_delay_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&pyb_sync_obj }, |
| |
| { MP_OBJ_NEW_QSTR(MP_QSTR_Timer), (mp_obj_t)&pyb_timer_type }, |
| |
| #if MICROPY_HW_ENABLE_RNG |
| { MP_OBJ_NEW_QSTR(MP_QSTR_rng), (mp_obj_t)&pyb_rng_get_obj }, |
| #endif |
| |
| #if MICROPY_HW_ENABLE_RTC |
| { MP_OBJ_NEW_QSTR(MP_QSTR_RTC), (mp_obj_t)&pyb_rtc_type }, |
| #endif |
| |
| { MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_ExtInt), (mp_obj_t)&extint_type }, |
| |
| #if MICROPY_HW_ENABLE_SERVO |
| { MP_OBJ_NEW_QSTR(MP_QSTR_pwm), (mp_obj_t)&pyb_pwm_set_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_servo), (mp_obj_t)&pyb_servo_set_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_Servo), (mp_obj_t)&pyb_servo_type }, |
| #endif |
| |
| #if MICROPY_HW_HAS_SWITCH |
| { MP_OBJ_NEW_QSTR(MP_QSTR_Switch), (mp_obj_t)&pyb_switch_type }, |
| #endif |
| |
| #if MICROPY_HW_HAS_SDCARD |
| { MP_OBJ_NEW_QSTR(MP_QSTR_SD), (mp_obj_t)&pyb_sdcard_obj }, |
| #endif |
| |
| { MP_OBJ_NEW_QSTR(MP_QSTR_LED), (mp_obj_t)&pyb_led_type }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&pyb_i2c_type }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_SPI), (mp_obj_t)&pyb_spi_type }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type }, |
| #if MICROPY_HW_ENABLE_CAN |
| { MP_OBJ_NEW_QSTR(MP_QSTR_CAN), (mp_obj_t)&pyb_can_type }, |
| #endif |
| |
| { MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&pyb_adc_type }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_ADCAll), (mp_obj_t)&pyb_adc_all_type }, |
| |
| #if MICROPY_HW_ENABLE_DAC |
| { MP_OBJ_NEW_QSTR(MP_QSTR_DAC), (mp_obj_t)&pyb_dac_type }, |
| #endif |
| |
| #if MICROPY_HW_HAS_MMA7660 |
| { MP_OBJ_NEW_QSTR(MP_QSTR_Accel), (mp_obj_t)&pyb_accel_type }, |
| #endif |
| |
| #if MICROPY_HW_HAS_LCD |
| { MP_OBJ_NEW_QSTR(MP_QSTR_LCD), (mp_obj_t)&pyb_lcd_type }, |
| #endif |
| }; |
| |
| STATIC MP_DEFINE_CONST_DICT(pyb_module_globals, pyb_module_globals_table); |
| |
| const mp_obj_module_t pyb_module = { |
| .base = { &mp_type_module }, |
| .name = MP_QSTR_pyb, |
| .globals = (mp_obj_dict_t*)&pyb_module_globals, |
| }; |