| /* |
| * This file is part of the Micro Python project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdbool.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <assert.h> |
| #include <math.h> |
| |
| #include "py/scope.h" |
| #include "py/emit.h" |
| #include "py/compile.h" |
| #include "py/smallint.h" |
| #include "py/runtime.h" |
| #include "py/builtin.h" |
| |
| // TODO need to mangle __attr names |
| |
| typedef enum { |
| #define DEF_RULE(rule, comp, kind, ...) PN_##rule, |
| #include "py/grammar.h" |
| #undef DEF_RULE |
| PN_maximum_number_of, |
| PN_string, // special node for non-interned string |
| PN_bytes, // special node for non-interned bytes |
| PN_const_object, // special node for a constant, generic Python object |
| } pn_kind_t; |
| |
| #define EMIT(fun) (comp->emit_method_table->fun(comp->emit)) |
| #define EMIT_ARG(fun, ...) (comp->emit_method_table->fun(comp->emit, __VA_ARGS__)) |
| #define EMIT_INLINE_ASM(fun) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm)) |
| #define EMIT_INLINE_ASM_ARG(fun, ...) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm, __VA_ARGS__)) |
| |
| // elements in this struct are ordered to make it compact |
| typedef struct _compiler_t { |
| qstr source_file; |
| |
| uint8_t is_repl; |
| uint8_t pass; // holds enum type pass_kind_t |
| uint8_t func_arg_is_super; // used to compile special case of super() function call |
| uint8_t have_star; |
| |
| // try to keep compiler clean from nlr |
| // this is set to an exception object if we have a compile error |
| mp_obj_t compile_error; |
| |
| uint next_label; |
| |
| uint16_t num_dict_params; |
| uint16_t num_default_params; |
| |
| uint16_t break_label; // highest bit set indicates we are breaking out of a for loop |
| uint16_t continue_label; |
| uint16_t cur_except_level; // increased for SETUP_EXCEPT, SETUP_FINALLY; decreased for POP_BLOCK, POP_EXCEPT |
| uint16_t break_continue_except_level; |
| |
| scope_t *scope_head; |
| scope_t *scope_cur; |
| |
| emit_t *emit; // current emitter |
| const emit_method_table_t *emit_method_table; // current emit method table |
| |
| emit_inline_asm_t *emit_inline_asm; // current emitter for inline asm |
| const emit_inline_asm_method_table_t *emit_inline_asm_method_table; // current emit method table for inline asm |
| } compiler_t; |
| |
| STATIC void compile_syntax_error(compiler_t *comp, mp_parse_node_t pn, const char *msg) { |
| mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_SyntaxError, msg); |
| // we don't have a 'block' name, so just pass the NULL qstr to indicate this |
| if (MP_PARSE_NODE_IS_STRUCT(pn)) { |
| mp_obj_exception_add_traceback(exc, comp->source_file, (mp_uint_t)((mp_parse_node_struct_t*)pn)->source_line, comp->scope_cur->simple_name); |
| } else { |
| // we don't have a line number, so just pass 0 |
| mp_obj_exception_add_traceback(exc, comp->source_file, 0, comp->scope_cur->simple_name); |
| } |
| comp->compile_error = exc; |
| } |
| |
| #if MICROPY_COMP_MODULE_CONST |
| STATIC const mp_map_elem_t mp_constants_table[] = { |
| #if MICROPY_PY_UCTYPES |
| { MP_OBJ_NEW_QSTR(MP_QSTR_uctypes), (mp_obj_t)&mp_module_uctypes }, |
| #endif |
| // Extra constants as defined by a port |
| MICROPY_PORT_CONSTANTS |
| }; |
| STATIC MP_DEFINE_CONST_MAP(mp_constants_map, mp_constants_table); |
| #endif |
| |
| // this function is essentially a simple preprocessor |
| STATIC mp_parse_node_t fold_constants(compiler_t *comp, mp_parse_node_t pn, mp_map_t *consts) { |
| if (0) { |
| // dummy |
| #if MICROPY_COMP_CONST |
| } else if (MP_PARSE_NODE_IS_ID(pn)) { |
| // lookup identifier in table of dynamic constants |
| qstr qst = MP_PARSE_NODE_LEAF_ARG(pn); |
| mp_map_elem_t *elem = mp_map_lookup(consts, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP); |
| if (elem != NULL) { |
| pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, MP_OBJ_SMALL_INT_VALUE(elem->value)); |
| } |
| #endif |
| } else if (MP_PARSE_NODE_IS_STRUCT(pn)) { |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| |
| // fold some parse nodes before folding their arguments |
| switch (MP_PARSE_NODE_STRUCT_KIND(pns)) { |
| #if MICROPY_COMP_CONST |
| case PN_expr_stmt: |
| if (!MP_PARSE_NODE_IS_NULL(pns->nodes[1])) { |
| mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_expr_stmt_assign) { |
| if (MP_PARSE_NODE_IS_ID(pns->nodes[0]) |
| && MP_PARSE_NODE_IS_STRUCT_KIND(pns1->nodes[0], PN_power) |
| && MP_PARSE_NODE_IS_ID(((mp_parse_node_struct_t*)pns1->nodes[0])->nodes[0]) |
| && MP_PARSE_NODE_LEAF_ARG(((mp_parse_node_struct_t*)pns1->nodes[0])->nodes[0]) == MP_QSTR_const |
| && MP_PARSE_NODE_IS_STRUCT_KIND(((mp_parse_node_struct_t*)pns1->nodes[0])->nodes[1], PN_trailer_paren) |
| && MP_PARSE_NODE_IS_NULL(((mp_parse_node_struct_t*)pns1->nodes[0])->nodes[2]) |
| ) { |
| // code to assign dynamic constants: id = const(value) |
| |
| // get the id |
| qstr id_qstr = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); |
| |
| // get the value |
| mp_parse_node_t pn_value = ((mp_parse_node_struct_t*)((mp_parse_node_struct_t*)pns1->nodes[0])->nodes[1])->nodes[0]; |
| pn_value = fold_constants(comp, pn_value, consts); |
| if (!MP_PARSE_NODE_IS_SMALL_INT(pn_value)) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "constant must be an integer"); |
| break; |
| } |
| mp_int_t value = MP_PARSE_NODE_LEAF_SMALL_INT(pn_value); |
| |
| // store the value in the table of dynamic constants |
| mp_map_elem_t *elem = mp_map_lookup(consts, MP_OBJ_NEW_QSTR(id_qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND); |
| if (elem->value != MP_OBJ_NULL) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "constant redefined"); |
| break; |
| } |
| elem->value = MP_OBJ_NEW_SMALL_INT(value); |
| |
| // replace const(value) with value |
| pns1->nodes[0] = pn_value; |
| |
| // finished folding this assignment |
| return pn; |
| } |
| } |
| } |
| break; |
| #endif |
| case PN_string: |
| case PN_bytes: |
| case PN_const_object: |
| return pn; |
| } |
| |
| // fold arguments |
| int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| for (int i = 0; i < n; i++) { |
| pns->nodes[i] = fold_constants(comp, pns->nodes[i], consts); |
| } |
| |
| // try to fold this parse node |
| switch (MP_PARSE_NODE_STRUCT_KIND(pns)) { |
| case PN_atom_paren: |
| if (n == 1 && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[0])) { |
| // (int) |
| pn = pns->nodes[0]; |
| } |
| break; |
| |
| case PN_expr: |
| if (n == 2 && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[0]) && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[1])) { |
| // int | int |
| mp_int_t arg0 = MP_PARSE_NODE_LEAF_SMALL_INT(pns->nodes[0]); |
| mp_int_t arg1 = MP_PARSE_NODE_LEAF_SMALL_INT(pns->nodes[1]); |
| pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, arg0 | arg1); |
| } |
| break; |
| |
| case PN_and_expr: |
| if (n == 2 && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[0]) && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[1])) { |
| // int & int |
| mp_int_t arg0 = MP_PARSE_NODE_LEAF_SMALL_INT(pns->nodes[0]); |
| mp_int_t arg1 = MP_PARSE_NODE_LEAF_SMALL_INT(pns->nodes[1]); |
| pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, arg0 & arg1); |
| } |
| break; |
| |
| case PN_shift_expr: |
| if (n == 3 && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[0]) && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[2])) { |
| mp_int_t arg0 = MP_PARSE_NODE_LEAF_SMALL_INT(pns->nodes[0]); |
| mp_int_t arg1 = MP_PARSE_NODE_LEAF_SMALL_INT(pns->nodes[2]); |
| if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_DBL_LESS)) { |
| // int << int |
| if (!(arg1 >= (mp_int_t)BITS_PER_WORD || arg0 > (MP_SMALL_INT_MAX >> arg1) || arg0 < (MP_SMALL_INT_MIN >> arg1))) { |
| pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, arg0 << arg1); |
| } |
| } else { |
| assert(MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_DBL_MORE)); // should be |
| // int >> int |
| if (arg1 >= (mp_int_t)BITS_PER_WORD) { |
| // Shifting to big amounts is underfined behavior |
| // in C and is CPU-dependent; propagate sign bit. |
| arg1 = BITS_PER_WORD - 1; |
| } |
| pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, arg0 >> arg1); |
| } |
| } |
| break; |
| |
| case PN_arith_expr: |
| // overflow checking here relies on SMALL_INT being strictly smaller than mp_int_t |
| if (n == 3 && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[0]) && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[2])) { |
| mp_int_t arg0 = MP_PARSE_NODE_LEAF_SMALL_INT(pns->nodes[0]); |
| mp_int_t arg1 = MP_PARSE_NODE_LEAF_SMALL_INT(pns->nodes[2]); |
| if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_PLUS)) { |
| // int + int |
| arg0 += arg1; |
| } else { |
| assert(MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_MINUS)); // should be |
| // int - int |
| arg0 -= arg1; |
| } |
| if (MP_SMALL_INT_FITS(arg0)) { |
| //printf("%ld + %ld\n", arg0, arg1); |
| pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, arg0); |
| } |
| } |
| break; |
| |
| case PN_term: |
| if (n == 3 && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[0]) && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[2])) { |
| mp_int_t arg0 = MP_PARSE_NODE_LEAF_SMALL_INT(pns->nodes[0]); |
| mp_int_t arg1 = MP_PARSE_NODE_LEAF_SMALL_INT(pns->nodes[2]); |
| if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_STAR)) { |
| // int * int |
| if (!mp_small_int_mul_overflow(arg0, arg1)) { |
| arg0 *= arg1; |
| if (MP_SMALL_INT_FITS(arg0)) { |
| pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, arg0); |
| } |
| } |
| } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_SLASH)) { |
| // int / int |
| // pass |
| } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_PERCENT)) { |
| // int%int |
| pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, mp_small_int_modulo(arg0, arg1)); |
| } else { |
| assert(MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_DBL_SLASH)); // should be |
| if (arg1 != 0) { |
| // int // int |
| pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, mp_small_int_floor_divide(arg0, arg1)); |
| } |
| } |
| } |
| break; |
| |
| case PN_factor_2: |
| if (MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[1])) { |
| mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pns->nodes[1]); |
| if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[0], MP_TOKEN_OP_PLUS)) { |
| // +int |
| pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, arg); |
| } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[0], MP_TOKEN_OP_MINUS)) { |
| // -int |
| pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, -arg); |
| } else { |
| assert(MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[0], MP_TOKEN_OP_TILDE)); // should be |
| // ~int |
| pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, ~arg); |
| } |
| } |
| break; |
| |
| case PN_power: |
| if (0) { |
| #if MICROPY_EMIT_CPYTHON |
| } else if (MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[0]) && MP_PARSE_NODE_IS_NULL(pns->nodes[1]) && !MP_PARSE_NODE_IS_NULL(pns->nodes[2])) { |
| // int ** x |
| // can overflow; enabled only to compare with CPython |
| mp_parse_node_struct_t* pns2 = (mp_parse_node_struct_t*)pns->nodes[2]; |
| if (MP_PARSE_NODE_IS_SMALL_INT(pns2->nodes[0])) { |
| int power = MP_PARSE_NODE_LEAF_SMALL_INT(pns2->nodes[0]); |
| if (power >= 0) { |
| int ans = 1; |
| int base = MP_PARSE_NODE_LEAF_SMALL_INT(pns->nodes[0]); |
| for (; power > 0; power--) { |
| ans *= base; |
| } |
| pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, ans); |
| } |
| } |
| #endif |
| #if MICROPY_COMP_MODULE_CONST |
| } else if (MP_PARSE_NODE_IS_ID(pns->nodes[0]) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_trailer_period) && MP_PARSE_NODE_IS_NULL(pns->nodes[2])) { |
| // id.id |
| // look it up in constant table, see if it can be replaced with an integer |
| mp_parse_node_struct_t* pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; |
| assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0])); |
| qstr q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); |
| qstr q_attr = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]); |
| mp_map_elem_t *elem = mp_map_lookup((mp_map_t*)&mp_constants_map, MP_OBJ_NEW_QSTR(q_base), MP_MAP_LOOKUP); |
| if (elem != NULL) { |
| mp_obj_t dest[2]; |
| mp_load_method_maybe(elem->value, q_attr, dest); |
| if (MP_OBJ_IS_SMALL_INT(dest[0]) && dest[1] == NULL) { |
| mp_int_t val = MP_OBJ_SMALL_INT_VALUE(dest[0]); |
| pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, val); |
| } |
| } |
| #endif |
| } |
| break; |
| } |
| } |
| |
| return pn; |
| } |
| |
| STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra); |
| STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind); |
| STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn); |
| |
| STATIC uint comp_next_label(compiler_t *comp) { |
| return comp->next_label++; |
| } |
| |
| STATIC void compile_increase_except_level(compiler_t *comp) { |
| comp->cur_except_level += 1; |
| if (comp->cur_except_level > comp->scope_cur->exc_stack_size) { |
| comp->scope_cur->exc_stack_size = comp->cur_except_level; |
| } |
| } |
| |
| STATIC void compile_decrease_except_level(compiler_t *comp) { |
| assert(comp->cur_except_level > 0); |
| comp->cur_except_level -= 1; |
| } |
| |
| STATIC scope_t *scope_new_and_link(compiler_t *comp, scope_kind_t kind, mp_parse_node_t pn, uint emit_options) { |
| scope_t *scope = scope_new(kind, pn, comp->source_file, emit_options); |
| scope->parent = comp->scope_cur; |
| scope->next = NULL; |
| if (comp->scope_head == NULL) { |
| comp->scope_head = scope; |
| } else { |
| scope_t *s = comp->scope_head; |
| while (s->next != NULL) { |
| s = s->next; |
| } |
| s->next = scope; |
| } |
| return scope; |
| } |
| |
| STATIC void apply_to_single_or_list(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_list_kind, void (*f)(compiler_t*, mp_parse_node_t)) { |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, pn_list_kind)) { |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| for (int i = 0; i < num_nodes; i++) { |
| f(comp, pns->nodes[i]); |
| } |
| } else if (!MP_PARSE_NODE_IS_NULL(pn)) { |
| f(comp, pn); |
| } |
| } |
| |
| STATIC void compile_generic_all_nodes(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| for (int i = 0; i < num_nodes; i++) { |
| compile_node(comp, pns->nodes[i]); |
| } |
| } |
| |
| #if MICROPY_EMIT_CPYTHON |
| STATIC bool cpython_c_tuple_is_const(mp_parse_node_t pn) { |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_string)) { |
| return true; |
| } |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_bytes)) { |
| return true; |
| } |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_const_object)) { |
| return true; |
| } |
| if (!MP_PARSE_NODE_IS_LEAF(pn)) { |
| return false; |
| } |
| if (MP_PARSE_NODE_IS_ID(pn)) { |
| return false; |
| } |
| return true; |
| } |
| |
| STATIC void cpython_c_print_quoted_str(vstr_t *vstr, const char *str, uint len, bool bytes) { |
| bool has_single_quote = false; |
| bool has_double_quote = false; |
| for (int i = 0; i < len; i++) { |
| if (str[i] == '\'') { |
| has_single_quote = true; |
| } else if (str[i] == '"') { |
| has_double_quote = true; |
| } |
| } |
| if (bytes) { |
| vstr_printf(vstr, "b"); |
| } |
| bool quote_single = false; |
| if (has_single_quote && !has_double_quote) { |
| vstr_printf(vstr, "\""); |
| } else { |
| quote_single = true; |
| vstr_printf(vstr, "'"); |
| } |
| for (int i = 0; i < len; i++) { |
| if (str[i] == '\n') { |
| vstr_printf(vstr, "\\n"); |
| } else if (str[i] == '\\') { |
| vstr_printf(vstr, "\\\\"); |
| } else if (str[i] == '\'' && quote_single) { |
| vstr_printf(vstr, "\\'"); |
| } else { |
| vstr_printf(vstr, "%c", str[i]); |
| } |
| } |
| if (has_single_quote && !has_double_quote) { |
| vstr_printf(vstr, "\""); |
| } else { |
| vstr_printf(vstr, "'"); |
| } |
| } |
| |
| STATIC void cpython_c_tuple_emit_const(compiler_t *comp, mp_parse_node_t pn, vstr_t *vstr) { |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_string) || MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_bytes)) { |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| cpython_c_print_quoted_str(vstr, (const char*)pns->nodes[0], (mp_uint_t)pns->nodes[1], MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_bytes)); |
| return; |
| } |
| |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_const_object)) { |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| mp_obj_print((mp_obj_t)pns->nodes[0], PRINT_REPR); |
| return; |
| } |
| |
| assert(MP_PARSE_NODE_IS_LEAF(pn)); |
| if (MP_PARSE_NODE_IS_SMALL_INT(pn)) { |
| vstr_printf(vstr, INT_FMT, MP_PARSE_NODE_LEAF_SMALL_INT(pn)); |
| return; |
| } |
| |
| mp_uint_t arg = MP_PARSE_NODE_LEAF_ARG(pn); |
| switch (MP_PARSE_NODE_LEAF_KIND(pn)) { |
| case MP_PARSE_NODE_ID: assert(0); |
| case MP_PARSE_NODE_STRING: |
| case MP_PARSE_NODE_BYTES: { |
| mp_uint_t len; |
| const byte *str = qstr_data(arg, &len); |
| cpython_c_print_quoted_str(vstr, (const char*)str, len, MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_BYTES); |
| break; |
| } |
| case MP_PARSE_NODE_TOKEN: |
| switch (arg) { |
| case MP_TOKEN_KW_FALSE: vstr_printf(vstr, "False"); break; |
| case MP_TOKEN_KW_NONE: vstr_printf(vstr, "None"); break; |
| case MP_TOKEN_KW_TRUE: vstr_printf(vstr, "True"); break; |
| default: assert(0); // shouldn't happen |
| } |
| break; |
| default: assert(0); |
| } |
| } |
| |
| STATIC void cpython_c_tuple(compiler_t *comp, mp_parse_node_t pn, mp_parse_node_struct_t *pns_list) { |
| int n = 0; |
| if (pns_list != NULL) { |
| n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_list); |
| } |
| int total = n; |
| bool is_const = true; |
| if (!MP_PARSE_NODE_IS_NULL(pn)) { |
| total += 1; |
| if (!cpython_c_tuple_is_const(pn)) { |
| is_const = false; |
| } |
| } |
| for (int i = 0; i < n; i++) { |
| if (!cpython_c_tuple_is_const(pns_list->nodes[i])) { |
| is_const = false; |
| break; |
| } |
| } |
| if (total > 0 && is_const) { |
| bool need_comma = false; |
| vstr_t *vstr = vstr_new(); |
| vstr_printf(vstr, "("); |
| if (!MP_PARSE_NODE_IS_NULL(pn)) { |
| cpython_c_tuple_emit_const(comp, pn, vstr); |
| need_comma = true; |
| } |
| for (int i = 0; i < n; i++) { |
| if (need_comma) { |
| vstr_printf(vstr, ", "); |
| } |
| cpython_c_tuple_emit_const(comp, pns_list->nodes[i], vstr); |
| need_comma = true; |
| } |
| if (total == 1) { |
| vstr_printf(vstr, ",)"); |
| } else { |
| vstr_printf(vstr, ")"); |
| } |
| EMIT_ARG(load_const_verbatim_strn, vstr_str(vstr), vstr_len(vstr)); |
| vstr_free(vstr); |
| } else { |
| if (!MP_PARSE_NODE_IS_NULL(pn)) { |
| compile_node(comp, pn); |
| } |
| for (int i = 0; i < n; i++) { |
| compile_node(comp, pns_list->nodes[i]); |
| } |
| EMIT_ARG(build_tuple, total); |
| } |
| } |
| #endif |
| |
| // funnelling all tuple creations through this function is purely so we can optionally agree with CPython |
| STATIC void c_tuple(compiler_t *comp, mp_parse_node_t pn, mp_parse_node_struct_t *pns_list) { |
| #if MICROPY_EMIT_CPYTHON |
| cpython_c_tuple(comp, pn, pns_list); |
| #else |
| int total = 0; |
| if (!MP_PARSE_NODE_IS_NULL(pn)) { |
| compile_node(comp, pn); |
| total += 1; |
| } |
| if (pns_list != NULL) { |
| int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_list); |
| for (int i = 0; i < n; i++) { |
| compile_node(comp, pns_list->nodes[i]); |
| } |
| total += n; |
| } |
| EMIT_ARG(build_tuple, total); |
| #endif |
| } |
| |
| STATIC void compile_generic_tuple(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // a simple tuple expression |
| c_tuple(comp, MP_PARSE_NODE_NULL, pns); |
| } |
| |
| STATIC bool node_is_const_false(mp_parse_node_t pn) { |
| return MP_PARSE_NODE_IS_TOKEN_KIND(pn, MP_TOKEN_KW_FALSE) |
| || (MP_PARSE_NODE_IS_SMALL_INT(pn) && MP_PARSE_NODE_LEAF_SMALL_INT(pn) == 0); |
| } |
| |
| STATIC bool node_is_const_true(mp_parse_node_t pn) { |
| return MP_PARSE_NODE_IS_TOKEN_KIND(pn, MP_TOKEN_KW_TRUE) |
| || (MP_PARSE_NODE_IS_SMALL_INT(pn) && MP_PARSE_NODE_LEAF_SMALL_INT(pn) != 0); |
| } |
| |
| #if MICROPY_EMIT_CPYTHON |
| // the is_nested variable is purely to match with CPython, which doesn't fully optimise not's |
| STATIC void cpython_c_if_cond(compiler_t *comp, mp_parse_node_t pn, bool jump_if, int label, bool is_nested) { |
| if (node_is_const_false(pn)) { |
| if (jump_if == false) { |
| EMIT_ARG(jump, label); |
| } |
| return; |
| } else if (node_is_const_true(pn)) { |
| if (jump_if == true) { |
| EMIT_ARG(jump, label); |
| } |
| return; |
| } else if (MP_PARSE_NODE_IS_STRUCT(pn)) { |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test) { |
| if (jump_if == false) { |
| uint label2 = comp_next_label(comp); |
| for (int i = 0; i < n - 1; i++) { |
| cpython_c_if_cond(comp, pns->nodes[i], true, label2, true); |
| } |
| cpython_c_if_cond(comp, pns->nodes[n - 1], false, label, true); |
| EMIT_ARG(label_assign, label2); |
| } else { |
| for (int i = 0; i < n; i++) { |
| cpython_c_if_cond(comp, pns->nodes[i], true, label, true); |
| } |
| } |
| return; |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_and_test) { |
| if (jump_if == false) { |
| for (int i = 0; i < n; i++) { |
| cpython_c_if_cond(comp, pns->nodes[i], false, label, true); |
| } |
| } else { |
| uint label2 = comp_next_label(comp); |
| for (int i = 0; i < n - 1; i++) { |
| cpython_c_if_cond(comp, pns->nodes[i], false, label2, true); |
| } |
| cpython_c_if_cond(comp, pns->nodes[n - 1], true, label, true); |
| EMIT_ARG(label_assign, label2); |
| } |
| return; |
| } else if (!is_nested && MP_PARSE_NODE_STRUCT_KIND(pns) == PN_not_test_2) { |
| cpython_c_if_cond(comp, pns->nodes[0], !jump_if, label, true); |
| return; |
| } |
| } |
| |
| // nothing special, fall back to default compiling for node and jump |
| compile_node(comp, pn); |
| EMIT_ARG(pop_jump_if, jump_if, label); |
| } |
| #endif |
| |
| STATIC void c_if_cond(compiler_t *comp, mp_parse_node_t pn, bool jump_if, int label) { |
| #if MICROPY_EMIT_CPYTHON |
| cpython_c_if_cond(comp, pn, jump_if, label, false); |
| #else |
| if (node_is_const_false(pn)) { |
| if (jump_if == false) { |
| EMIT_ARG(jump, label); |
| } |
| return; |
| } else if (node_is_const_true(pn)) { |
| if (jump_if == true) { |
| EMIT_ARG(jump, label); |
| } |
| return; |
| } else if (MP_PARSE_NODE_IS_STRUCT(pn)) { |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test) { |
| if (jump_if == false) { |
| and_or_logic1:; |
| uint label2 = comp_next_label(comp); |
| for (int i = 0; i < n - 1; i++) { |
| c_if_cond(comp, pns->nodes[i], !jump_if, label2); |
| } |
| c_if_cond(comp, pns->nodes[n - 1], jump_if, label); |
| EMIT_ARG(label_assign, label2); |
| } else { |
| and_or_logic2: |
| for (int i = 0; i < n; i++) { |
| c_if_cond(comp, pns->nodes[i], jump_if, label); |
| } |
| } |
| return; |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_and_test) { |
| if (jump_if == false) { |
| goto and_or_logic2; |
| } else { |
| goto and_or_logic1; |
| } |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_not_test_2) { |
| c_if_cond(comp, pns->nodes[0], !jump_if, label); |
| return; |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_atom_paren) { |
| // cond is something in parenthesis |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| // empty tuple, acts as false for the condition |
| if (jump_if == false) { |
| EMIT_ARG(jump, label); |
| } |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) { |
| // non-empty tuple, acts as true for the condition |
| if (jump_if == true) { |
| EMIT_ARG(jump, label); |
| } |
| } else { |
| // parenthesis around 1 item, is just that item |
| c_if_cond(comp, pns->nodes[0], jump_if, label); |
| } |
| return; |
| } |
| } |
| |
| // nothing special, fall back to default compiling for node and jump |
| compile_node(comp, pn); |
| EMIT_ARG(pop_jump_if, jump_if, label); |
| #endif |
| } |
| |
| typedef enum { ASSIGN_STORE, ASSIGN_AUG_LOAD, ASSIGN_AUG_STORE } assign_kind_t; |
| STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t kind); |
| |
| STATIC void c_assign_power(compiler_t *comp, mp_parse_node_struct_t *pns, assign_kind_t assign_kind) { |
| if (assign_kind != ASSIGN_AUG_STORE) { |
| compile_node(comp, pns->nodes[0]); |
| } |
| |
| if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { |
| mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_power_trailers) { |
| int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1); |
| if (assign_kind != ASSIGN_AUG_STORE) { |
| for (int i = 0; i < n - 1; i++) { |
| compile_node(comp, pns1->nodes[i]); |
| } |
| } |
| assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1])); |
| pns1 = (mp_parse_node_struct_t*)pns1->nodes[n - 1]; |
| } |
| if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_paren) { |
| goto cannot_assign; |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) { |
| if (assign_kind == ASSIGN_AUG_STORE) { |
| EMIT(rot_three); |
| EMIT(store_subscr); |
| } else { |
| compile_node(comp, pns1->nodes[0]); |
| if (assign_kind == ASSIGN_AUG_LOAD) { |
| EMIT(dup_top_two); |
| EMIT(load_subscr); |
| } else { |
| EMIT(store_subscr); |
| } |
| } |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) { |
| assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0])); |
| if (assign_kind == ASSIGN_AUG_LOAD) { |
| EMIT(dup_top); |
| EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0])); |
| } else { |
| if (assign_kind == ASSIGN_AUG_STORE) { |
| EMIT(rot_two); |
| } |
| EMIT_ARG(store_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0])); |
| } |
| } else { |
| goto cannot_assign; |
| } |
| } else { |
| goto cannot_assign; |
| } |
| |
| if (!MP_PARSE_NODE_IS_NULL(pns->nodes[2])) { |
| goto cannot_assign; |
| } |
| |
| return; |
| |
| cannot_assign: |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "can't assign to expression"); |
| } |
| |
| // we need to allow for a caller passing in 1 initial node (node_head) followed by an array of nodes (nodes_tail) |
| STATIC void c_assign_tuple(compiler_t *comp, mp_parse_node_t node_head, uint num_tail, mp_parse_node_t *nodes_tail) { |
| uint num_head = (node_head == MP_PARSE_NODE_NULL) ? 0 : 1; |
| |
| // look for star expression |
| uint have_star_index = -1; |
| if (num_head != 0 && MP_PARSE_NODE_IS_STRUCT_KIND(node_head, PN_star_expr)) { |
| EMIT_ARG(unpack_ex, 0, num_tail); |
| have_star_index = 0; |
| } |
| for (uint i = 0; i < num_tail; i++) { |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes_tail[i], PN_star_expr)) { |
| if (have_star_index == (uint)-1) { |
| EMIT_ARG(unpack_ex, num_head + i, num_tail - i - 1); |
| have_star_index = num_head + i; |
| } else { |
| compile_syntax_error(comp, nodes_tail[i], "multiple *x in assignment"); |
| return; |
| } |
| } |
| } |
| if (have_star_index == (uint)-1) { |
| EMIT_ARG(unpack_sequence, num_head + num_tail); |
| } |
| if (num_head != 0) { |
| if (0 == have_star_index) { |
| c_assign(comp, ((mp_parse_node_struct_t*)node_head)->nodes[0], ASSIGN_STORE); |
| } else { |
| c_assign(comp, node_head, ASSIGN_STORE); |
| } |
| } |
| for (uint i = 0; i < num_tail; i++) { |
| if (num_head + i == have_star_index) { |
| c_assign(comp, ((mp_parse_node_struct_t*)nodes_tail[i])->nodes[0], ASSIGN_STORE); |
| } else { |
| c_assign(comp, nodes_tail[i], ASSIGN_STORE); |
| } |
| } |
| } |
| |
| // assigns top of stack to pn |
| STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t assign_kind) { |
| tail_recursion: |
| if (MP_PARSE_NODE_IS_NULL(pn)) { |
| assert(0); |
| } else if (MP_PARSE_NODE_IS_LEAF(pn)) { |
| if (MP_PARSE_NODE_IS_ID(pn)) { |
| qstr arg = MP_PARSE_NODE_LEAF_ARG(pn); |
| switch (assign_kind) { |
| case ASSIGN_STORE: |
| case ASSIGN_AUG_STORE: |
| EMIT_ARG(store_id, arg); |
| break; |
| case ASSIGN_AUG_LOAD: |
| default: |
| EMIT_ARG(load_id, arg); |
| break; |
| } |
| } else { |
| compile_syntax_error(comp, pn, "can't assign to literal"); |
| return; |
| } |
| } else { |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| switch (MP_PARSE_NODE_STRUCT_KIND(pns)) { |
| case PN_power: |
| // lhs is an index or attribute |
| c_assign_power(comp, pns, assign_kind); |
| break; |
| |
| case PN_testlist_star_expr: |
| case PN_exprlist: |
| // lhs is a tuple |
| if (assign_kind != ASSIGN_STORE) { |
| goto bad_aug; |
| } |
| c_assign_tuple(comp, MP_PARSE_NODE_NULL, MP_PARSE_NODE_STRUCT_NUM_NODES(pns), pns->nodes); |
| break; |
| |
| case PN_atom_paren: |
| // lhs is something in parenthesis |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| // empty tuple |
| goto cannot_assign; |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) { |
| pns = (mp_parse_node_struct_t*)pns->nodes[0]; |
| goto testlist_comp; |
| } else { |
| // parenthesis around 1 item, is just that item |
| pn = pns->nodes[0]; |
| goto tail_recursion; |
| } |
| break; |
| |
| case PN_atom_bracket: |
| // lhs is something in brackets |
| if (assign_kind != ASSIGN_STORE) { |
| goto bad_aug; |
| } |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| // empty list, assignment allowed |
| c_assign_tuple(comp, MP_PARSE_NODE_NULL, 0, NULL); |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) { |
| pns = (mp_parse_node_struct_t*)pns->nodes[0]; |
| goto testlist_comp; |
| } else { |
| // brackets around 1 item |
| c_assign_tuple(comp, pns->nodes[0], 0, NULL); |
| } |
| break; |
| |
| default: |
| goto cannot_assign; |
| } |
| return; |
| |
| testlist_comp: |
| // lhs is a sequence |
| if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { |
| mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3b) { |
| // sequence of one item, with trailing comma |
| assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[0])); |
| c_assign_tuple(comp, pns->nodes[0], 0, NULL); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3c) { |
| // sequence of many items |
| uint n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns2); |
| c_assign_tuple(comp, pns->nodes[0], n, pns2->nodes); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_comp_for) { |
| // TODO can we ever get here? can it be compiled? |
| goto cannot_assign; |
| } else { |
| // sequence with 2 items |
| goto sequence_with_2_items; |
| } |
| } else { |
| // sequence with 2 items |
| sequence_with_2_items: |
| c_assign_tuple(comp, MP_PARSE_NODE_NULL, 2, pns->nodes); |
| } |
| return; |
| } |
| return; |
| |
| cannot_assign: |
| compile_syntax_error(comp, pn, "can't assign to expression"); |
| return; |
| |
| bad_aug: |
| compile_syntax_error(comp, pn, "illegal expression for augmented assignment"); |
| } |
| |
| // stuff for lambda and comprehensions and generators |
| // if we are not in CPython compatibility mode then: |
| // if n_pos_defaults > 0 then there is a tuple on the stack with the positional defaults |
| // if n_kw_defaults > 0 then there is a dictionary on the stack with the keyword defaults |
| // if both exist, the tuple is above the dictionary (ie the first pop gets the tuple) |
| STATIC void close_over_variables_etc(compiler_t *comp, scope_t *this_scope, int n_pos_defaults, int n_kw_defaults) { |
| assert(n_pos_defaults >= 0); |
| assert(n_kw_defaults >= 0); |
| |
| // make closed over variables, if any |
| // ensure they are closed over in the order defined in the outer scope (mainly to agree with CPython) |
| int nfree = 0; |
| if (comp->scope_cur->kind != SCOPE_MODULE) { |
| for (int i = 0; i < comp->scope_cur->id_info_len; i++) { |
| id_info_t *id = &comp->scope_cur->id_info[i]; |
| if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) { |
| for (int j = 0; j < this_scope->id_info_len; j++) { |
| id_info_t *id2 = &this_scope->id_info[j]; |
| if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) { |
| #if MICROPY_EMIT_CPYTHON |
| EMIT_ARG(load_closure, id->qst, id->local_num); |
| #else |
| // in Micro Python we load closures using LOAD_FAST |
| EMIT_ARG(load_fast, id->qst, id->local_num); |
| #endif |
| nfree += 1; |
| } |
| } |
| } |
| } |
| } |
| |
| // make the function/closure |
| if (nfree == 0) { |
| EMIT_ARG(make_function, this_scope, n_pos_defaults, n_kw_defaults); |
| } else { |
| EMIT_ARG(make_closure, this_scope, nfree, n_pos_defaults, n_kw_defaults); |
| } |
| } |
| |
| STATIC void compile_funcdef_param(compiler_t *comp, mp_parse_node_t pn) { |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_typedargslist_star)) { |
| comp->have_star = true; |
| /* don't need to distinguish bare from named star |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| // bare star |
| } else { |
| // named star |
| } |
| */ |
| |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_typedargslist_dbl_star)) { |
| // named double star |
| // TODO do we need to do anything with this? |
| |
| } else { |
| mp_parse_node_t pn_id; |
| mp_parse_node_t pn_colon; |
| mp_parse_node_t pn_equal; |
| if (MP_PARSE_NODE_IS_ID(pn)) { |
| // this parameter is just an id |
| |
| pn_id = pn; |
| pn_colon = MP_PARSE_NODE_NULL; |
| pn_equal = MP_PARSE_NODE_NULL; |
| |
| } else { |
| // this parameter has a colon and/or equal specifier |
| |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_typedargslist_name)); // should be |
| |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| pn_id = pns->nodes[0]; |
| pn_colon = pns->nodes[1]; |
| pn_equal = pns->nodes[2]; |
| } |
| |
| if (MP_PARSE_NODE_IS_NULL(pn_equal)) { |
| // this parameter does not have a default value |
| |
| // check for non-default parameters given after default parameters (allowed by parser, but not syntactically valid) |
| if (!comp->have_star && comp->num_default_params != 0) { |
| compile_syntax_error(comp, pn, "non-default argument follows default argument"); |
| return; |
| } |
| |
| } else { |
| // this parameter has a default value |
| // in CPython, None (and True, False?) as default parameters are loaded with LOAD_NAME; don't understandy why |
| |
| if (comp->have_star) { |
| comp->num_dict_params += 1; |
| #if MICROPY_EMIT_CPYTHON |
| EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pn_id), false); |
| compile_node(comp, pn_equal); |
| #else |
| // in Micro Python we put the default dict parameters into a dictionary using the bytecode |
| if (comp->num_dict_params == 1) { |
| // in Micro Python we put the default positional parameters into a tuple using the bytecode |
| // we need to do this here before we start building the map for the default keywords |
| if (comp->num_default_params > 0) { |
| EMIT_ARG(build_tuple, comp->num_default_params); |
| } else { |
| EMIT(load_null); // sentinel indicating empty default positional args |
| } |
| // first default dict param, so make the map |
| EMIT_ARG(build_map, 0); |
| } |
| |
| // compile value then key, then store it to the dict |
| compile_node(comp, pn_equal); |
| EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pn_id), false); |
| EMIT(store_map); |
| #endif |
| } else { |
| comp->num_default_params += 1; |
| compile_node(comp, pn_equal); |
| } |
| } |
| |
| // TODO pn_colon not implemented |
| (void)pn_colon; |
| } |
| } |
| |
| // leaves function object on stack |
| // returns function name |
| STATIC qstr compile_funcdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) { |
| if (comp->pass == MP_PASS_SCOPE) { |
| // create a new scope for this function |
| scope_t *s = scope_new_and_link(comp, SCOPE_FUNCTION, (mp_parse_node_t)pns, emit_options); |
| // store the function scope so the compiling function can use it at each pass |
| pns->nodes[4] = (mp_parse_node_t)s; |
| } |
| |
| // save variables (probably don't need to do this, since we can't have nested definitions..?) |
| uint old_have_star = comp->have_star; |
| uint old_num_dict_params = comp->num_dict_params; |
| uint old_num_default_params = comp->num_default_params; |
| |
| // compile default parameters |
| comp->have_star = false; |
| comp->num_dict_params = 0; |
| comp->num_default_params = 0; |
| apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_funcdef_param); |
| |
| if (comp->compile_error != MP_OBJ_NULL) { |
| return MP_QSTR_NULL; |
| } |
| |
| #if !MICROPY_EMIT_CPYTHON |
| // in Micro Python we put the default positional parameters into a tuple using the bytecode |
| // the default keywords args may have already made the tuple; if not, do it now |
| if (comp->num_default_params > 0 && comp->num_dict_params == 0) { |
| EMIT_ARG(build_tuple, comp->num_default_params); |
| EMIT(load_null); // sentinel indicating empty default keyword args |
| } |
| #endif |
| |
| // get the scope for this function |
| scope_t *fscope = (scope_t*)pns->nodes[4]; |
| |
| // make the function |
| close_over_variables_etc(comp, fscope, comp->num_default_params, comp->num_dict_params); |
| |
| // restore variables |
| comp->have_star = old_have_star; |
| comp->num_dict_params = old_num_dict_params; |
| comp->num_default_params = old_num_default_params; |
| |
| // return its name (the 'f' in "def f(...):") |
| return fscope->simple_name; |
| } |
| |
| // leaves class object on stack |
| // returns class name |
| STATIC qstr compile_classdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) { |
| if (comp->pass == MP_PASS_SCOPE) { |
| // create a new scope for this class |
| scope_t *s = scope_new_and_link(comp, SCOPE_CLASS, (mp_parse_node_t)pns, emit_options); |
| // store the class scope so the compiling function can use it at each pass |
| pns->nodes[3] = (mp_parse_node_t)s; |
| } |
| |
| EMIT(load_build_class); |
| |
| // scope for this class |
| scope_t *cscope = (scope_t*)pns->nodes[3]; |
| |
| // compile the class |
| close_over_variables_etc(comp, cscope, 0, 0); |
| |
| // get its name |
| EMIT_ARG(load_const_str, cscope->simple_name, false); |
| |
| // nodes[1] has parent classes, if any |
| // empty parenthesis (eg class C():) gets here as an empty PN_classdef_2 and needs special handling |
| mp_parse_node_t parents = pns->nodes[1]; |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(parents, PN_classdef_2)) { |
| parents = MP_PARSE_NODE_NULL; |
| } |
| comp->func_arg_is_super = false; |
| compile_trailer_paren_helper(comp, parents, false, 2); |
| |
| // return its name (the 'C' in class C(...):") |
| return cscope->simple_name; |
| } |
| |
| // returns true if it was a built-in decorator (even if the built-in had an error) |
| STATIC bool compile_built_in_decorator(compiler_t *comp, int name_len, mp_parse_node_t *name_nodes, uint *emit_options) { |
| if (MP_PARSE_NODE_LEAF_ARG(name_nodes[0]) != MP_QSTR_micropython) { |
| return false; |
| } |
| |
| if (name_len != 2) { |
| compile_syntax_error(comp, name_nodes[0], "invalid micropython decorator"); |
| return true; |
| } |
| |
| qstr attr = MP_PARSE_NODE_LEAF_ARG(name_nodes[1]); |
| if (attr == MP_QSTR_bytecode) { |
| *emit_options = MP_EMIT_OPT_BYTECODE; |
| #if MICROPY_EMIT_NATIVE |
| } else if (attr == MP_QSTR_native) { |
| *emit_options = MP_EMIT_OPT_NATIVE_PYTHON; |
| } else if (attr == MP_QSTR_viper) { |
| *emit_options = MP_EMIT_OPT_VIPER; |
| #endif |
| #if MICROPY_EMIT_INLINE_THUMB |
| } else if (attr == MP_QSTR_asm_thumb) { |
| *emit_options = MP_EMIT_OPT_ASM_THUMB; |
| #endif |
| } else { |
| compile_syntax_error(comp, name_nodes[1], "invalid micropython decorator"); |
| } |
| |
| return true; |
| } |
| |
| STATIC void compile_decorated(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // get the list of decorators |
| mp_parse_node_t *nodes; |
| int n = mp_parse_node_extract_list(&pns->nodes[0], PN_decorators, &nodes); |
| |
| // inherit emit options for this function/class definition |
| uint emit_options = comp->scope_cur->emit_options; |
| |
| // compile each decorator |
| int num_built_in_decorators = 0; |
| for (int i = 0; i < n; i++) { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(nodes[i], PN_decorator)); // should be |
| mp_parse_node_struct_t *pns_decorator = (mp_parse_node_struct_t*)nodes[i]; |
| |
| // nodes[0] contains the decorator function, which is a dotted name |
| mp_parse_node_t *name_nodes; |
| int name_len = mp_parse_node_extract_list(&pns_decorator->nodes[0], PN_dotted_name, &name_nodes); |
| |
| // check for built-in decorators |
| if (compile_built_in_decorator(comp, name_len, name_nodes, &emit_options)) { |
| // this was a built-in |
| num_built_in_decorators += 1; |
| |
| } else { |
| // not a built-in, compile normally |
| |
| // compile the decorator function |
| compile_node(comp, name_nodes[0]); |
| for (int j = 1; j < name_len; j++) { |
| assert(MP_PARSE_NODE_IS_ID(name_nodes[j])); // should be |
| EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(name_nodes[j])); |
| } |
| |
| // nodes[1] contains arguments to the decorator function, if any |
| if (!MP_PARSE_NODE_IS_NULL(pns_decorator->nodes[1])) { |
| // call the decorator function with the arguments in nodes[1] |
| comp->func_arg_is_super = false; |
| compile_node(comp, pns_decorator->nodes[1]); |
| } |
| } |
| } |
| |
| // compile the body (funcdef or classdef) and get its name |
| mp_parse_node_struct_t *pns_body = (mp_parse_node_struct_t*)pns->nodes[1]; |
| qstr body_name = 0; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_funcdef) { |
| body_name = compile_funcdef_helper(comp, pns_body, emit_options); |
| } else { |
| assert(MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_classdef); // should be |
| body_name = compile_classdef_helper(comp, pns_body, emit_options); |
| } |
| |
| // call each decorator |
| for (int i = 0; i < n - num_built_in_decorators; i++) { |
| EMIT_ARG(call_function, 1, 0, 0); |
| } |
| |
| // store func/class object into name |
| EMIT_ARG(store_id, body_name); |
| } |
| |
| STATIC void compile_funcdef(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| qstr fname = compile_funcdef_helper(comp, pns, comp->scope_cur->emit_options); |
| // store function object into function name |
| EMIT_ARG(store_id, fname); |
| } |
| |
| STATIC void c_del_stmt(compiler_t *comp, mp_parse_node_t pn) { |
| if (MP_PARSE_NODE_IS_ID(pn)) { |
| EMIT_ARG(delete_id, MP_PARSE_NODE_LEAF_ARG(pn)); |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_power)) { |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| |
| compile_node(comp, pns->nodes[0]); // base of the power node |
| |
| if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { |
| mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_power_trailers) { |
| int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1); |
| for (int i = 0; i < n - 1; i++) { |
| compile_node(comp, pns1->nodes[i]); |
| } |
| assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1])); |
| pns1 = (mp_parse_node_struct_t*)pns1->nodes[n - 1]; |
| } |
| if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_paren) { |
| // can't delete function calls |
| goto cannot_delete; |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) { |
| compile_node(comp, pns1->nodes[0]); |
| EMIT(delete_subscr); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) { |
| assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0])); |
| EMIT_ARG(delete_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0])); |
| } else { |
| goto cannot_delete; |
| } |
| } else { |
| goto cannot_delete; |
| } |
| |
| if (!MP_PARSE_NODE_IS_NULL(pns->nodes[2])) { |
| goto cannot_delete; |
| } |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_paren)) { |
| pn = ((mp_parse_node_struct_t*)pn)->nodes[0]; |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_testlist_comp)) { |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| // TODO perhaps factorise testlist_comp code with other uses of PN_testlist_comp |
| |
| if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { |
| mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_testlist_comp_3b) { |
| // sequence of one item, with trailing comma |
| assert(MP_PARSE_NODE_IS_NULL(pns1->nodes[0])); |
| c_del_stmt(comp, pns->nodes[0]); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_testlist_comp_3c) { |
| // sequence of many items |
| int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1); |
| c_del_stmt(comp, pns->nodes[0]); |
| for (int i = 0; i < n; i++) { |
| c_del_stmt(comp, pns1->nodes[i]); |
| } |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_comp_for) { |
| // TODO not implemented; can't del comprehension? |
| goto cannot_delete; |
| } else { |
| // sequence with 2 items |
| goto sequence_with_2_items; |
| } |
| } else { |
| // sequence with 2 items |
| sequence_with_2_items: |
| c_del_stmt(comp, pns->nodes[0]); |
| c_del_stmt(comp, pns->nodes[1]); |
| } |
| } else { |
| // tuple with 1 element |
| c_del_stmt(comp, pn); |
| } |
| } else { |
| // TODO is there anything else to implement? |
| goto cannot_delete; |
| } |
| |
| return; |
| |
| cannot_delete: |
| compile_syntax_error(comp, (mp_parse_node_t)pn, "can't delete expression"); |
| } |
| |
| STATIC void compile_del_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| apply_to_single_or_list(comp, pns->nodes[0], PN_exprlist, c_del_stmt); |
| } |
| |
| STATIC void compile_break_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (comp->break_label == 0) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "'break' outside loop"); |
| } |
| assert(comp->cur_except_level >= comp->break_continue_except_level); |
| EMIT_ARG(break_loop, comp->break_label, comp->cur_except_level - comp->break_continue_except_level); |
| } |
| |
| STATIC void compile_continue_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (comp->continue_label == 0) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "'continue' outside loop"); |
| } |
| assert(comp->cur_except_level >= comp->break_continue_except_level); |
| EMIT_ARG(continue_loop, comp->continue_label, comp->cur_except_level - comp->break_continue_except_level); |
| } |
| |
| STATIC void compile_return_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (comp->scope_cur->kind != SCOPE_FUNCTION) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "'return' outside function"); |
| return; |
| } |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| // no argument to 'return', so return None |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_test_if_expr)) { |
| // special case when returning an if-expression; to match CPython optimisation |
| mp_parse_node_struct_t *pns_test_if_expr = (mp_parse_node_struct_t*)pns->nodes[0]; |
| mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns_test_if_expr->nodes[1]; |
| |
| uint l_fail = comp_next_label(comp); |
| c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition |
| compile_node(comp, pns_test_if_expr->nodes[0]); // success value |
| EMIT(return_value); |
| EMIT_ARG(label_assign, l_fail); |
| compile_node(comp, pns_test_if_else->nodes[1]); // failure value |
| } else { |
| compile_node(comp, pns->nodes[0]); |
| } |
| EMIT(return_value); |
| } |
| |
| STATIC void compile_yield_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| compile_node(comp, pns->nodes[0]); |
| EMIT(pop_top); |
| } |
| |
| STATIC void compile_raise_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| // raise |
| EMIT_ARG(raise_varargs, 0); |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_raise_stmt_arg)) { |
| // raise x from y |
| pns = (mp_parse_node_struct_t*)pns->nodes[0]; |
| compile_node(comp, pns->nodes[0]); |
| compile_node(comp, pns->nodes[1]); |
| EMIT_ARG(raise_varargs, 2); |
| } else { |
| // raise x |
| compile_node(comp, pns->nodes[0]); |
| EMIT_ARG(raise_varargs, 1); |
| } |
| } |
| |
| // q_base holds the base of the name |
| // eg a -> q_base=a |
| // a.b.c -> q_base=a |
| STATIC void do_import_name(compiler_t *comp, mp_parse_node_t pn, qstr *q_base) { |
| bool is_as = false; |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_as_name)) { |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| // a name of the form x as y; unwrap it |
| *q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]); |
| pn = pns->nodes[0]; |
| is_as = true; |
| } |
| if (MP_PARSE_NODE_IS_NULL(pn)) { |
| // empty name (eg, from . import x) |
| *q_base = MP_QSTR_; |
| EMIT_ARG(import_name, MP_QSTR_); // import the empty string |
| } else if (MP_PARSE_NODE_IS_ID(pn)) { |
| // just a simple name |
| qstr q_full = MP_PARSE_NODE_LEAF_ARG(pn); |
| if (!is_as) { |
| *q_base = q_full; |
| } |
| EMIT_ARG(import_name, q_full); |
| } else { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_name)); // should be |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| { |
| // a name of the form a.b.c |
| if (!is_as) { |
| *q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); |
| } |
| int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| int len = n - 1; |
| for (int i = 0; i < n; i++) { |
| len += qstr_len(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i])); |
| } |
| byte *q_ptr; |
| byte *str_dest = qstr_build_start(len, &q_ptr); |
| for (int i = 0; i < n; i++) { |
| if (i > 0) { |
| *str_dest++ = '.'; |
| } |
| mp_uint_t str_src_len; |
| const byte *str_src = qstr_data(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]), &str_src_len); |
| memcpy(str_dest, str_src, str_src_len); |
| str_dest += str_src_len; |
| } |
| qstr q_full = qstr_build_end(q_ptr); |
| EMIT_ARG(import_name, q_full); |
| if (is_as) { |
| for (int i = 1; i < n; i++) { |
| EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[i])); |
| } |
| } |
| } |
| } |
| } |
| |
| STATIC void compile_dotted_as_name(compiler_t *comp, mp_parse_node_t pn) { |
| EMIT_ARG(load_const_small_int, 0); // level 0 import |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // not importing from anything |
| qstr q_base; |
| do_import_name(comp, pn, &q_base); |
| EMIT_ARG(store_id, q_base); |
| } |
| |
| STATIC void compile_import_name(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| apply_to_single_or_list(comp, pns->nodes[0], PN_dotted_as_names, compile_dotted_as_name); |
| } |
| |
| STATIC void compile_import_from(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| mp_parse_node_t pn_import_source = pns->nodes[0]; |
| |
| // extract the preceeding .'s (if any) for a relative import, to compute the import level |
| uint import_level = 0; |
| do { |
| mp_parse_node_t pn_rel; |
| if (MP_PARSE_NODE_IS_TOKEN(pn_import_source) || MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_one_or_more_period_or_ellipsis)) { |
| // This covers relative imports with dots only like "from .. import" |
| pn_rel = pn_import_source; |
| pn_import_source = MP_PARSE_NODE_NULL; |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_import_from_2b)) { |
| // This covers relative imports starting with dot(s) like "from .foo import" |
| mp_parse_node_struct_t *pns_2b = (mp_parse_node_struct_t*)pn_import_source; |
| pn_rel = pns_2b->nodes[0]; |
| pn_import_source = pns_2b->nodes[1]; |
| assert(!MP_PARSE_NODE_IS_NULL(pn_import_source)); // should not be |
| } else { |
| // Not a relative import |
| break; |
| } |
| |
| // get the list of . and/or ...'s |
| mp_parse_node_t *nodes; |
| int n = mp_parse_node_extract_list(&pn_rel, PN_one_or_more_period_or_ellipsis, &nodes); |
| |
| // count the total number of .'s |
| for (int i = 0; i < n; i++) { |
| if (MP_PARSE_NODE_IS_TOKEN_KIND(nodes[i], MP_TOKEN_DEL_PERIOD)) { |
| import_level++; |
| } else { |
| // should be an MP_TOKEN_ELLIPSIS |
| import_level += 3; |
| } |
| } |
| } while (0); |
| |
| if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_STAR)) { |
| EMIT_ARG(load_const_small_int, import_level); |
| |
| // build the "fromlist" tuple |
| #if MICROPY_EMIT_CPYTHON |
| EMIT_ARG(load_const_verbatim_strn, "('*',)", 6); |
| #else |
| EMIT_ARG(load_const_str, MP_QSTR__star_, false); |
| EMIT_ARG(build_tuple, 1); |
| #endif |
| |
| // do the import |
| qstr dummy_q; |
| do_import_name(comp, pn_import_source, &dummy_q); |
| EMIT(import_star); |
| |
| } else { |
| EMIT_ARG(load_const_small_int, import_level); |
| |
| // build the "fromlist" tuple |
| mp_parse_node_t *pn_nodes; |
| int n = mp_parse_node_extract_list(&pns->nodes[1], PN_import_as_names, &pn_nodes); |
| #if MICROPY_EMIT_CPYTHON |
| { |
| vstr_t *vstr = vstr_new(); |
| vstr_printf(vstr, "("); |
| for (int i = 0; i < n; i++) { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name)); |
| mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pn_nodes[i]; |
| qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id |
| if (i > 0) { |
| vstr_printf(vstr, ", "); |
| } |
| vstr_printf(vstr, "'"); |
| mp_uint_t len; |
| const byte *str = qstr_data(id2, &len); |
| vstr_add_strn(vstr, (const char*)str, len); |
| vstr_printf(vstr, "'"); |
| } |
| if (n == 1) { |
| vstr_printf(vstr, ","); |
| } |
| vstr_printf(vstr, ")"); |
| EMIT_ARG(load_const_verbatim_strn, vstr_str(vstr), vstr_len(vstr)); |
| vstr_free(vstr); |
| } |
| #else |
| for (int i = 0; i < n; i++) { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name)); |
| mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pn_nodes[i]; |
| qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id |
| EMIT_ARG(load_const_str, id2, false); |
| } |
| EMIT_ARG(build_tuple, n); |
| #endif |
| |
| // do the import |
| qstr dummy_q; |
| do_import_name(comp, pn_import_source, &dummy_q); |
| for (int i = 0; i < n; i++) { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name)); |
| mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pn_nodes[i]; |
| qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id |
| EMIT_ARG(import_from, id2); |
| if (MP_PARSE_NODE_IS_NULL(pns3->nodes[1])) { |
| EMIT_ARG(store_id, id2); |
| } else { |
| EMIT_ARG(store_id, MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1])); |
| } |
| } |
| EMIT(pop_top); |
| } |
| } |
| |
| STATIC void compile_declare_global(compiler_t *comp, mp_parse_node_t pn, qstr qst) { |
| bool added; |
| id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added); |
| if (!added) { |
| compile_syntax_error(comp, pn, "identifier already used"); |
| return; |
| } |
| id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; |
| |
| // if the id exists in the global scope, set its kind to EXPLICIT_GLOBAL |
| id_info = scope_find_global(comp->scope_cur, qst); |
| if (id_info != NULL) { |
| id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; |
| } |
| } |
| |
| STATIC void compile_global_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (comp->pass == MP_PASS_SCOPE) { |
| mp_parse_node_t *nodes; |
| int n = mp_parse_node_extract_list(&pns->nodes[0], PN_name_list, &nodes); |
| for (int i = 0; i < n; i++) { |
| compile_declare_global(comp, (mp_parse_node_t)pns, MP_PARSE_NODE_LEAF_ARG(nodes[i])); |
| } |
| } |
| } |
| |
| STATIC void compile_declare_nonlocal(compiler_t *comp, mp_parse_node_t pn, qstr qst) { |
| bool added; |
| id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added); |
| if (!added) { |
| compile_syntax_error(comp, pn, "identifier already used"); |
| return; |
| } |
| id_info_t *id_info2 = scope_find_local_in_parent(comp->scope_cur, qst); |
| if (id_info2 == NULL || !(id_info2->kind == ID_INFO_KIND_LOCAL || id_info2->kind == ID_INFO_KIND_CELL || id_info2->kind == ID_INFO_KIND_FREE)) { |
| compile_syntax_error(comp, pn, "no binding for nonlocal found"); |
| return; |
| } |
| id_info->kind = ID_INFO_KIND_FREE; |
| scope_close_over_in_parents(comp->scope_cur, qst); |
| } |
| |
| STATIC void compile_nonlocal_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (comp->pass == MP_PASS_SCOPE) { |
| if (comp->scope_cur->kind == SCOPE_MODULE) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "can't declare nonlocal in outer code"); |
| return; |
| } |
| mp_parse_node_t *nodes; |
| int n = mp_parse_node_extract_list(&pns->nodes[0], PN_name_list, &nodes); |
| for (int i = 0; i < n; i++) { |
| compile_declare_nonlocal(comp, (mp_parse_node_t)pns, MP_PARSE_NODE_LEAF_ARG(nodes[i])); |
| } |
| } |
| } |
| |
| STATIC void compile_assert_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| uint l_end = comp_next_label(comp); |
| c_if_cond(comp, pns->nodes[0], true, l_end); |
| EMIT_ARG(load_global, MP_QSTR_AssertionError); // we load_global instead of load_id, to be consistent with CPython |
| if (!MP_PARSE_NODE_IS_NULL(pns->nodes[1])) { |
| // assertion message |
| compile_node(comp, pns->nodes[1]); |
| EMIT_ARG(call_function, 1, 0, 0); |
| } |
| EMIT_ARG(raise_varargs, 1); |
| EMIT_ARG(label_assign, l_end); |
| } |
| |
| STATIC void compile_if_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // TODO proper and/or short circuiting |
| |
| uint l_end = comp_next_label(comp); |
| |
| // optimisation: don't emit anything when "if False" (not in CPython) |
| if (MICROPY_EMIT_CPYTHON || !node_is_const_false(pns->nodes[0])) { |
| uint l_fail = comp_next_label(comp); |
| c_if_cond(comp, pns->nodes[0], false, l_fail); // if condition |
| |
| compile_node(comp, pns->nodes[1]); // if block |
| |
| // optimisation: skip everything else when "if True" (not in CPython) |
| if (!MICROPY_EMIT_CPYTHON && node_is_const_true(pns->nodes[0])) { |
| goto done; |
| } |
| |
| if ( |
| // optimisation: don't jump over non-existent elif/else blocks (not in CPython) |
| (MICROPY_EMIT_CPYTHON || !(MP_PARSE_NODE_IS_NULL(pns->nodes[2]) && MP_PARSE_NODE_IS_NULL(pns->nodes[3]))) |
| // optimisation: don't jump if last instruction was return |
| && !EMIT(last_emit_was_return_value) |
| ) { |
| // jump over elif/else blocks |
| EMIT_ARG(jump, l_end); |
| } |
| |
| EMIT_ARG(label_assign, l_fail); |
| } |
| |
| // compile elif blocks (if any) |
| mp_parse_node_t *pn_elif; |
| int n_elif = mp_parse_node_extract_list(&pns->nodes[2], PN_if_stmt_elif_list, &pn_elif); |
| for (int i = 0; i < n_elif; i++) { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_elif[i], PN_if_stmt_elif)); // should be |
| mp_parse_node_struct_t *pns_elif = (mp_parse_node_struct_t*)pn_elif[i]; |
| |
| // optimisation: don't emit anything when "if False" (not in CPython) |
| if (MICROPY_EMIT_CPYTHON || !node_is_const_false(pns_elif->nodes[0])) { |
| uint l_fail = comp_next_label(comp); |
| c_if_cond(comp, pns_elif->nodes[0], false, l_fail); // elif condition |
| |
| compile_node(comp, pns_elif->nodes[1]); // elif block |
| |
| // optimisation: skip everything else when "elif True" (not in CPython) |
| if (!MICROPY_EMIT_CPYTHON && node_is_const_true(pns_elif->nodes[0])) { |
| goto done; |
| } |
| |
| // optimisation: don't jump if last instruction was return |
| if (!EMIT(last_emit_was_return_value)) { |
| EMIT_ARG(jump, l_end); |
| } |
| EMIT_ARG(label_assign, l_fail); |
| } |
| } |
| |
| // compile else block |
| compile_node(comp, pns->nodes[3]); // can be null |
| |
| done: |
| EMIT_ARG(label_assign, l_end); |
| } |
| |
| #define START_BREAK_CONTINUE_BLOCK \ |
| uint16_t old_break_label = comp->break_label; \ |
| uint16_t old_continue_label = comp->continue_label; \ |
| uint16_t old_break_continue_except_level = comp->break_continue_except_level; \ |
| uint break_label = comp_next_label(comp); \ |
| uint continue_label = comp_next_label(comp); \ |
| comp->break_label = break_label; \ |
| comp->continue_label = continue_label; \ |
| comp->break_continue_except_level = comp->cur_except_level; |
| |
| #define END_BREAK_CONTINUE_BLOCK \ |
| comp->break_label = old_break_label; \ |
| comp->continue_label = old_continue_label; \ |
| comp->break_continue_except_level = old_break_continue_except_level; |
| |
| STATIC void compile_while_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| START_BREAK_CONTINUE_BLOCK |
| |
| // compared to CPython, we have an optimised version of while loops |
| #if MICROPY_EMIT_CPYTHON |
| uint done_label = comp_next_label(comp); |
| EMIT_ARG(setup_loop, break_label); |
| EMIT_ARG(label_assign, continue_label); |
| c_if_cond(comp, pns->nodes[0], false, done_label); // condition |
| compile_node(comp, pns->nodes[1]); // body |
| if (!EMIT(last_emit_was_return_value)) { |
| EMIT_ARG(jump, continue_label); |
| } |
| EMIT_ARG(label_assign, done_label); |
| // CPython does not emit POP_BLOCK if the condition was a constant; don't undertand why |
| // this is a small hack to agree with CPython |
| if (!node_is_const_true(pns->nodes[0])) { |
| EMIT(pop_block); |
| } |
| #else |
| if (!node_is_const_false(pns->nodes[0])) { // optimisation: don't emit anything for "while False" |
| uint top_label = comp_next_label(comp); |
| if (!node_is_const_true(pns->nodes[0])) { // optimisation: don't jump to cond for "while True" |
| EMIT_ARG(jump, continue_label); |
| } |
| EMIT_ARG(label_assign, top_label); |
| compile_node(comp, pns->nodes[1]); // body |
| EMIT_ARG(label_assign, continue_label); |
| c_if_cond(comp, pns->nodes[0], true, top_label); // condition |
| } |
| #endif |
| |
| // break/continue apply to outer loop (if any) in the else block |
| END_BREAK_CONTINUE_BLOCK |
| |
| compile_node(comp, pns->nodes[2]); // else |
| |
| EMIT_ARG(label_assign, break_label); |
| } |
| |
| #if !MICROPY_EMIT_CPYTHON |
| // This function compiles an optimised for-loop of the form: |
| // for <var> in range(<start>, <end>, <step>): |
| // <body> |
| // else: |
| // <else> |
| // <var> must be an identifier and <step> must be a small-int. |
| // |
| // Semantics of for-loop require: |
| // - final failing value should not be stored in the loop variable |
| // - if the loop never runs, the loop variable should never be assigned |
| // - assignments to <var>, <end> or <step> in the body do not alter the loop |
| // (<step> is a constant for us, so no need to worry about it changing) |
| // |
| // If <end> is a small-int, then the stack during the for-loop contains just |
| // the current value of <var>. Otherwise, the stack contains <end> then the |
| // current value of <var>. |
| STATIC void compile_for_stmt_optimised_range(compiler_t *comp, mp_parse_node_t pn_var, mp_parse_node_t pn_start, mp_parse_node_t pn_end, mp_parse_node_t pn_step, mp_parse_node_t pn_body, mp_parse_node_t pn_else) { |
| START_BREAK_CONTINUE_BLOCK |
| |
| uint top_label = comp_next_label(comp); |
| uint entry_label = comp_next_label(comp); |
| |
| // put the end value on the stack if it's not a small-int constant |
| bool end_on_stack = !MP_PARSE_NODE_IS_SMALL_INT(pn_end); |
| if (end_on_stack) { |
| compile_node(comp, pn_end); |
| } |
| |
| // compile: start |
| compile_node(comp, pn_start); |
| |
| EMIT_ARG(jump, entry_label); |
| EMIT_ARG(label_assign, top_label); |
| |
| // duplicate next value and store it to var |
| EMIT(dup_top); |
| c_assign(comp, pn_var, ASSIGN_STORE); |
| |
| // compile body |
| compile_node(comp, pn_body); |
| |
| EMIT_ARG(label_assign, continue_label); |
| |
| // compile: var + step |
| compile_node(comp, pn_step); |
| EMIT_ARG(binary_op, MP_BINARY_OP_INPLACE_ADD); |
| |
| EMIT_ARG(label_assign, entry_label); |
| |
| // compile: if var <cond> end: goto top |
| if (end_on_stack) { |
| EMIT(dup_top_two); |
| EMIT(rot_two); |
| } else { |
| EMIT(dup_top); |
| compile_node(comp, pn_end); |
| } |
| assert(MP_PARSE_NODE_IS_SMALL_INT(pn_step)); |
| if (MP_PARSE_NODE_LEAF_SMALL_INT(pn_step) >= 0) { |
| EMIT_ARG(binary_op, MP_BINARY_OP_LESS); |
| } else { |
| EMIT_ARG(binary_op, MP_BINARY_OP_MORE); |
| } |
| EMIT_ARG(pop_jump_if, true, top_label); |
| |
| // break/continue apply to outer loop (if any) in the else block |
| END_BREAK_CONTINUE_BLOCK |
| |
| compile_node(comp, pn_else); |
| |
| EMIT_ARG(label_assign, break_label); |
| |
| // discard final value of var that failed the loop condition |
| EMIT(pop_top); |
| |
| // discard <end> value if it's on the stack |
| if (end_on_stack) { |
| EMIT(pop_top); |
| } |
| } |
| #endif |
| |
| STATIC void compile_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| #if !MICROPY_EMIT_CPYTHON |
| // this bit optimises: for <x> in range(...), turning it into an explicitly incremented variable |
| // this is actually slower, but uses no heap memory |
| // for viper it will be much, much faster |
| if (/*comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER &&*/ MP_PARSE_NODE_IS_ID(pns->nodes[0]) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_power)) { |
| mp_parse_node_struct_t *pns_it = (mp_parse_node_struct_t*)pns->nodes[1]; |
| if (MP_PARSE_NODE_IS_ID(pns_it->nodes[0]) |
| && MP_PARSE_NODE_LEAF_ARG(pns_it->nodes[0]) == MP_QSTR_range |
| && MP_PARSE_NODE_IS_STRUCT_KIND(pns_it->nodes[1], PN_trailer_paren) |
| && MP_PARSE_NODE_IS_NULL(pns_it->nodes[2])) { |
| mp_parse_node_t pn_range_args = ((mp_parse_node_struct_t*)pns_it->nodes[1])->nodes[0]; |
| mp_parse_node_t *args; |
| int n_args = mp_parse_node_extract_list(&pn_range_args, PN_arglist, &args); |
| mp_parse_node_t pn_range_start; |
| mp_parse_node_t pn_range_end; |
| mp_parse_node_t pn_range_step; |
| bool optimize = false; |
| if (1 <= n_args && n_args <= 3) { |
| optimize = true; |
| if (n_args == 1) { |
| pn_range_start = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, 0); |
| pn_range_end = args[0]; |
| pn_range_step = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, 1); |
| } else if (n_args == 2) { |
| pn_range_start = args[0]; |
| pn_range_end = args[1]; |
| pn_range_step = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, 1); |
| } else { |
| pn_range_start = args[0]; |
| pn_range_end = args[1]; |
| pn_range_step = args[2]; |
| // We need to know sign of step. This is possible only if it's constant |
| if (!MP_PARSE_NODE_IS_SMALL_INT(pn_range_step)) { |
| optimize = false; |
| } |
| } |
| } |
| if (optimize) { |
| compile_for_stmt_optimised_range(comp, pns->nodes[0], pn_range_start, pn_range_end, pn_range_step, pns->nodes[2], pns->nodes[3]); |
| return; |
| } |
| } |
| } |
| #endif |
| |
| START_BREAK_CONTINUE_BLOCK |
| comp->break_label |= MP_EMIT_BREAK_FROM_FOR; |
| |
| uint pop_label = comp_next_label(comp); |
| uint end_label = comp_next_label(comp); |
| |
| // I don't think our implementation needs SETUP_LOOP/POP_BLOCK for for-statements |
| #if MICROPY_EMIT_CPYTHON |
| EMIT_ARG(setup_loop, end_label); |
| #endif |
| |
| compile_node(comp, pns->nodes[1]); // iterator |
| EMIT(get_iter); |
| EMIT_ARG(label_assign, continue_label); |
| EMIT_ARG(for_iter, pop_label); |
| c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable |
| compile_node(comp, pns->nodes[2]); // body |
| if (!EMIT(last_emit_was_return_value)) { |
| EMIT_ARG(jump, continue_label); |
| } |
| EMIT_ARG(label_assign, pop_label); |
| EMIT(for_iter_end); |
| |
| // break/continue apply to outer loop (if any) in the else block |
| END_BREAK_CONTINUE_BLOCK |
| |
| #if MICROPY_EMIT_CPYTHON |
| EMIT(pop_block); |
| #endif |
| |
| compile_node(comp, pns->nodes[3]); // else (not tested) |
| |
| EMIT_ARG(label_assign, break_label); |
| EMIT_ARG(label_assign, end_label); |
| } |
| |
| STATIC void compile_try_except(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_excepts, mp_parse_node_t pn_else) { |
| // setup code |
| uint l1 = comp_next_label(comp); |
| uint success_label = comp_next_label(comp); |
| |
| EMIT_ARG(setup_except, l1); |
| compile_increase_except_level(comp); |
| |
| compile_node(comp, pn_body); // body |
| EMIT(pop_block); |
| EMIT_ARG(jump, success_label); // jump over exception handler |
| |
| EMIT_ARG(label_assign, l1); // start of exception handler |
| EMIT(start_except_handler); |
| |
| uint l2 = comp_next_label(comp); |
| |
| for (int i = 0; i < n_except; i++) { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_excepts[i], PN_try_stmt_except)); // should be |
| mp_parse_node_struct_t *pns_except = (mp_parse_node_struct_t*)pn_excepts[i]; |
| |
| qstr qstr_exception_local = 0; |
| uint end_finally_label = comp_next_label(comp); |
| |
| if (MP_PARSE_NODE_IS_NULL(pns_except->nodes[0])) { |
| // this is a catch all exception handler |
| if (i + 1 != n_except) { |
| compile_syntax_error(comp, pn_excepts[i], "default 'except:' must be last"); |
| compile_decrease_except_level(comp); |
| return; |
| } |
| } else { |
| // this exception handler requires a match to a certain type of exception |
| mp_parse_node_t pns_exception_expr = pns_except->nodes[0]; |
| if (MP_PARSE_NODE_IS_STRUCT(pns_exception_expr)) { |
| mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pns_exception_expr; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_try_stmt_as_name) { |
| // handler binds the exception to a local |
| pns_exception_expr = pns3->nodes[0]; |
| qstr_exception_local = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1]); |
| } |
| } |
| EMIT(dup_top); |
| compile_node(comp, pns_exception_expr); |
| EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH); |
| EMIT_ARG(pop_jump_if, false, end_finally_label); |
| } |
| |
| EMIT(pop_top); |
| |
| if (qstr_exception_local == 0) { |
| EMIT(pop_top); |
| } else { |
| EMIT_ARG(store_id, qstr_exception_local); |
| } |
| |
| EMIT(pop_top); |
| |
| uint l3 = 0; |
| if (qstr_exception_local != 0) { |
| l3 = comp_next_label(comp); |
| EMIT_ARG(setup_finally, l3); |
| compile_increase_except_level(comp); |
| } |
| compile_node(comp, pns_except->nodes[1]); |
| if (qstr_exception_local != 0) { |
| EMIT(pop_block); |
| } |
| EMIT(pop_except); |
| if (qstr_exception_local != 0) { |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| EMIT_ARG(label_assign, l3); |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| EMIT_ARG(store_id, qstr_exception_local); |
| EMIT_ARG(delete_id, qstr_exception_local); |
| |
| compile_decrease_except_level(comp); |
| EMIT(end_finally); |
| } |
| EMIT_ARG(jump, l2); |
| EMIT_ARG(label_assign, end_finally_label); |
| EMIT_ARG(adjust_stack_size, 3); // stack adjust for the 3 exception items |
| } |
| |
| compile_decrease_except_level(comp); |
| EMIT(end_finally); |
| EMIT(end_except_handler); |
| |
| EMIT_ARG(label_assign, success_label); |
| compile_node(comp, pn_else); // else block, can be null |
| EMIT_ARG(label_assign, l2); |
| } |
| |
| STATIC void compile_try_finally(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_except, mp_parse_node_t pn_else, mp_parse_node_t pn_finally) { |
| uint l_finally_block = comp_next_label(comp); |
| |
| EMIT_ARG(setup_finally, l_finally_block); |
| compile_increase_except_level(comp); |
| |
| if (n_except == 0) { |
| assert(MP_PARSE_NODE_IS_NULL(pn_else)); |
| EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state |
| compile_node(comp, pn_body); |
| EMIT_ARG(adjust_stack_size, -3); |
| } else { |
| compile_try_except(comp, pn_body, n_except, pn_except, pn_else); |
| } |
| EMIT(pop_block); |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| EMIT_ARG(label_assign, l_finally_block); |
| compile_node(comp, pn_finally); |
| |
| compile_decrease_except_level(comp); |
| EMIT(end_finally); |
| } |
| |
| STATIC void compile_try_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should be |
| { |
| mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_finally) { |
| // just try-finally |
| compile_try_finally(comp, pns->nodes[0], 0, NULL, MP_PARSE_NODE_NULL, pns2->nodes[0]); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_except_and_more) { |
| // try-except and possibly else and/or finally |
| mp_parse_node_t *pn_excepts; |
| int n_except = mp_parse_node_extract_list(&pns2->nodes[0], PN_try_stmt_except_list, &pn_excepts); |
| if (MP_PARSE_NODE_IS_NULL(pns2->nodes[2])) { |
| // no finally |
| compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1]); |
| } else { |
| // have finally |
| compile_try_finally(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1], ((mp_parse_node_struct_t*)pns2->nodes[2])->nodes[0]); |
| } |
| } else { |
| // just try-except |
| mp_parse_node_t *pn_excepts; |
| int n_except = mp_parse_node_extract_list(&pns->nodes[1], PN_try_stmt_except_list, &pn_excepts); |
| compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, MP_PARSE_NODE_NULL); |
| } |
| } |
| } |
| |
| STATIC void compile_with_stmt_helper(compiler_t *comp, int n, mp_parse_node_t *nodes, mp_parse_node_t body) { |
| if (n == 0) { |
| // no more pre-bits, compile the body of the with |
| compile_node(comp, body); |
| } else { |
| uint l_end = comp_next_label(comp); |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) { |
| // this pre-bit is of the form "a as b" |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)nodes[0]; |
| compile_node(comp, pns->nodes[0]); |
| EMIT_ARG(setup_with, l_end); |
| c_assign(comp, pns->nodes[1], ASSIGN_STORE); |
| } else { |
| // this pre-bit is just an expression |
| compile_node(comp, nodes[0]); |
| EMIT_ARG(setup_with, l_end); |
| EMIT(pop_top); |
| } |
| compile_increase_except_level(comp); |
| // compile additional pre-bits and the body |
| compile_with_stmt_helper(comp, n - 1, nodes + 1, body); |
| // finish this with block |
| EMIT(pop_block); |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| EMIT_ARG(label_assign, l_end); |
| EMIT(with_cleanup); |
| compile_decrease_except_level(comp); |
| EMIT(end_finally); |
| } |
| } |
| |
| STATIC void compile_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit) |
| mp_parse_node_t *nodes; |
| int n = mp_parse_node_extract_list(&pns->nodes[0], PN_with_stmt_list, &nodes); |
| assert(n > 0); |
| |
| // compile in a nested fashion |
| compile_with_stmt_helper(comp, n, nodes, pns->nodes[1]); |
| } |
| |
| STATIC void compile_expr_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[1])) { |
| if (comp->is_repl && comp->scope_cur->kind == SCOPE_MODULE) { |
| // for REPL, evaluate then print the expression |
| EMIT_ARG(load_id, MP_QSTR___repl_print__); |
| compile_node(comp, pns->nodes[0]); |
| EMIT_ARG(call_function, 1, 0, 0); |
| EMIT(pop_top); |
| |
| } else { |
| // for non-REPL, evaluate then discard the expression |
| if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) && !MP_PARSE_NODE_IS_ID(pns->nodes[0])) |
| || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_string) |
| || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_bytes) |
| || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)) { |
| // do nothing with a lonely constant |
| } else { |
| compile_node(comp, pns->nodes[0]); // just an expression |
| EMIT(pop_top); // discard last result since this is a statement and leaves nothing on the stack |
| } |
| } |
| } else { |
| mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; |
| int kind = MP_PARSE_NODE_STRUCT_KIND(pns1); |
| if (kind == PN_expr_stmt_augassign) { |
| c_assign(comp, pns->nodes[0], ASSIGN_AUG_LOAD); // lhs load for aug assign |
| compile_node(comp, pns1->nodes[1]); // rhs |
| assert(MP_PARSE_NODE_IS_TOKEN(pns1->nodes[0])); |
| mp_binary_op_t op; |
| switch (MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0])) { |
| case MP_TOKEN_DEL_PIPE_EQUAL: op = MP_BINARY_OP_INPLACE_OR; break; |
| case MP_TOKEN_DEL_CARET_EQUAL: op = MP_BINARY_OP_INPLACE_XOR; break; |
| case MP_TOKEN_DEL_AMPERSAND_EQUAL: op = MP_BINARY_OP_INPLACE_AND; break; |
| case MP_TOKEN_DEL_DBL_LESS_EQUAL: op = MP_BINARY_OP_INPLACE_LSHIFT; break; |
| case MP_TOKEN_DEL_DBL_MORE_EQUAL: op = MP_BINARY_OP_INPLACE_RSHIFT; break; |
| case MP_TOKEN_DEL_PLUS_EQUAL: op = MP_BINARY_OP_INPLACE_ADD; break; |
| case MP_TOKEN_DEL_MINUS_EQUAL: op = MP_BINARY_OP_INPLACE_SUBTRACT; break; |
| case MP_TOKEN_DEL_STAR_EQUAL: op = MP_BINARY_OP_INPLACE_MULTIPLY; break; |
| case MP_TOKEN_DEL_DBL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_FLOOR_DIVIDE; break; |
| case MP_TOKEN_DEL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_TRUE_DIVIDE; break; |
| case MP_TOKEN_DEL_PERCENT_EQUAL: op = MP_BINARY_OP_INPLACE_MODULO; break; |
| case MP_TOKEN_DEL_DBL_STAR_EQUAL: default: op = MP_BINARY_OP_INPLACE_POWER; break; |
| } |
| EMIT_ARG(binary_op, op); |
| c_assign(comp, pns->nodes[0], ASSIGN_AUG_STORE); // lhs store for aug assign |
| } else if (kind == PN_expr_stmt_assign_list) { |
| int rhs = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1) - 1; |
| compile_node(comp, ((mp_parse_node_struct_t*)pns1->nodes[rhs])->nodes[0]); // rhs |
| // following CPython, we store left-most first |
| if (rhs > 0) { |
| EMIT(dup_top); |
| } |
| c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store |
| for (int i = 0; i < rhs; i++) { |
| if (i + 1 < rhs) { |
| EMIT(dup_top); |
| } |
| c_assign(comp, ((mp_parse_node_struct_t*)pns1->nodes[i])->nodes[0], ASSIGN_STORE); // middle store |
| } |
| } else { |
| assert(kind == PN_expr_stmt_assign); // should be |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pns1->nodes[0], PN_testlist_star_expr) |
| && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr) |
| && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns1->nodes[0]) == 2 |
| && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 2) { |
| // optimisation for a, b = c, d; to match CPython's optimisation |
| mp_parse_node_struct_t* pns10 = (mp_parse_node_struct_t*)pns1->nodes[0]; |
| mp_parse_node_struct_t* pns0 = (mp_parse_node_struct_t*)pns->nodes[0]; |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr) |
| || MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr)) { |
| // can't optimise when it's a star expression on the lhs |
| goto no_optimisation; |
| } |
| compile_node(comp, pns10->nodes[0]); // rhs |
| compile_node(comp, pns10->nodes[1]); // rhs |
| EMIT(rot_two); |
| c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store |
| c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns1->nodes[0], PN_testlist_star_expr) |
| && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr) |
| && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns1->nodes[0]) == 3 |
| && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 3) { |
| // optimisation for a, b, c = d, e, f; to match CPython's optimisation |
| mp_parse_node_struct_t* pns10 = (mp_parse_node_struct_t*)pns1->nodes[0]; |
| mp_parse_node_struct_t* pns0 = (mp_parse_node_struct_t*)pns->nodes[0]; |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr) |
| || MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr) |
| || MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[2], PN_star_expr)) { |
| // can't optimise when it's a star expression on the lhs |
| goto no_optimisation; |
| } |
| compile_node(comp, pns10->nodes[0]); // rhs |
| compile_node(comp, pns10->nodes[1]); // rhs |
| compile_node(comp, pns10->nodes[2]); // rhs |
| EMIT(rot_three); |
| EMIT(rot_two); |
| c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store |
| c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store |
| c_assign(comp, pns0->nodes[2], ASSIGN_STORE); // lhs store |
| } else { |
| no_optimisation: |
| compile_node(comp, pns1->nodes[0]); // rhs |
| c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store |
| } |
| } |
| } |
| } |
| |
| STATIC void c_binary_op(compiler_t *comp, mp_parse_node_struct_t *pns, mp_binary_op_t binary_op) { |
| int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| compile_node(comp, pns->nodes[0]); |
| for (int i = 1; i < num_nodes; i += 1) { |
| compile_node(comp, pns->nodes[i]); |
| EMIT_ARG(binary_op, binary_op); |
| } |
| } |
| |
| STATIC void compile_test_if_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_test_if_else)); |
| mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns->nodes[1]; |
| |
| uint l_fail = comp_next_label(comp); |
| uint l_end = comp_next_label(comp); |
| c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition |
| compile_node(comp, pns->nodes[0]); // success value |
| EMIT_ARG(jump, l_end); |
| EMIT_ARG(label_assign, l_fail); |
| EMIT_ARG(adjust_stack_size, -1); // adjust stack size |
| compile_node(comp, pns_test_if_else->nodes[1]); // failure value |
| EMIT_ARG(label_assign, l_end); |
| } |
| |
| STATIC void compile_lambdef(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // TODO default params etc for lambda; possibly just use funcdef code |
| //mp_parse_node_t pn_params = pns->nodes[0]; |
| //mp_parse_node_t pn_body = pns->nodes[1]; |
| |
| if (comp->pass == MP_PASS_SCOPE) { |
| // create a new scope for this lambda |
| scope_t *s = scope_new_and_link(comp, SCOPE_LAMBDA, (mp_parse_node_t)pns, comp->scope_cur->emit_options); |
| // store the lambda scope so the compiling function (this one) can use it at each pass |
| pns->nodes[2] = (mp_parse_node_t)s; |
| } |
| |
| // get the scope for this lambda |
| scope_t *this_scope = (scope_t*)pns->nodes[2]; |
| |
| // make the lambda |
| close_over_variables_etc(comp, this_scope, 0, 0); |
| } |
| |
| STATIC void compile_or_and_test(compiler_t *comp, mp_parse_node_struct_t *pns, bool cond) { |
| uint l_end = comp_next_label(comp); |
| int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| for (int i = 0; i < n; i += 1) { |
| compile_node(comp, pns->nodes[i]); |
| if (i + 1 < n) { |
| EMIT_ARG(jump_if_or_pop, cond, l_end); |
| } |
| } |
| EMIT_ARG(label_assign, l_end); |
| } |
| |
| STATIC void compile_or_test(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| compile_or_and_test(comp, pns, true); |
| } |
| |
| STATIC void compile_and_test(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| compile_or_and_test(comp, pns, false); |
| } |
| |
| STATIC void compile_not_test_2(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| compile_node(comp, pns->nodes[0]); |
| EMIT_ARG(unary_op, MP_UNARY_OP_NOT); |
| } |
| |
| STATIC void compile_comparison(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| compile_node(comp, pns->nodes[0]); |
| bool multi = (num_nodes > 3); |
| uint l_fail = 0; |
| if (multi) { |
| l_fail = comp_next_label(comp); |
| } |
| for (int i = 1; i + 1 < num_nodes; i += 2) { |
| compile_node(comp, pns->nodes[i + 1]); |
| if (i + 2 < num_nodes) { |
| EMIT(dup_top); |
| EMIT(rot_three); |
| } |
| if (MP_PARSE_NODE_IS_TOKEN(pns->nodes[i])) { |
| mp_binary_op_t op; |
| switch (MP_PARSE_NODE_LEAF_ARG(pns->nodes[i])) { |
| case MP_TOKEN_OP_LESS: op = MP_BINARY_OP_LESS; break; |
| case MP_TOKEN_OP_MORE: op = MP_BINARY_OP_MORE; break; |
| case MP_TOKEN_OP_DBL_EQUAL: op = MP_BINARY_OP_EQUAL; break; |
| case MP_TOKEN_OP_LESS_EQUAL: op = MP_BINARY_OP_LESS_EQUAL; break; |
| case MP_TOKEN_OP_MORE_EQUAL: op = MP_BINARY_OP_MORE_EQUAL; break; |
| case MP_TOKEN_OP_NOT_EQUAL: op = MP_BINARY_OP_NOT_EQUAL; break; |
| case MP_TOKEN_KW_IN: default: op = MP_BINARY_OP_IN; break; |
| } |
| EMIT_ARG(binary_op, op); |
| } else { |
| assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[i])); // should be |
| mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[i]; |
| int kind = MP_PARSE_NODE_STRUCT_KIND(pns2); |
| if (kind == PN_comp_op_not_in) { |
| EMIT_ARG(binary_op, MP_BINARY_OP_NOT_IN); |
| } else { |
| assert(kind == PN_comp_op_is); // should be |
| if (MP_PARSE_NODE_IS_NULL(pns2->nodes[0])) { |
| EMIT_ARG(binary_op, MP_BINARY_OP_IS); |
| } else { |
| EMIT_ARG(binary_op, MP_BINARY_OP_IS_NOT); |
| } |
| } |
| } |
| if (i + 2 < num_nodes) { |
| EMIT_ARG(jump_if_or_pop, false, l_fail); |
| } |
| } |
| if (multi) { |
| uint l_end = comp_next_label(comp); |
| EMIT_ARG(jump, l_end); |
| EMIT_ARG(label_assign, l_fail); |
| EMIT_ARG(adjust_stack_size, 1); |
| EMIT(rot_two); |
| EMIT(pop_top); |
| EMIT_ARG(label_assign, l_end); |
| } |
| } |
| |
| STATIC void compile_star_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "*x must be assignment target"); |
| } |
| |
| STATIC void compile_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| c_binary_op(comp, pns, MP_BINARY_OP_OR); |
| } |
| |
| STATIC void compile_xor_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| c_binary_op(comp, pns, MP_BINARY_OP_XOR); |
| } |
| |
| STATIC void compile_and_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| c_binary_op(comp, pns, MP_BINARY_OP_AND); |
| } |
| |
| STATIC void compile_shift_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| compile_node(comp, pns->nodes[0]); |
| for (int i = 1; i + 1 < num_nodes; i += 2) { |
| compile_node(comp, pns->nodes[i + 1]); |
| if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_DBL_LESS)) { |
| EMIT_ARG(binary_op, MP_BINARY_OP_LSHIFT); |
| } else { |
| assert(MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_DBL_MORE)); // should be |
| EMIT_ARG(binary_op, MP_BINARY_OP_RSHIFT); |
| } |
| } |
| } |
| |
| STATIC void compile_arith_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| compile_node(comp, pns->nodes[0]); |
| for (int i = 1; i + 1 < num_nodes; i += 2) { |
| compile_node(comp, pns->nodes[i + 1]); |
| if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_PLUS)) { |
| EMIT_ARG(binary_op, MP_BINARY_OP_ADD); |
| } else { |
| assert(MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_MINUS)); // should be |
| EMIT_ARG(binary_op, MP_BINARY_OP_SUBTRACT); |
| } |
| } |
| } |
| |
| STATIC void compile_term(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| compile_node(comp, pns->nodes[0]); |
| for (int i = 1; i + 1 < num_nodes; i += 2) { |
| compile_node(comp, pns->nodes[i + 1]); |
| if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_STAR)) { |
| EMIT_ARG(binary_op, MP_BINARY_OP_MULTIPLY); |
| } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_DBL_SLASH)) { |
| EMIT_ARG(binary_op, MP_BINARY_OP_FLOOR_DIVIDE); |
| } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_SLASH)) { |
| EMIT_ARG(binary_op, MP_BINARY_OP_TRUE_DIVIDE); |
| } else { |
| assert(MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_PERCENT)); // should be |
| EMIT_ARG(binary_op, MP_BINARY_OP_MODULO); |
| } |
| } |
| } |
| |
| STATIC void compile_factor_2(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| compile_node(comp, pns->nodes[1]); |
| if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[0], MP_TOKEN_OP_PLUS)) { |
| EMIT_ARG(unary_op, MP_UNARY_OP_POSITIVE); |
| } else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[0], MP_TOKEN_OP_MINUS)) { |
| EMIT_ARG(unary_op, MP_UNARY_OP_NEGATIVE); |
| } else { |
| assert(MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[0], MP_TOKEN_OP_TILDE)); // should be |
| EMIT_ARG(unary_op, MP_UNARY_OP_INVERT); |
| } |
| } |
| |
| STATIC void compile_power(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // this is to handle special super() call |
| comp->func_arg_is_super = MP_PARSE_NODE_IS_ID(pns->nodes[0]) && MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]) == MP_QSTR_super; |
| |
| compile_generic_all_nodes(comp, pns); |
| } |
| |
| STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra) { |
| // function to call is on top of stack |
| |
| #if !MICROPY_EMIT_CPYTHON |
| // this is to handle special super() call |
| if (MP_PARSE_NODE_IS_NULL(pn_arglist) && comp->func_arg_is_super && comp->scope_cur->kind == SCOPE_FUNCTION) { |
| EMIT_ARG(load_id, MP_QSTR___class__); |
| // look for first argument to function (assumes it's "self") |
| for (int i = 0; i < comp->scope_cur->id_info_len; i++) { |
| if (comp->scope_cur->id_info[i].flags & ID_FLAG_IS_PARAM) { |
| // first argument found; load it and call super |
| EMIT_ARG(load_fast, MP_QSTR_, comp->scope_cur->id_info[i].local_num); |
| EMIT_ARG(call_function, 2, 0, 0); |
| return; |
| } |
| } |
| compile_syntax_error(comp, MP_PARSE_NODE_NULL, "super() call cannot find self"); // really a TypeError |
| return; |
| } |
| #endif |
| |
| // get the list of arguments |
| mp_parse_node_t *args; |
| int n_args = mp_parse_node_extract_list(&pn_arglist, PN_arglist, &args); |
| |
| // compile the arguments |
| // Rather than calling compile_node on the list, we go through the list of args |
| // explicitly here so that we can count the number of arguments and give sensible |
| // error messages. |
| int n_positional = n_positional_extra; |
| uint n_keyword = 0; |
| uint star_flags = 0; |
| for (int i = 0; i < n_args; i++) { |
| if (MP_PARSE_NODE_IS_STRUCT(args[i])) { |
| mp_parse_node_struct_t *pns_arg = (mp_parse_node_struct_t*)args[i]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_star) { |
| if (star_flags & MP_EMIT_STAR_FLAG_SINGLE) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns_arg, "can't have multiple *x"); |
| return; |
| } |
| star_flags |= MP_EMIT_STAR_FLAG_SINGLE; |
| compile_node(comp, pns_arg->nodes[0]); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_dbl_star) { |
| if (star_flags & MP_EMIT_STAR_FLAG_DOUBLE) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns_arg, "can't have multiple **x"); |
| return; |
| } |
| star_flags |= MP_EMIT_STAR_FLAG_DOUBLE; |
| compile_node(comp, pns_arg->nodes[0]); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_argument) { |
| assert(MP_PARSE_NODE_IS_STRUCT(pns_arg->nodes[1])); // should always be |
| mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns_arg->nodes[1]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_argument_3) { |
| if (!MP_PARSE_NODE_IS_ID(pns_arg->nodes[0])) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns_arg, "LHS of keyword arg must be an id"); |
| return; |
| } |
| EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns_arg->nodes[0]), false); |
| compile_node(comp, pns2->nodes[0]); |
| n_keyword += 1; |
| } else { |
| assert(MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_comp_for); // should always be |
| compile_comprehension(comp, pns_arg, SCOPE_GEN_EXPR); |
| n_positional++; |
| } |
| } else { |
| goto normal_argument; |
| } |
| } else { |
| normal_argument: |
| if (n_keyword > 0) { |
| compile_syntax_error(comp, args[i], "non-keyword arg after keyword arg"); |
| return; |
| } |
| compile_node(comp, args[i]); |
| n_positional++; |
| } |
| } |
| |
| // emit the function/method call |
| if (is_method_call) { |
| EMIT_ARG(call_method, n_positional, n_keyword, star_flags); |
| } else { |
| EMIT_ARG(call_function, n_positional, n_keyword, star_flags); |
| } |
| } |
| |
| STATIC void compile_power_trailers(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| for (int i = 0; i < num_nodes; i++) { |
| if (i + 1 < num_nodes && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[i], PN_trailer_period) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[i + 1], PN_trailer_paren)) { |
| // optimisation for method calls a.f(...), following PyPy |
| mp_parse_node_struct_t *pns_period = (mp_parse_node_struct_t*)pns->nodes[i]; |
| mp_parse_node_struct_t *pns_paren = (mp_parse_node_struct_t*)pns->nodes[i + 1]; |
| EMIT_ARG(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0])); // get the method |
| compile_trailer_paren_helper(comp, pns_paren->nodes[0], true, 0); |
| i += 1; |
| } else { |
| compile_node(comp, pns->nodes[i]); |
| } |
| comp->func_arg_is_super = false; |
| } |
| } |
| |
| STATIC void compile_power_dbl_star(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| compile_node(comp, pns->nodes[0]); |
| EMIT_ARG(binary_op, MP_BINARY_OP_POWER); |
| } |
| |
| STATIC void compile_atom_string(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // a list of strings |
| |
| // check type of list (string or bytes) and count total number of bytes |
| int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| int n_bytes = 0; |
| int string_kind = MP_PARSE_NODE_NULL; |
| for (int i = 0; i < n; i++) { |
| int pn_kind; |
| if (MP_PARSE_NODE_IS_LEAF(pns->nodes[i])) { |
| pn_kind = MP_PARSE_NODE_LEAF_KIND(pns->nodes[i]); |
| assert(pn_kind == MP_PARSE_NODE_STRING || pn_kind == MP_PARSE_NODE_BYTES); |
| n_bytes += qstr_len(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i])); |
| } else { |
| assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[i])); |
| mp_parse_node_struct_t *pns_string = (mp_parse_node_struct_t*)pns->nodes[i]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns_string) == PN_string) { |
| pn_kind = MP_PARSE_NODE_STRING; |
| } else { |
| assert(MP_PARSE_NODE_STRUCT_KIND(pns_string) == PN_bytes); |
| pn_kind = MP_PARSE_NODE_BYTES; |
| } |
| n_bytes += (mp_uint_t)pns_string->nodes[1]; |
| } |
| if (i == 0) { |
| string_kind = pn_kind; |
| } else if (pn_kind != string_kind) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "cannot mix bytes and nonbytes literals"); |
| return; |
| } |
| } |
| |
| // if we are not in the last pass, just load a dummy object |
| if (comp->pass != MP_PASS_EMIT) { |
| EMIT_ARG(load_const_obj, mp_const_none); |
| return; |
| } |
| |
| // concatenate string/bytes |
| vstr_t vstr; |
| vstr_init_len(&vstr, n_bytes); |
| byte *s_dest = (byte*)vstr.buf; |
| for (int i = 0; i < n; i++) { |
| if (MP_PARSE_NODE_IS_LEAF(pns->nodes[i])) { |
| mp_uint_t s_len; |
| const byte *s = qstr_data(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]), &s_len); |
| memcpy(s_dest, s, s_len); |
| s_dest += s_len; |
| } else { |
| mp_parse_node_struct_t *pns_string = (mp_parse_node_struct_t*)pns->nodes[i]; |
| memcpy(s_dest, (const char*)pns_string->nodes[0], (mp_uint_t)pns_string->nodes[1]); |
| s_dest += (mp_uint_t)pns_string->nodes[1]; |
| } |
| } |
| |
| // load the object |
| EMIT_ARG(load_const_obj, mp_obj_new_str_from_vstr(string_kind == MP_PARSE_NODE_STRING ? &mp_type_str : &mp_type_bytes, &vstr)); |
| } |
| |
| // pns needs to have 2 nodes, first is lhs of comprehension, second is PN_comp_for node |
| STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind) { |
| assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2); |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for)); |
| mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t*)pns->nodes[1]; |
| |
| if (comp->pass == MP_PASS_SCOPE) { |
| // create a new scope for this comprehension |
| scope_t *s = scope_new_and_link(comp, kind, (mp_parse_node_t)pns, comp->scope_cur->emit_options); |
| // store the comprehension scope so the compiling function (this one) can use it at each pass |
| pns_comp_for->nodes[3] = (mp_parse_node_t)s; |
| } |
| |
| // get the scope for this comprehension |
| scope_t *this_scope = (scope_t*)pns_comp_for->nodes[3]; |
| |
| // compile the comprehension |
| close_over_variables_etc(comp, this_scope, 0, 0); |
| |
| compile_node(comp, pns_comp_for->nodes[1]); // source of the iterator |
| EMIT(get_iter); |
| EMIT_ARG(call_function, 1, 0, 0); |
| } |
| |
| STATIC void compile_atom_paren(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| // an empty tuple |
| c_tuple(comp, MP_PARSE_NODE_NULL, NULL); |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) { |
| pns = (mp_parse_node_struct_t*)pns->nodes[0]; |
| assert(!MP_PARSE_NODE_IS_NULL(pns->nodes[1])); |
| if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { |
| mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3b) { |
| // tuple of one item, with trailing comma |
| assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[0])); |
| c_tuple(comp, pns->nodes[0], NULL); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3c) { |
| // tuple of many items |
| c_tuple(comp, pns->nodes[0], pns2); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_comp_for) { |
| // generator expression |
| compile_comprehension(comp, pns, SCOPE_GEN_EXPR); |
| } else { |
| // tuple with 2 items |
| goto tuple_with_2_items; |
| } |
| } else { |
| // tuple with 2 items |
| tuple_with_2_items: |
| c_tuple(comp, MP_PARSE_NODE_NULL, pns); |
| } |
| } else { |
| // parenthesis around a single item, is just that item |
| compile_node(comp, pns->nodes[0]); |
| } |
| } |
| |
| STATIC void compile_atom_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| // empty list |
| EMIT_ARG(build_list, 0); |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) { |
| mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[0]; |
| if (MP_PARSE_NODE_IS_STRUCT(pns2->nodes[1])) { |
| mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pns2->nodes[1]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_testlist_comp_3b) { |
| // list of one item, with trailing comma |
| assert(MP_PARSE_NODE_IS_NULL(pns3->nodes[0])); |
| compile_node(comp, pns2->nodes[0]); |
| EMIT_ARG(build_list, 1); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_testlist_comp_3c) { |
| // list of many items |
| compile_node(comp, pns2->nodes[0]); |
| compile_generic_all_nodes(comp, pns3); |
| EMIT_ARG(build_list, 1 + MP_PARSE_NODE_STRUCT_NUM_NODES(pns3)); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_comp_for) { |
| // list comprehension |
| compile_comprehension(comp, pns2, SCOPE_LIST_COMP); |
| } else { |
| // list with 2 items |
| goto list_with_2_items; |
| } |
| } else { |
| // list with 2 items |
| list_with_2_items: |
| compile_node(comp, pns2->nodes[0]); |
| compile_node(comp, pns2->nodes[1]); |
| EMIT_ARG(build_list, 2); |
| } |
| } else { |
| // list with 1 item |
| compile_node(comp, pns->nodes[0]); |
| EMIT_ARG(build_list, 1); |
| } |
| } |
| |
| STATIC void compile_atom_brace(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| mp_parse_node_t pn = pns->nodes[0]; |
| if (MP_PARSE_NODE_IS_NULL(pn)) { |
| // empty dict |
| EMIT_ARG(build_map, 0); |
| } else if (MP_PARSE_NODE_IS_STRUCT(pn)) { |
| pns = (mp_parse_node_struct_t*)pn; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker_item) { |
| // dict with one element |
| EMIT_ARG(build_map, 1); |
| compile_node(comp, pn); |
| EMIT(store_map); |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker) { |
| assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should succeed |
| mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_dictorsetmaker_list) { |
| // dict/set with multiple elements |
| |
| // get tail elements (2nd, 3rd, ...) |
| mp_parse_node_t *nodes; |
| int n = mp_parse_node_extract_list(&pns1->nodes[0], PN_dictorsetmaker_list2, &nodes); |
| |
| // first element sets whether it's a dict or set |
| bool is_dict; |
| if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) { |
| // a dictionary |
| EMIT_ARG(build_map, 1 + n); |
| compile_node(comp, pns->nodes[0]); |
| EMIT(store_map); |
| is_dict = true; |
| } else { |
| // a set |
| compile_node(comp, pns->nodes[0]); // 1st value of set |
| is_dict = false; |
| } |
| |
| // process rest of elements |
| for (int i = 0; i < n; i++) { |
| mp_parse_node_t pn_i = nodes[i]; |
| bool is_key_value = MP_PARSE_NODE_IS_STRUCT_KIND(pn_i, PN_dictorsetmaker_item); |
| compile_node(comp, pn_i); |
| if (is_dict) { |
| if (!is_key_value) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "expecting key:value for dictionary"); |
| return; |
| } |
| EMIT(store_map); |
| } else { |
| if (is_key_value) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "expecting just a value for set"); |
| return; |
| } |
| } |
| } |
| |
| #if MICROPY_PY_BUILTINS_SET |
| // if it's a set, build it |
| if (!is_dict) { |
| EMIT_ARG(build_set, 1 + n); |
| } |
| #endif |
| } else { |
| assert(MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_comp_for); // should be |
| // dict/set comprehension |
| if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) { |
| // a dictionary comprehension |
| compile_comprehension(comp, pns, SCOPE_DICT_COMP); |
| } else { |
| // a set comprehension |
| compile_comprehension(comp, pns, SCOPE_SET_COMP); |
| } |
| } |
| } else { |
| // set with one element |
| goto set_with_one_element; |
| } |
| } else { |
| // set with one element |
| set_with_one_element: |
| #if MICROPY_PY_BUILTINS_SET |
| compile_node(comp, pn); |
| EMIT_ARG(build_set, 1); |
| #else |
| assert(0); |
| #endif |
| } |
| } |
| |
| STATIC void compile_trailer_paren(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| compile_trailer_paren_helper(comp, pns->nodes[0], false, 0); |
| } |
| |
| STATIC void compile_trailer_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // object who's index we want is on top of stack |
| compile_node(comp, pns->nodes[0]); // the index |
| EMIT(load_subscr); |
| } |
| |
| STATIC void compile_trailer_period(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // object who's attribute we want is on top of stack |
| EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); // attribute to get |
| } |
| |
| #if MICROPY_PY_BUILTINS_SLICE |
| STATIC void compile_subscript_3_helper(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3); // should always be |
| mp_parse_node_t pn = pns->nodes[0]; |
| if (MP_PARSE_NODE_IS_NULL(pn)) { |
| // [?:] |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| EMIT_ARG(build_slice, 2); |
| } else if (MP_PARSE_NODE_IS_STRUCT(pn)) { |
| pns = (mp_parse_node_struct_t*)pn; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3c) { |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| pn = pns->nodes[0]; |
| if (MP_PARSE_NODE_IS_NULL(pn)) { |
| // [?::] |
| EMIT_ARG(build_slice, 2); |
| } else { |
| // [?::x] |
| compile_node(comp, pn); |
| EMIT_ARG(build_slice, 3); |
| } |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3d) { |
| compile_node(comp, pns->nodes[0]); |
| assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be |
| pns = (mp_parse_node_struct_t*)pns->nodes[1]; |
| assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_sliceop); // should always be |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| // [?:x:] |
| EMIT_ARG(build_slice, 2); |
| } else { |
| // [?:x:x] |
| compile_node(comp, pns->nodes[0]); |
| EMIT_ARG(build_slice, 3); |
| } |
| } else { |
| // [?:x] |
| compile_node(comp, pn); |
| EMIT_ARG(build_slice, 2); |
| } |
| } else { |
| // [?:x] |
| compile_node(comp, pn); |
| EMIT_ARG(build_slice, 2); |
| } |
| } |
| |
| STATIC void compile_subscript_2(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| compile_node(comp, pns->nodes[0]); // start of slice |
| assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be |
| compile_subscript_3_helper(comp, (mp_parse_node_struct_t*)pns->nodes[1]); |
| } |
| |
| STATIC void compile_subscript_3(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| compile_subscript_3_helper(comp, pns); |
| } |
| #endif // MICROPY_PY_BUILTINS_SLICE |
| |
| STATIC void compile_dictorsetmaker_item(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // if this is called then we are compiling a dict key:value pair |
| compile_node(comp, pns->nodes[1]); // value |
| compile_node(comp, pns->nodes[0]); // key |
| } |
| |
| STATIC void compile_classdef(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| qstr cname = compile_classdef_helper(comp, pns, comp->scope_cur->emit_options); |
| // store class object into class name |
| EMIT_ARG(store_id, cname); |
| } |
| |
| STATIC void compile_yield_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) { |
| compile_syntax_error(comp, (mp_parse_node_t)pns, "'yield' outside function"); |
| return; |
| } |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| EMIT(yield_value); |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_yield_arg_from)) { |
| pns = (mp_parse_node_struct_t*)pns->nodes[0]; |
| compile_node(comp, pns->nodes[0]); |
| EMIT(get_iter); |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| EMIT(yield_from); |
| } else { |
| compile_node(comp, pns->nodes[0]); |
| EMIT(yield_value); |
| } |
| } |
| |
| STATIC void compile_string(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // only create and load the actual str object on the last pass |
| if (comp->pass != MP_PASS_EMIT) { |
| EMIT_ARG(load_const_obj, mp_const_none); |
| } else { |
| EMIT_ARG(load_const_obj, mp_obj_new_str((const char*)pns->nodes[0], (mp_uint_t)pns->nodes[1], false)); |
| } |
| } |
| |
| STATIC void compile_bytes(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| // only create and load the actual bytes object on the last pass |
| if (comp->pass != MP_PASS_EMIT) { |
| EMIT_ARG(load_const_obj, mp_const_none); |
| } else { |
| EMIT_ARG(load_const_obj, mp_obj_new_bytes((const byte*)pns->nodes[0], (mp_uint_t)pns->nodes[1])); |
| } |
| } |
| |
| STATIC void compile_const_object(compiler_t *comp, mp_parse_node_struct_t *pns) { |
| EMIT_ARG(load_const_obj, (mp_obj_t)pns->nodes[0]); |
| } |
| |
| typedef void (*compile_function_t)(compiler_t*, mp_parse_node_struct_t*); |
| STATIC compile_function_t compile_function[] = { |
| #define nc NULL |
| #define c(f) compile_##f |
| #define DEF_RULE(rule, comp, kind, ...) comp, |
| #include "py/grammar.h" |
| #undef nc |
| #undef c |
| #undef DEF_RULE |
| NULL, |
| compile_string, |
| compile_bytes, |
| compile_const_object, |
| }; |
| |
| STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn) { |
| if (MP_PARSE_NODE_IS_NULL(pn)) { |
| // pass |
| } else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) { |
| mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn); |
| EMIT_ARG(load_const_small_int, arg); |
| } else if (MP_PARSE_NODE_IS_LEAF(pn)) { |
| mp_uint_t arg = MP_PARSE_NODE_LEAF_ARG(pn); |
| switch (MP_PARSE_NODE_LEAF_KIND(pn)) { |
| case MP_PARSE_NODE_ID: EMIT_ARG(load_id, arg); break; |
| case MP_PARSE_NODE_STRING: EMIT_ARG(load_const_str, arg, false); break; |
| case MP_PARSE_NODE_BYTES: EMIT_ARG(load_const_str, arg, true); break; |
| case MP_PARSE_NODE_TOKEN: default: |
| if (arg == MP_TOKEN_NEWLINE) { |
| // this can occur when file_input lets through a NEWLINE (eg if file starts with a newline) |
| // or when single_input lets through a NEWLINE (user enters a blank line) |
| // do nothing |
| } else { |
| EMIT_ARG(load_const_tok, arg); |
| } |
| break; |
| } |
| } else { |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| EMIT_ARG(set_line_number, pns->source_line); |
| compile_function_t f = compile_function[MP_PARSE_NODE_STRUCT_KIND(pns)]; |
| if (f == NULL) { |
| #if MICROPY_DEBUG_PRINTERS |
| printf("node %u cannot be compiled\n", (uint)MP_PARSE_NODE_STRUCT_KIND(pns)); |
| mp_parse_node_print(pn, 0); |
| #endif |
| compile_syntax_error(comp, pn, "internal compiler error"); |
| } else { |
| f(comp, pns); |
| } |
| } |
| } |
| |
| STATIC void compile_scope_func_lambda_param(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_name, pn_kind_t pn_star, pn_kind_t pn_dbl_star) { |
| // TODO verify that *k and **k are last etc |
| qstr param_name = MP_QSTR_NULL; |
| uint param_flag = ID_FLAG_IS_PARAM; |
| if (MP_PARSE_NODE_IS_ID(pn)) { |
| param_name = MP_PARSE_NODE_LEAF_ARG(pn); |
| if (comp->have_star) { |
| // comes after a star, so counts as a keyword-only parameter |
| comp->scope_cur->num_kwonly_args += 1; |
| } else { |
| // comes before a star, so counts as a positional parameter |
| comp->scope_cur->num_pos_args += 1; |
| } |
| } else { |
| assert(MP_PARSE_NODE_IS_STRUCT(pn)); |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_name) { |
| param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); |
| if (comp->have_star) { |
| // comes after a star, so counts as a keyword-only parameter |
| comp->scope_cur->num_kwonly_args += 1; |
| } else { |
| // comes before a star, so counts as a positional parameter |
| comp->scope_cur->num_pos_args += 1; |
| } |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_star) { |
| comp->have_star = true; |
| param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_STAR_PARAM; |
| if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { |
| // bare star |
| // TODO see http://www.python.org/dev/peps/pep-3102/ |
| //assert(comp->scope_cur->num_dict_params == 0); |
| } else if (MP_PARSE_NODE_IS_ID(pns->nodes[0])) { |
| // named star |
| comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS; |
| param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); |
| } else { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)); // should be |
| // named star with possible annotation |
| comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS; |
| pns = (mp_parse_node_struct_t*)pns->nodes[0]; |
| param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); |
| } |
| } else { |
| assert(MP_PARSE_NODE_STRUCT_KIND(pns) == pn_dbl_star); // should be |
| param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); |
| param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_DBL_STAR_PARAM; |
| comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARKEYWORDS; |
| } |
| } |
| |
| if (param_name != MP_QSTR_NULL) { |
| bool added; |
| id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, param_name, &added); |
| if (!added) { |
| compile_syntax_error(comp, pn, "name reused for argument"); |
| return; |
| } |
| id_info->kind = ID_INFO_KIND_LOCAL; |
| id_info->flags = param_flag; |
| } |
| } |
| |
| STATIC void compile_scope_func_param(compiler_t *comp, mp_parse_node_t pn) { |
| compile_scope_func_lambda_param(comp, pn, PN_typedargslist_name, PN_typedargslist_star, PN_typedargslist_dbl_star); |
| } |
| |
| STATIC void compile_scope_lambda_param(compiler_t *comp, mp_parse_node_t pn) { |
| compile_scope_func_lambda_param(comp, pn, PN_varargslist_name, PN_varargslist_star, PN_varargslist_dbl_star); |
| } |
| |
| STATIC void compile_scope_func_annotations(compiler_t *comp, mp_parse_node_t pn) { |
| if (!MP_PARSE_NODE_IS_STRUCT(pn)) { |
| // no annotation |
| return; |
| } |
| |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_typedargslist_name) { |
| // named parameter with possible annotation |
| // fallthrough |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_typedargslist_star) { |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)) { |
| // named star with possible annotation |
| pns = (mp_parse_node_struct_t*)pns->nodes[0]; |
| // fallthrough |
| } else { |
| // no annotation |
| return; |
| } |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_typedargslist_dbl_star) { |
| // double star with possible annotation |
| // fallthrough |
| } else { |
| // no annotation |
| return; |
| } |
| |
| mp_parse_node_t pn_annotation = pns->nodes[1]; |
| |
| if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) { |
| #if MICROPY_EMIT_NATIVE |
| qstr param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); |
| id_info_t *id_info = scope_find(comp->scope_cur, param_name); |
| assert(id_info != NULL); |
| |
| if (comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER) { |
| if (MP_PARSE_NODE_IS_ID(pn_annotation)) { |
| qstr arg_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation); |
| EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ARG, id_info->local_num, arg_type); |
| } else { |
| compile_syntax_error(comp, pn_annotation, "parameter annotation must be an identifier"); |
| } |
| } |
| #endif // MICROPY_EMIT_NATIVE |
| } |
| } |
| |
| STATIC void compile_scope_comp_iter(compiler_t *comp, mp_parse_node_t pn_iter, mp_parse_node_t pn_inner_expr, int l_top, int for_depth) { |
| tail_recursion: |
| if (MP_PARSE_NODE_IS_NULL(pn_iter)) { |
| // no more nested if/for; compile inner expression |
| compile_node(comp, pn_inner_expr); |
| if (comp->scope_cur->kind == SCOPE_LIST_COMP) { |
| EMIT_ARG(list_append, for_depth + 2); |
| } else if (comp->scope_cur->kind == SCOPE_DICT_COMP) { |
| EMIT_ARG(map_add, for_depth + 2); |
| #if MICROPY_PY_BUILTINS_SET |
| } else if (comp->scope_cur->kind == SCOPE_SET_COMP) { |
| EMIT_ARG(set_add, for_depth + 2); |
| #endif |
| } else { |
| EMIT(yield_value); |
| EMIT(pop_top); |
| } |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn_iter, PN_comp_if)) { |
| // if condition |
| mp_parse_node_struct_t *pns_comp_if = (mp_parse_node_struct_t*)pn_iter; |
| c_if_cond(comp, pns_comp_if->nodes[0], false, l_top); |
| pn_iter = pns_comp_if->nodes[1]; |
| goto tail_recursion; |
| } else { |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_iter, PN_comp_for)); // should be |
| // for loop |
| mp_parse_node_struct_t *pns_comp_for2 = (mp_parse_node_struct_t*)pn_iter; |
| compile_node(comp, pns_comp_for2->nodes[1]); |
| uint l_end2 = comp_next_label(comp); |
| uint l_top2 = comp_next_label(comp); |
| EMIT(get_iter); |
| EMIT_ARG(label_assign, l_top2); |
| EMIT_ARG(for_iter, l_end2); |
| c_assign(comp, pns_comp_for2->nodes[0], ASSIGN_STORE); |
| compile_scope_comp_iter(comp, pns_comp_for2->nodes[2], pn_inner_expr, l_top2, for_depth + 1); |
| EMIT_ARG(jump, l_top2); |
| EMIT_ARG(label_assign, l_end2); |
| EMIT(for_iter_end); |
| } |
| } |
| |
| STATIC void check_for_doc_string(compiler_t *comp, mp_parse_node_t pn) { |
| #if MICROPY_EMIT_CPYTHON || MICROPY_ENABLE_DOC_STRING |
| // see http://www.python.org/dev/peps/pep-0257/ |
| |
| // look for the first statement |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) { |
| // a statement; fall through |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_file_input_2)) { |
| // file input; find the first non-newline node |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; |
| int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); |
| for (int i = 0; i < num_nodes; i++) { |
| pn = pns->nodes[i]; |
| if (!(MP_PARSE_NODE_IS_LEAF(pn) && MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN && MP_PARSE_NODE_LEAF_ARG(pn) == MP_TOKEN_NEWLINE)) { |
| // not a newline, so this is the first statement; finish search |
| break; |
| } |
| } |
| // if we didn't find a non-newline then it's okay to fall through; pn will be a newline and so doc-string test below will fail gracefully |
| } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_suite_block_stmts)) { |
| // a list of statements; get the first one |
| pn = ((mp_parse_node_struct_t*)pn)->nodes[0]; |
| } else { |
| return; |
| } |
| |
| // check the first statement for a doc string |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) { |
| mp_parse_node_struct_t* pns = (mp_parse_node_struct_t*)pn; |
| if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) |
| && MP_PARSE_NODE_LEAF_KIND(pns->nodes[0]) == MP_PARSE_NODE_STRING) |
| || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_string)) { |
| // compile the doc string |
| compile_node(comp, pns->nodes[0]); |
| // store the doc string |
| EMIT_ARG(store_id, MP_QSTR___doc__); |
| } |
| } |
| #else |
| (void)comp; |
| (void)pn; |
| #endif |
| } |
| |
| STATIC void compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) { |
| comp->pass = pass; |
| comp->scope_cur = scope; |
| comp->next_label = 1; |
| EMIT_ARG(start_pass, pass, scope); |
| |
| if (comp->pass == MP_PASS_SCOPE) { |
| // reset maximum stack sizes in scope |
| // they will be computed in this first pass |
| scope->stack_size = 0; |
| scope->exc_stack_size = 0; |
| } |
| |
| #if MICROPY_EMIT_CPYTHON |
| if (comp->pass == MP_PASS_EMIT) { |
| scope_print_info(scope); |
| } |
| #endif |
| |
| // compile |
| if (MP_PARSE_NODE_IS_STRUCT_KIND(scope->pn, PN_eval_input)) { |
| assert(scope->kind == SCOPE_MODULE); |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; |
| compile_node(comp, pns->nodes[0]); // compile the expression |
| EMIT(return_value); |
| } else if (scope->kind == SCOPE_MODULE) { |
| if (!comp->is_repl) { |
| check_for_doc_string(comp, scope->pn); |
| } |
| compile_node(comp, scope->pn); |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| EMIT(return_value); |
| } else if (scope->kind == SCOPE_FUNCTION) { |
| assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; |
| assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef); |
| |
| // work out number of parameters, keywords and default parameters, and add them to the id_info array |
| // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc) |
| if (comp->pass == MP_PASS_SCOPE) { |
| comp->have_star = false; |
| apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_param); |
| } else { |
| // compile annotations; only needed on latter compiler passes |
| |
| // argument annotations |
| apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_annotations); |
| |
| // pns->nodes[2] is return/whole function annotation |
| mp_parse_node_t pn_annotation = pns->nodes[2]; |
| if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) { |
| #if MICROPY_EMIT_NATIVE |
| if (scope->emit_options == MP_EMIT_OPT_VIPER) { |
| // nodes[2] can be null or a test-expr |
| if (MP_PARSE_NODE_IS_ID(pn_annotation)) { |
| qstr ret_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation); |
| EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_RETURN, 0, ret_type); |
| } else { |
| compile_syntax_error(comp, pn_annotation, "return annotation must be an identifier"); |
| } |
| } |
| #endif // MICROPY_EMIT_NATIVE |
| } |
| } |
| |
| compile_node(comp, pns->nodes[3]); // 3 is function body |
| // emit return if it wasn't the last opcode |
| if (!EMIT(last_emit_was_return_value)) { |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| EMIT(return_value); |
| } |
| } else if (scope->kind == SCOPE_LAMBDA) { |
| assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; |
| assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 3); |
| |
| // work out number of parameters, keywords and default parameters, and add them to the id_info array |
| // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc) |
| if (comp->pass == MP_PASS_SCOPE) { |
| comp->have_star = false; |
| apply_to_single_or_list(comp, pns->nodes[0], PN_varargslist, compile_scope_lambda_param); |
| } |
| |
| compile_node(comp, pns->nodes[1]); // 1 is lambda body |
| |
| // if the lambda is a generator, then we return None, not the result of the expression of the lambda |
| if (scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { |
| EMIT(pop_top); |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| } |
| EMIT(return_value); |
| } else if (scope->kind == SCOPE_LIST_COMP || scope->kind == SCOPE_DICT_COMP || scope->kind == SCOPE_SET_COMP || scope->kind == SCOPE_GEN_EXPR) { |
| // a bit of a hack at the moment |
| |
| assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; |
| assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2); |
| assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for)); |
| mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t*)pns->nodes[1]; |
| |
| // We need a unique name for the comprehension argument (the iterator). |
| // CPython uses .0, but we should be able to use anything that won't |
| // clash with a user defined variable. Best to use an existing qstr, |
| // so we use the blank qstr. |
| #if MICROPY_EMIT_CPYTHON |
| qstr qstr_arg = QSTR_FROM_STR_STATIC(".0"); |
| #else |
| qstr qstr_arg = MP_QSTR_; |
| #endif |
| if (comp->pass == MP_PASS_SCOPE) { |
| bool added; |
| id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qstr_arg, &added); |
| assert(added); |
| id_info->kind = ID_INFO_KIND_LOCAL; |
| scope->num_pos_args = 1; |
| } |
| |
| if (scope->kind == SCOPE_LIST_COMP) { |
| EMIT_ARG(build_list, 0); |
| } else if (scope->kind == SCOPE_DICT_COMP) { |
| EMIT_ARG(build_map, 0); |
| #if MICROPY_PY_BUILTINS_SET |
| } else if (scope->kind == SCOPE_SET_COMP) { |
| EMIT_ARG(build_set, 0); |
| #endif |
| } |
| |
| uint l_end = comp_next_label(comp); |
| uint l_top = comp_next_label(comp); |
| EMIT_ARG(load_id, qstr_arg); |
| EMIT_ARG(label_assign, l_top); |
| EMIT_ARG(for_iter, l_end); |
| c_assign(comp, pns_comp_for->nodes[0], ASSIGN_STORE); |
| compile_scope_comp_iter(comp, pns_comp_for->nodes[2], pns->nodes[0], l_top, 0); |
| EMIT_ARG(jump, l_top); |
| EMIT_ARG(label_assign, l_end); |
| EMIT(for_iter_end); |
| |
| if (scope->kind == SCOPE_GEN_EXPR) { |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| } |
| EMIT(return_value); |
| } else { |
| assert(scope->kind == SCOPE_CLASS); |
| assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; |
| assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_classdef); |
| |
| if (comp->pass == MP_PASS_SCOPE) { |
| bool added; |
| id_info_t *id_info = scope_find_or_add_id(scope, MP_QSTR___class__, &added); |
| assert(added); |
| id_info->kind = ID_INFO_KIND_LOCAL; |
| } |
| |
| EMIT_ARG(load_id, MP_QSTR___name__); |
| EMIT_ARG(store_id, MP_QSTR___module__); |
| EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]), false); // 0 is class name |
| EMIT_ARG(store_id, MP_QSTR___qualname__); |
| |
| check_for_doc_string(comp, pns->nodes[2]); |
| compile_node(comp, pns->nodes[2]); // 2 is class body |
| |
| id_info_t *id = scope_find(scope, MP_QSTR___class__); |
| assert(id != NULL); |
| if (id->kind == ID_INFO_KIND_LOCAL) { |
| EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); |
| } else { |
| #if MICROPY_EMIT_CPYTHON |
| EMIT_ARG(load_closure, MP_QSTR___class__, 0); // XXX check this is the correct local num |
| #else |
| EMIT_ARG(load_fast, MP_QSTR___class__, id->local_num); |
| #endif |
| } |
| EMIT(return_value); |
| } |
| |
| EMIT(end_pass); |
| |
| // make sure we match all the exception levels |
| assert(comp->cur_except_level == 0); |
| } |
| |
| #if MICROPY_EMIT_INLINE_THUMB |
| // requires 3 passes: SCOPE, CODE_SIZE, EMIT |
| STATIC void compile_scope_inline_asm(compiler_t *comp, scope_t *scope, pass_kind_t pass) { |
| comp->pass = pass; |
| comp->scope_cur = scope; |
| comp->next_label = 1; |
| |
| if (scope->kind != SCOPE_FUNCTION) { |
| compile_syntax_error(comp, MP_PARSE_NODE_NULL, "inline assembler must be a function"); |
| return; |
| } |
| |
| if (comp->pass > MP_PASS_SCOPE) { |
| EMIT_INLINE_ASM_ARG(start_pass, comp->pass, comp->scope_cur, &comp->compile_error); |
| } |
| |
| // get the function definition parse node |
| assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); |
| mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; |
| assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef); |
| |
| //qstr f_id = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); // function name |
| |
| // parameters are in pns->nodes[1] |
| if (comp->pass == MP_PASS_CODE_SIZE) { |
| mp_parse_node_t *pn_params; |
| int n_params = mp_parse_node_extract_list(&pns->nodes[1], PN_typedargslist, &pn_params); |
| scope->num_pos_args = EMIT_INLINE_ASM_ARG(count_params, n_params, pn_params); |
| if (comp->compile_error != MP_OBJ_NULL) { |
| goto inline_asm_error; |
| } |
| } |
| |
| assert(MP_PARSE_NODE_IS_NULL(pns->nodes[2])); // type |
| |
| mp_parse_node_t pn_body = pns->nodes[3]; // body |
| mp_parse_node_t *nodes; |
| int num = mp_parse_node_extract_list(&pn_body, PN_suite_block_stmts, &nodes); |
| |
| /* |
| if (comp->pass == MP_PASS_EMIT) { |
| //printf("----\n"); |
| scope_print_info(scope); |
| } |
| */ |
| |
| for (int i = 0; i < num; i++) { |
| assert(MP_PARSE_NODE_IS_STRUCT(nodes[i])); |
| mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)nodes[i]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_pass_stmt) { |
| // no instructions |
| continue; |
| } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_expr_stmt) { |
| // not an instruction; error |
| not_an_instruction: |
| compile_syntax_error(comp, nodes[i], "expecting an assembler instruction"); |
| return; |
| } |
| |
| // check structure of parse node |
| assert(MP_PARSE_NODE_IS_STRUCT(pns2->nodes[0])); |
| if (!MP_PARSE_NODE_IS_NULL(pns2->nodes[1])) { |
| goto not_an_instruction; |
| } |
| pns2 = (mp_parse_node_struct_t*)pns2->nodes[0]; |
| if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_power) { |
| goto not_an_instruction; |
| } |
| if (!MP_PARSE_NODE_IS_ID(pns2->nodes[0])) { |
| goto not_an_instruction; |
| } |
| if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns2->nodes[1], PN_trailer_paren)) { |
| goto not_an_instruction; |
| } |
| assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[2])); |
| |
| // parse node looks like an instruction |
| // get instruction name and args |
| qstr op = MP_PARSE_NODE_LEAF_ARG(pns2->nodes[0]); |
| pns2 = (mp_parse_node_struct_t*)pns2->nodes[1]; // PN_trailer_paren |
| mp_parse_node_t *pn_arg; |
| int n_args = mp_parse_node_extract_list(&pns2->nodes[0], PN_arglist, &pn_arg); |
| |
| // emit instructions |
| if (op == MP_QSTR_label) { |
| if (!(n_args == 1 && MP_PARSE_NODE_IS_ID(pn_arg[0]))) { |
| compile_syntax_error(comp, nodes[i], "'label' requires 1 argument"); |
| return; |
| } |
| uint lab = comp_next_label(comp); |
| if (pass > MP_PASS_SCOPE) { |
| if (!EMIT_INLINE_ASM_ARG(label, lab, MP_PARSE_NODE_LEAF_ARG(pn_arg[0]))) { |
| compile_syntax_error(comp, nodes[i], "label redefined"); |
| return; |
| } |
| } |
| } else if (op == MP_QSTR_align) { |
| if (!(n_args == 1 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) { |
| compile_syntax_error(comp, nodes[i], "'align' requires 1 argument"); |
| return; |
| } |
| if (pass > MP_PASS_SCOPE) { |
| EMIT_INLINE_ASM_ARG(align, MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0])); |
| } |
| } else if (op == MP_QSTR_data) { |
| if (!(n_args >= 2 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) { |
| compile_syntax_error(comp, nodes[i], "'data' requires at least 2 arguments"); |
| return; |
| } |
| if (pass > MP_PASS_SCOPE) { |
| mp_int_t bytesize = MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0]); |
| for (uint j = 1; j < n_args; j++) { |
| if (!MP_PARSE_NODE_IS_SMALL_INT(pn_arg[j])) { |
| compile_syntax_error(comp, nodes[i], "'data' requires integer arguments"); |
| return; |
| } |
| EMIT_INLINE_ASM_ARG(data, bytesize, MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[j])); |
| } |
| } |
| } else { |
| if (pass > MP_PASS_SCOPE) { |
| EMIT_INLINE_ASM_ARG(op, op, n_args, pn_arg); |
| } |
| } |
| |
| if (comp->compile_error != MP_OBJ_NULL) { |
| pns = pns2; // this is the parse node that had the error |
| goto inline_asm_error; |
| } |
| } |
| |
| if (comp->pass > MP_PASS_SCOPE) { |
| EMIT_INLINE_ASM(end_pass); |
| } |
| |
| if (comp->compile_error != MP_OBJ_NULL) { |
| // inline assembler had an error; add traceback to its exception |
| inline_asm_error: |
| mp_obj_exception_add_traceback(comp->compile_error, comp->source_file, (mp_uint_t)pns->source_line, comp->scope_cur->simple_name); |
| } |
| } |
| #endif |
| |
| STATIC void scope_compute_things(scope_t *scope) { |
| #if !MICROPY_EMIT_CPYTHON |
| // in Micro Python we put the *x parameter after all other parameters (except **y) |
| if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) { |
| id_info_t *id_param = NULL; |
| for (int i = scope->id_info_len - 1; i >= 0; i--) { |
| id_info_t *id = &scope->id_info[i]; |
| if (id->flags & ID_FLAG_IS_STAR_PARAM) { |
| if (id_param != NULL) { |
| // swap star param with last param |
| id_info_t temp = *id_param; *id_param = *id; *id = temp; |
| } |
| break; |
| } else if (id_param == NULL && id->flags == ID_FLAG_IS_PARAM) { |
| id_param = id; |
| } |
| } |
| } |
| #endif |
| |
| // in functions, turn implicit globals into explicit globals |
| // compute the index of each local |
| scope->num_locals = 0; |
| for (int i = 0; i < scope->id_info_len; i++) { |
| id_info_t *id = &scope->id_info[i]; |
| if (scope->kind == SCOPE_CLASS && id->qst == MP_QSTR___class__) { |
| // __class__ is not counted as a local; if it's used then it becomes a ID_INFO_KIND_CELL |
| continue; |
| } |
| if (scope->kind >= SCOPE_FUNCTION && scope->kind <= SCOPE_GEN_EXPR && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) { |
| id->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; |
| } |
| // params always count for 1 local, even if they are a cell |
| if (id->kind == ID_INFO_KIND_LOCAL || (id->flags & ID_FLAG_IS_PARAM)) { |
| id->local_num = scope->num_locals++; |
| } |
| } |
| |
| // compute the index of cell vars (freevars[idx] in CPython) |
| #if MICROPY_EMIT_CPYTHON |
| int num_cell = 0; |
| #endif |
| for (int i = 0; i < scope->id_info_len; i++) { |
| id_info_t *id = &scope->id_info[i]; |
| #if MICROPY_EMIT_CPYTHON |
| // in CPython the cells are numbered starting from 0 |
| if (id->kind == ID_INFO_KIND_CELL) { |
| id->local_num = num_cell; |
| num_cell += 1; |
| } |
| #else |
| // in Micro Python the cells come right after the fast locals |
| // parameters are not counted here, since they remain at the start |
| // of the locals, even if they are cell vars |
| if (id->kind == ID_INFO_KIND_CELL && !(id->flags & ID_FLAG_IS_PARAM)) { |
| id->local_num = scope->num_locals; |
| scope->num_locals += 1; |
| } |
| #endif |
| } |
| |
| // compute the index of free vars (freevars[idx] in CPython) |
| // make sure they are in the order of the parent scope |
| if (scope->parent != NULL) { |
| int num_free = 0; |
| for (int i = 0; i < scope->parent->id_info_len; i++) { |
| id_info_t *id = &scope->parent->id_info[i]; |
| if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) { |
| for (int j = 0; j < scope->id_info_len; j++) { |
| id_info_t *id2 = &scope->id_info[j]; |
| if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) { |
| assert(!(id2->flags & ID_FLAG_IS_PARAM)); // free vars should not be params |
| #if MICROPY_EMIT_CPYTHON |
| // in CPython the frees are numbered after the cells |
| id2->local_num = num_cell + num_free; |
| #else |
| // in Micro Python the frees come first, before the params |
| id2->local_num = num_free; |
| #endif |
| num_free += 1; |
| } |
| } |
| } |
| } |
| #if !MICROPY_EMIT_CPYTHON |
| // in Micro Python shift all other locals after the free locals |
| if (num_free > 0) { |
| for (int i = 0; i < scope->id_info_len; i++) { |
| id_info_t *id = &scope->id_info[i]; |
| if (id->kind != ID_INFO_KIND_FREE || (id->flags & ID_FLAG_IS_PARAM)) { |
| id->local_num += num_free; |
| } |
| } |
| scope->num_pos_args += num_free; // free vars are counted as params for passing them into the function |
| scope->num_locals += num_free; |
| } |
| #endif |
| } |
| |
| // compute scope_flags |
| |
| #if MICROPY_EMIT_CPYTHON |
| // these flags computed here are for CPython compatibility only |
| if (scope->kind == SCOPE_FUNCTION || scope->kind == SCOPE_LAMBDA || scope->kind == SCOPE_LIST_COMP || scope->kind == SCOPE_DICT_COMP || scope->kind == SCOPE_SET_COMP || scope->kind == SCOPE_GEN_EXPR) { |
| assert(scope->parent != NULL); |
| scope->scope_flags |= MP_SCOPE_FLAG_NEWLOCALS; |
| scope->scope_flags |= MP_SCOPE_FLAG_OPTIMISED; |
| if ((SCOPE_FUNCTION <= scope->parent->kind && scope->parent->kind <= SCOPE_SET_COMP) || (scope->parent->kind == SCOPE_CLASS && scope->parent->parent->kind == SCOPE_FUNCTION)) { |
| scope->scope_flags |= MP_SCOPE_FLAG_NESTED; |
| } |
| } |
| #endif |
| |
| int num_free = 0; |
| for (int i = 0; i < scope->id_info_len; i++) { |
| id_info_t *id = &scope->id_info[i]; |
| if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) { |
| num_free += 1; |
| } |
| } |
| if (num_free == 0) { |
| scope->scope_flags |= MP_SCOPE_FLAG_NOFREE; |
| } |
| } |
| |
| mp_obj_t mp_compile(mp_parse_node_t pn, qstr source_file, uint emit_opt, bool is_repl) { |
| compiler_t *comp = m_new0(compiler_t, 1); |
| comp->source_file = source_file; |
| comp->is_repl = is_repl; |
| comp->compile_error = MP_OBJ_NULL; |
| |
| // create the module scope |
| scope_t *module_scope = scope_new_and_link(comp, SCOPE_MODULE, pn, emit_opt); |
| |
| // optimise constants (scope must be set for error messages to work) |
| comp->scope_cur = module_scope; |
| mp_map_t consts; |
| mp_map_init(&consts, 0); |
| module_scope->pn = fold_constants(comp, module_scope->pn, &consts); |
| mp_map_deinit(&consts); |
| |
| // compile pass 1 |
| comp->emit = emit_pass1_new(); |
| comp->emit_method_table = &emit_pass1_method_table; |
| comp->emit_inline_asm = NULL; |
| comp->emit_inline_asm_method_table = NULL; |
| uint max_num_labels = 0; |
| for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) { |
| if (false) { |
| #if MICROPY_EMIT_INLINE_THUMB |
| } else if (s->emit_options == MP_EMIT_OPT_ASM_THUMB) { |
| compile_scope_inline_asm(comp, s, MP_PASS_SCOPE); |
| #endif |
| } else { |
| compile_scope(comp, s, MP_PASS_SCOPE); |
| } |
| |
| // update maximim number of labels needed |
| if (comp->next_label > max_num_labels) { |
| max_num_labels = comp->next_label; |
| } |
| } |
| |
| // compute some things related to scope and identifiers |
| for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) { |
| scope_compute_things(s); |
| } |
| |
| // finish with pass 1 |
| emit_pass1_free(comp->emit); |
| |
| // compile pass 2 and 3 |
| #if !MICROPY_EMIT_CPYTHON |
| emit_t *emit_bc = NULL; |
| #if MICROPY_EMIT_NATIVE |
| emit_t *emit_native = NULL; |
| #endif |
| #if MICROPY_EMIT_INLINE_THUMB |
| emit_inline_asm_t *emit_inline_thumb = NULL; |
| #endif |
| #endif // !MICROPY_EMIT_CPYTHON |
| for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) { |
| if (false) { |
| // dummy |
| |
| #if MICROPY_EMIT_INLINE_THUMB |
| } else if (s->emit_options == MP_EMIT_OPT_ASM_THUMB) { |
| // inline assembly for thumb |
| if (emit_inline_thumb == NULL) { |
| emit_inline_thumb = emit_inline_thumb_new(max_num_labels); |
| } |
| comp->emit = NULL; |
| comp->emit_method_table = NULL; |
| comp->emit_inline_asm = emit_inline_thumb; |
| comp->emit_inline_asm_method_table = &emit_inline_thumb_method_table; |
| compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE); |
| if (comp->compile_error == MP_OBJ_NULL) { |
| compile_scope_inline_asm(comp, s, MP_PASS_EMIT); |
| } |
| #endif |
| |
| } else { |
| |
| // choose the emit type |
| |
| #if MICROPY_EMIT_CPYTHON |
| comp->emit = emit_cpython_new(max_num_labels); |
| comp->emit_method_table = &emit_cpython_method_table; |
| #else |
| switch (s->emit_options) { |
| |
| #if MICROPY_EMIT_NATIVE |
| case MP_EMIT_OPT_NATIVE_PYTHON: |
| case MP_EMIT_OPT_VIPER: |
| #if MICROPY_EMIT_X64 |
| if (emit_native == NULL) { |
| emit_native = emit_native_x64_new(max_num_labels); |
| } |
| comp->emit_method_table = &emit_native_x64_method_table; |
| #elif MICROPY_EMIT_X86 |
| if (emit_native == NULL) { |
| emit_native = emit_native_x86_new(max_num_labels); |
| } |
| comp->emit_method_table = &emit_native_x86_method_table; |
| #elif MICROPY_EMIT_THUMB |
| if (emit_native == NULL) { |
| emit_native = emit_native_thumb_new(max_num_labels); |
| } |
| comp->emit_method_table = &emit_native_thumb_method_table; |
| #elif MICROPY_EMIT_ARM |
| if (emit_native == NULL) { |
| emit_native = emit_native_arm_new(max_num_labels); |
| } |
| comp->emit_method_table = &emit_native_arm_method_table; |
| #endif |
| comp->emit = emit_native; |
| EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ENABLE, s->emit_options == MP_EMIT_OPT_VIPER, 0); |
| break; |
| #endif // MICROPY_EMIT_NATIVE |
| |
| default: |
| if (emit_bc == NULL) { |
| emit_bc = emit_bc_new(max_num_labels); |
| } |
| comp->emit = emit_bc; |
| comp->emit_method_table = &emit_bc_method_table; |
| break; |
| } |
| #endif // !MICROPY_EMIT_CPYTHON |
| |
| // need a pass to compute stack size |
| compile_scope(comp, s, MP_PASS_STACK_SIZE); |
| |
| // second last pass: compute code size |
| if (comp->compile_error == MP_OBJ_NULL) { |
| compile_scope(comp, s, MP_PASS_CODE_SIZE); |
| } |
| |
| // final pass: emit code |
| if (comp->compile_error == MP_OBJ_NULL) { |
| compile_scope(comp, s, MP_PASS_EMIT); |
| } |
| } |
| } |
| |
| // free the emitters |
| #if !MICROPY_EMIT_CPYTHON |
| if (emit_bc != NULL) { |
| emit_bc_free(emit_bc); |
| } |
| #if MICROPY_EMIT_NATIVE |
| if (emit_native != NULL) { |
| #if MICROPY_EMIT_X64 |
| emit_native_x64_free(emit_native); |
| #elif MICROPY_EMIT_X86 |
| emit_native_x86_free(emit_native); |
| #elif MICROPY_EMIT_THUMB |
| emit_native_thumb_free(emit_native); |
| #elif MICROPY_EMIT_ARM |
| emit_native_arm_free(emit_native); |
| #endif |
| } |
| #endif |
| #if MICROPY_EMIT_INLINE_THUMB |
| if (emit_inline_thumb != NULL) { |
| emit_inline_thumb_free(emit_inline_thumb); |
| } |
| #endif |
| #endif // !MICROPY_EMIT_CPYTHON |
| |
| // free the parse tree |
| mp_parse_node_free(module_scope->pn); |
| |
| // free the scopes |
| mp_raw_code_t *outer_raw_code = module_scope->raw_code; |
| for (scope_t *s = module_scope; s;) { |
| scope_t *next = s->next; |
| scope_free(s); |
| s = next; |
| } |
| |
| // free the compiler |
| mp_obj_t compile_error = comp->compile_error; |
| m_del_obj(compiler_t, comp); |
| |
| if (compile_error != MP_OBJ_NULL) { |
| nlr_raise(compile_error); |
| } else { |
| #if MICROPY_EMIT_CPYTHON |
| // can't create code, so just return true |
| (void)outer_raw_code; // to suppress warning that outer_raw_code is unused |
| return mp_const_true; |
| #else |
| // return function that executes the outer module |
| return mp_make_function_from_raw_code(outer_raw_code, MP_OBJ_NULL, MP_OBJ_NULL); |
| #endif |
| } |
| } |