| /* |
| * This file is part of the Micro Python project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdint.h> |
| #include <string.h> |
| |
| #include "stm32f4xx_hal.h" |
| |
| #include "mpconfig.h" |
| #include "nlr.h" |
| #include "misc.h" |
| #include "qstr.h" |
| #include "parse.h" |
| #include "obj.h" |
| #include "runtime.h" |
| #include "timer.h" |
| #include "dac.h" |
| |
| /// \moduleref pyb |
| /// \class DAC - digital to analog conversion |
| /// |
| /// The DAC is used to output analog values (a specific voltage) on pin X5 or pin X6. |
| /// The voltage will be between 0 and 3.3V. |
| /// |
| /// *This module will undergo changes to the API.* |
| /// |
| /// Example usage: |
| /// |
| /// from pyb import DAC |
| /// |
| /// dac = DAC(1) # create DAC 1 on pin X5 |
| /// dac.write(128) # write a value to the DAC (makes X5 1.65V) |
| /// |
| /// To output a continuous sine-wave: |
| /// |
| /// import math |
| /// from pyb import DAC |
| /// |
| /// # create a buffer containing a sine-wave |
| /// buf = bytearray(100) |
| /// for i in range(len(buf)): |
| /// buf[i] = 128 + int(127 * math.sin(2 * math.pi * i / len(buf))) |
| /// |
| /// # output the sine-wave at 400Hz |
| /// dac = DAC(1) |
| /// dac.write_timed(buf, 400 * len(buf), mode=DAC.CIRCULAR) |
| |
| STATIC DAC_HandleTypeDef DAC_Handle; |
| |
| void dac_init(void) { |
| DAC_Handle.Instance = DAC; |
| DAC_Handle.State = HAL_DAC_STATE_RESET; |
| HAL_DAC_Init(&DAC_Handle); |
| } |
| |
| STATIC void TIM6_Config(uint freq) { |
| // Init TIM6 at the required frequency (in Hz) |
| timer_tim6_init(freq); |
| |
| // TIM6 TRGO selection |
| TIM_MasterConfigTypeDef config; |
| config.MasterOutputTrigger = TIM_TRGO_UPDATE; |
| config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; |
| HAL_TIMEx_MasterConfigSynchronization(&TIM6_Handle, &config); |
| |
| // TIM6 start counter |
| HAL_TIM_Base_Start(&TIM6_Handle); |
| } |
| |
| /******************************************************************************/ |
| // Micro Python bindings |
| |
| typedef struct _pyb_dac_obj_t { |
| mp_obj_base_t base; |
| uint32_t dac_channel; // DAC_CHANNEL_1 or DAC_CHANNEL_2 |
| DMA_Stream_TypeDef *dma_stream; // DMA1_Stream5 or DMA1_Stream6 |
| machine_uint_t state; |
| } pyb_dac_obj_t; |
| |
| // create the dac object |
| // currently support either DAC1 on X5 (id = 1) or DAC2 on X6 (id = 2) |
| |
| /// \classmethod \constructor(id) |
| /// Construct a new DAC object. |
| /// |
| /// `id` can be 1 or 2: DAC 1 is on pin X5 and DAC 2 is on pin X6. |
| STATIC mp_obj_t pyb_dac_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) { |
| // check arguments |
| mp_arg_check_num(n_args, n_kw, 1, 1, false); |
| |
| pyb_dac_obj_t *dac = m_new_obj(pyb_dac_obj_t); |
| dac->base.type = &pyb_dac_type; |
| |
| machine_int_t dac_id = mp_obj_get_int(args[0]); |
| uint32_t pin; |
| if (dac_id == 1) { |
| pin = GPIO_PIN_4; |
| dac->dac_channel = DAC_CHANNEL_1; |
| dac->dma_stream = DMA1_Stream5; |
| } else if (dac_id == 2) { |
| pin = GPIO_PIN_5; |
| dac->dac_channel = DAC_CHANNEL_2; |
| dac->dma_stream = DMA1_Stream6; |
| } else { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "DAC %d does not exist", dac_id)); |
| } |
| |
| // GPIO configuration |
| GPIO_InitTypeDef GPIO_InitStructure; |
| GPIO_InitStructure.Pin = pin; |
| GPIO_InitStructure.Mode = GPIO_MODE_ANALOG; |
| GPIO_InitStructure.Pull = GPIO_NOPULL; |
| HAL_GPIO_Init(GPIOA, &GPIO_InitStructure); |
| |
| // DAC peripheral clock |
| __DAC_CLK_ENABLE(); |
| |
| // stop anything already going on |
| HAL_DAC_Stop(&DAC_Handle, dac->dac_channel); |
| HAL_DAC_Stop_DMA(&DAC_Handle, dac->dac_channel); |
| |
| dac->state = 0; |
| |
| // return object |
| return dac; |
| } |
| |
| /// \method noise(freq) |
| /// Generate a pseudo-random noise signal. A new random sample is written |
| /// to the DAC output at the given frequency. |
| STATIC mp_obj_t pyb_dac_noise(mp_obj_t self_in, mp_obj_t freq) { |
| pyb_dac_obj_t *self = self_in; |
| |
| // set TIM6 to trigger the DAC at the given frequency |
| TIM6_Config(mp_obj_get_int(freq)); |
| |
| if (self->state != 2) { |
| // configure DAC to trigger via TIM6 |
| DAC_ChannelConfTypeDef config; |
| config.DAC_Trigger = DAC_TRIGGER_T6_TRGO; |
| config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; |
| HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel); |
| self->state = 2; |
| } |
| |
| // set noise wave generation |
| HAL_DACEx_NoiseWaveGenerate(&DAC_Handle, self->dac_channel, DAC_LFSRUNMASK_BITS10_0); |
| HAL_DAC_SetValue(&DAC_Handle, self->dac_channel, DAC_ALIGN_12B_L, 0x7ff0); |
| HAL_DAC_Start(&DAC_Handle, self->dac_channel); |
| |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_noise_obj, pyb_dac_noise); |
| |
| /// \method triangle(freq) |
| /// Generate a triangle wave. The value on the DAC output changes at |
| /// the given frequency, and the frequence of the repeating triangle wave |
| /// itself is 256 (or 1024, need to check) times smaller. |
| STATIC mp_obj_t pyb_dac_triangle(mp_obj_t self_in, mp_obj_t freq) { |
| pyb_dac_obj_t *self = self_in; |
| |
| // set TIM6 to trigger the DAC at the given frequency |
| TIM6_Config(mp_obj_get_int(freq)); |
| |
| if (self->state != 2) { |
| // configure DAC to trigger via TIM6 |
| DAC_ChannelConfTypeDef config; |
| config.DAC_Trigger = DAC_TRIGGER_T6_TRGO; |
| config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; |
| HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel); |
| self->state = 2; |
| } |
| |
| // set triangle wave generation |
| HAL_DACEx_TriangleWaveGenerate(&DAC_Handle, self->dac_channel, DAC_TRIANGLEAMPLITUDE_1023); |
| HAL_DAC_SetValue(&DAC_Handle, self->dac_channel, DAC_ALIGN_12B_R, 0x100); |
| HAL_DAC_Start(&DAC_Handle, self->dac_channel); |
| |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_triangle_obj, pyb_dac_triangle); |
| |
| /// \method write(value) |
| /// Direct access to the DAC output (8 bit only at the moment). |
| STATIC mp_obj_t pyb_dac_write(mp_obj_t self_in, mp_obj_t val) { |
| pyb_dac_obj_t *self = self_in; |
| |
| if (self->state != 1) { |
| DAC_ChannelConfTypeDef config; |
| config.DAC_Trigger = DAC_TRIGGER_NONE; |
| config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_DISABLE; |
| HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel); |
| self->state = 1; |
| } |
| |
| HAL_DAC_SetValue(&DAC_Handle, self->dac_channel, DAC_ALIGN_8B_R, mp_obj_get_int(val)); |
| HAL_DAC_Start(&DAC_Handle, self->dac_channel); |
| |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_write_obj, pyb_dac_write); |
| |
| /// \method write_timed(data, freq, *, mode=DAC.NORMAL) |
| /// Initiates a burst of RAM to DAC using a DMA transfer. |
| /// The input data is treated as an array of bytes (8 bit data). |
| /// |
| /// `mode` can be `DAC.NORMAL` or `DAC.CIRCULAR`. |
| /// |
| /// TIM6 is used to control the frequency of the transfer. |
| // TODO add callback argument, to call when transfer is finished |
| // TODO add double buffer argument |
| STATIC const mp_arg_t pyb_dac_write_timed_args[] = { |
| { MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, |
| { MP_QSTR_freq, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, |
| { MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DMA_NORMAL} }, |
| }; |
| #define PYB_DAC_WRITE_TIMED_NUM_ARGS MP_ARRAY_SIZE(pyb_dac_write_timed_args) |
| |
| mp_obj_t pyb_dac_write_timed(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| pyb_dac_obj_t *self = args[0]; |
| |
| // parse args |
| mp_arg_val_t vals[PYB_DAC_WRITE_TIMED_NUM_ARGS]; |
| mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_DAC_WRITE_TIMED_NUM_ARGS, pyb_dac_write_timed_args, vals); |
| |
| // get the data to write |
| mp_buffer_info_t bufinfo; |
| mp_get_buffer_raise(vals[0].u_obj, &bufinfo, MP_BUFFER_READ); |
| |
| // set TIM6 to trigger the DAC at the given frequency |
| TIM6_Config(vals[1].u_int); |
| |
| __DMA1_CLK_ENABLE(); |
| |
| /* |
| DMA_Cmd(self->dma_stream, DISABLE); |
| while (DMA_GetCmdStatus(self->dma_stream) != DISABLE) { |
| } |
| |
| DAC_Cmd(self->dac_channel, DISABLE); |
| */ |
| |
| /* |
| // DAC channel configuration |
| DAC_InitTypeDef DAC_InitStructure; |
| DAC_InitStructure.DAC_Trigger = DAC_Trigger_T7_TRGO; |
| DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None; |
| DAC_InitStructure.DAC_LFSRUnmask_TriangleAmplitude = DAC_TriangleAmplitude_1; // unused, but need to set it to a valid value |
| DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable; |
| DAC_Init(self->dac_channel, &DAC_InitStructure); |
| */ |
| |
| // DMA1_Stream[67] channel7 configuration |
| DMA_HandleTypeDef DMA_Handle; |
| DMA_Handle.Instance = self->dma_stream; |
| |
| // Need to deinit DMA first |
| DMA_Handle.State = HAL_DMA_STATE_READY; |
| HAL_DMA_DeInit(&DMA_Handle); |
| |
| DMA_Handle.Init.Channel = DMA_CHANNEL_7; |
| DMA_Handle.Init.Direction = DMA_MEMORY_TO_PERIPH; |
| DMA_Handle.Init.PeriphInc = DMA_PINC_DISABLE; |
| DMA_Handle.Init.MemInc = DMA_MINC_ENABLE; |
| DMA_Handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; |
| DMA_Handle.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; |
| DMA_Handle.Init.Mode = vals[2].u_int; |
| DMA_Handle.Init.Priority = DMA_PRIORITY_HIGH; |
| DMA_Handle.Init.FIFOMode = DMA_FIFOMODE_DISABLE; |
| DMA_Handle.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_HALFFULL; |
| DMA_Handle.Init.MemBurst = DMA_MBURST_SINGLE; |
| DMA_Handle.Init.PeriphBurst = DMA_PBURST_SINGLE; |
| HAL_DMA_Init(&DMA_Handle); |
| |
| if (self->dac_channel == DAC_CHANNEL_1) { |
| __HAL_LINKDMA(&DAC_Handle, DMA_Handle1, DMA_Handle); |
| } else { |
| __HAL_LINKDMA(&DAC_Handle, DMA_Handle2, DMA_Handle); |
| } |
| |
| DAC_Handle.Instance = DAC; |
| DAC_Handle.State = HAL_DAC_STATE_RESET; |
| HAL_DAC_Init(&DAC_Handle); |
| |
| if (self->state != 3) { |
| DAC_ChannelConfTypeDef config; |
| config.DAC_Trigger = DAC_TRIGGER_T6_TRGO; |
| config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; |
| HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel); |
| self->state = 3; |
| } |
| |
| HAL_DAC_Start_DMA(&DAC_Handle, self->dac_channel, (uint32_t*)bufinfo.buf, bufinfo.len, DAC_ALIGN_8B_R); |
| |
| /* |
| // enable DMA stream |
| DMA_Cmd(self->dma_stream, ENABLE); |
| while (DMA_GetCmdStatus(self->dma_stream) == DISABLE) { |
| } |
| |
| // enable DAC channel |
| DAC_Cmd(self->dac_channel, ENABLE); |
| |
| // enable DMA for DAC channel |
| DAC_DMACmd(self->dac_channel, ENABLE); |
| */ |
| |
| //printf("DMA: %p %lu\n", bufinfo.buf, bufinfo.len); |
| |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_dac_write_timed_obj, 1, pyb_dac_write_timed); |
| |
| STATIC const mp_map_elem_t pyb_dac_locals_dict_table[] = { |
| // instance methods |
| { MP_OBJ_NEW_QSTR(MP_QSTR_noise), (mp_obj_t)&pyb_dac_noise_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_triangle), (mp_obj_t)&pyb_dac_triangle_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&pyb_dac_write_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_write_timed), (mp_obj_t)&pyb_dac_write_timed_obj }, |
| |
| // class constants |
| { MP_OBJ_NEW_QSTR(MP_QSTR_NORMAL), MP_OBJ_NEW_SMALL_INT(DMA_NORMAL) }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_CIRCULAR), MP_OBJ_NEW_SMALL_INT(DMA_CIRCULAR) }, |
| }; |
| |
| STATIC MP_DEFINE_CONST_DICT(pyb_dac_locals_dict, pyb_dac_locals_dict_table); |
| |
| const mp_obj_type_t pyb_dac_type = { |
| { &mp_type_type }, |
| .name = MP_QSTR_DAC, |
| .make_new = pyb_dac_make_new, |
| .locals_dict = (mp_obj_t)&pyb_dac_locals_dict, |
| }; |