| /* |
| * This file is part of the Micro Python project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include <stm32f4xx_hal.h> |
| #include "usbd_cdc_msc_hid.h" |
| #include "usbd_cdc_interface.h" |
| |
| #include "nlr.h" |
| #include "misc.h" |
| #include "mpconfig.h" |
| #include "qstr.h" |
| #include "gc.h" |
| #include "obj.h" |
| #include "runtime.h" |
| #include "timer.h" |
| #include "servo.h" |
| |
| /// \moduleref pyb |
| /// \class Timer - periodically call a function |
| /// |
| /// Timers can be used for a great variety of tasks. At the moment, only |
| /// the simplest case is implemented: that of calling a function periodically. |
| /// |
| /// Each timer consists of a counter that counts up at a certain rate. The rate |
| /// at which it counts is the peripheral clock frequency (in Hz) divided by the |
| /// timer prescaler. When the counter reaches the timer period it triggers an |
| /// event, and the counter resets back to zero. By using the callback method, |
| /// the timer event can call a Python function. |
| /// |
| /// Example usage to toggle an LED at a fixed frequency: |
| /// |
| /// tim = pyb.Timer(4) # create a timer object using timer 4 |
| /// tim.init(freq=2) # trigger at 2Hz |
| /// tim.callback(lambda t:pyb.LED(1).toggle()) |
| /// |
| /// Further examples: |
| /// |
| /// tim = pyb.Timer(4, freq=100) # freq in Hz |
| /// tim = pyb.Timer(4, prescaler=1, period=100) |
| /// tim.counter() # get counter (can also set) |
| /// tim.prescaler(2) # set prescaler (can also get) |
| /// tim.period(200) # set period (can also get) |
| /// tim.callback(lambda t: ...) # set callback for update interrupt (t=tim instance) |
| /// tim.callback(None) # clear callback |
| /// |
| /// *Note:* Timer 3 is reserved for internal use. Timer 5 controls |
| /// the servo driver, and Timer 6 is used for timed ADC/DAC reading/writing. |
| /// It is recommended to use the other timers in your programs. |
| |
| // The timers can be used by multiple drivers, and need a common point for |
| // the interrupts to be dispatched, so they are all collected here. |
| // |
| // TIM3: |
| // - flash storage controller, to flush the cache |
| // - USB CDC interface, interval, to check for new data |
| // - LED 4, PWM to set the LED intensity |
| // |
| // TIM5: |
| // - servo controller, PWM |
| // |
| // TIM6: |
| // - ADC, DAC for read_timed and write_timed |
| |
| typedef struct _pyb_timer_obj_t { |
| mp_obj_base_t base; |
| machine_uint_t tim_id; |
| mp_obj_t callback; |
| TIM_HandleTypeDef tim; |
| IRQn_Type irqn; |
| } pyb_timer_obj_t; |
| |
| TIM_HandleTypeDef TIM3_Handle; |
| TIM_HandleTypeDef TIM5_Handle; |
| TIM_HandleTypeDef TIM6_Handle; |
| |
| // Used to divide down TIM3 and periodically call the flash storage IRQ |
| static uint32_t tim3_counter = 0; |
| |
| // Used to do callbacks to Python code on interrupt |
| STATIC pyb_timer_obj_t *pyb_timer_obj_all[14]; |
| #define PYB_TIMER_OBJ_ALL_NUM ARRAY_SIZE(pyb_timer_obj_all) |
| |
| void timer_init0(void) { |
| tim3_counter = 0; |
| for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) { |
| pyb_timer_obj_all[i] = NULL; |
| } |
| } |
| |
| // TIM3 is set-up for the USB CDC interface |
| void timer_tim3_init(void) { |
| // set up the timer for USBD CDC |
| __TIM3_CLK_ENABLE(); |
| |
| TIM3_Handle.Instance = TIM3; |
| TIM3_Handle.Init.Period = (USBD_CDC_POLLING_INTERVAL*1000) - 1; // TIM3 fires every USBD_CDC_POLLING_INTERVAL ms |
| TIM3_Handle.Init.Prescaler = 84-1; // for System clock at 168MHz, TIM3 runs at 1MHz |
| TIM3_Handle.Init.ClockDivision = 0; |
| TIM3_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; |
| HAL_TIM_Base_Init(&TIM3_Handle); |
| |
| HAL_NVIC_SetPriority(TIM3_IRQn, 6, 0); |
| HAL_NVIC_EnableIRQ(TIM3_IRQn); |
| |
| if (HAL_TIM_Base_Start(&TIM3_Handle) != HAL_OK) { |
| /* Starting Error */ |
| } |
| } |
| |
| /* unused |
| void timer_tim3_deinit(void) { |
| // reset TIM3 timer |
| __TIM3_FORCE_RESET(); |
| __TIM3_RELEASE_RESET(); |
| } |
| */ |
| |
| // TIM5 is set-up for the servo controller |
| // This function inits but does not start the timer |
| void timer_tim5_init(void) { |
| // TIM5 clock enable |
| __TIM5_CLK_ENABLE(); |
| |
| // set up and enable interrupt |
| HAL_NVIC_SetPriority(TIM5_IRQn, 6, 0); |
| HAL_NVIC_EnableIRQ(TIM5_IRQn); |
| |
| // PWM clock configuration |
| TIM5_Handle.Instance = TIM5; |
| TIM5_Handle.Init.Period = 2000; // timer cycles at 50Hz |
| TIM5_Handle.Init.Prescaler = ((SystemCoreClock / 2) / 100000) - 1; // timer runs at 100kHz |
| TIM5_Handle.Init.ClockDivision = 0; |
| TIM5_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; |
| HAL_TIM_PWM_Init(&TIM5_Handle); |
| } |
| |
| // Init TIM6 with a counter-overflow at the given frequency (given in Hz) |
| // TIM6 is used by the DAC and ADC for auto sampling at a given frequency |
| // This function inits but does not start the timer |
| void timer_tim6_init(uint freq) { |
| // TIM6 clock enable |
| __TIM6_CLK_ENABLE(); |
| |
| // Timer runs at SystemCoreClock / 2 |
| // Compute the prescaler value so TIM6 triggers at freq-Hz |
| uint32_t period = MAX(1, (SystemCoreClock / 2) / freq); |
| uint32_t prescaler = 1; |
| while (period > 0xffff) { |
| period >>= 1; |
| prescaler <<= 1; |
| } |
| |
| // Time base clock configuration |
| TIM6_Handle.Instance = TIM6; |
| TIM6_Handle.Init.Period = period - 1; |
| TIM6_Handle.Init.Prescaler = prescaler - 1; |
| TIM6_Handle.Init.ClockDivision = 0; // unused for TIM6 |
| TIM6_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; // unused for TIM6 |
| HAL_TIM_Base_Init(&TIM6_Handle); |
| } |
| |
| // Interrupt dispatch |
| void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { |
| if (htim == &TIM3_Handle) { |
| USBD_CDC_HAL_TIM_PeriodElapsedCallback(); |
| |
| // Periodically raise a flash IRQ for the flash storage controller |
| if (tim3_counter++ >= 500 / USBD_CDC_POLLING_INTERVAL) { |
| tim3_counter = 0; |
| NVIC->STIR = FLASH_IRQn; |
| } |
| |
| } else if (htim == &TIM5_Handle) { |
| servo_timer_irq_callback(); |
| } |
| } |
| |
| /******************************************************************************/ |
| /* Micro Python bindings */ |
| |
| STATIC void pyb_timer_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { |
| pyb_timer_obj_t *self = self_in; |
| |
| if (self->tim.State == HAL_TIM_STATE_RESET) { |
| print(env, "Timer(%u)", self->tim_id); |
| } else { |
| print(env, "Timer(%u, prescaler=%u, period=%u, mode=%u, div=%u)", |
| self->tim_id, |
| self->tim.Init.Prescaler, |
| self->tim.Init.Period, |
| self->tim.Init.CounterMode, |
| self->tim.Init.ClockDivision |
| ); |
| } |
| } |
| |
| /// \method init(*, freq, prescaler, period) |
| /// Initialise the timer. Initialisation must be either by frequency (in Hz) |
| /// or by prescaler and period: |
| /// |
| /// tim.init(freq=100) # set the timer to trigger at 100Hz |
| /// tim.init(prescaler=100, period=300) # set the prescaler and period directly |
| STATIC const mp_arg_t pyb_timer_init_args[] = { |
| { MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, |
| { MP_QSTR_prescaler, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, |
| { MP_QSTR_period, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, |
| { MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIM_COUNTERMODE_UP} }, |
| { MP_QSTR_div, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIM_CLOCKDIVISION_DIV1} }, |
| }; |
| #define PYB_TIMER_INIT_NUM_ARGS ARRAY_SIZE(pyb_timer_init_args) |
| |
| STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *self, uint n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| // parse args |
| mp_arg_val_t vals[PYB_TIMER_INIT_NUM_ARGS]; |
| mp_arg_parse_all(n_args, args, kw_args, PYB_TIMER_INIT_NUM_ARGS, pyb_timer_init_args, vals); |
| |
| // set the TIM configuration values |
| TIM_Base_InitTypeDef *init = &self->tim.Init; |
| |
| if (vals[0].u_int != 0xffffffff) { |
| // set prescaler and period from frequency |
| |
| if (vals[0].u_int == 0) { |
| nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "can't have 0 frequency")); |
| } |
| |
| // work out TIM's clock source |
| uint tim_clock; |
| if (self->tim_id == 1 || (8 <= self->tim_id && self->tim_id <= 11)) { |
| // TIM{1,8,9,10,11} are on APB2 |
| tim_clock = HAL_RCC_GetPCLK2Freq(); |
| } else { |
| // TIM{2,3,4,5,6,7,12,13,14} are on APB1 |
| tim_clock = HAL_RCC_GetPCLK1Freq(); |
| } |
| |
| // compute the prescaler value so TIM triggers at freq-Hz |
| // dpgeorge: I don't understand why we need to multiply tim_clock by 2 |
| uint32_t period = MAX(1, 2 * tim_clock / vals[0].u_int); |
| uint32_t prescaler = 1; |
| while (period > 0xffff) { |
| period >>= 1; |
| prescaler <<= 1; |
| } |
| init->Prescaler = prescaler - 1; |
| init->Period = period - 1; |
| } else if (vals[1].u_int != 0xffffffff && vals[2].u_int != 0xffffffff) { |
| // set prescaler and period directly |
| init->Prescaler = vals[1].u_int; |
| init->Period = vals[2].u_int; |
| } else { |
| nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "must specify either freq, or prescaler and period")); |
| } |
| |
| init->CounterMode = vals[3].u_int; |
| init->ClockDivision = vals[4].u_int; |
| init->RepetitionCounter = 0; |
| |
| // init the TIM peripheral |
| switch (self->tim_id) { |
| case 1: __TIM1_CLK_ENABLE(); break; |
| case 2: __TIM2_CLK_ENABLE(); break; |
| case 3: __TIM3_CLK_ENABLE(); break; |
| case 4: __TIM4_CLK_ENABLE(); break; |
| case 5: __TIM5_CLK_ENABLE(); break; |
| case 6: __TIM6_CLK_ENABLE(); break; |
| case 7: __TIM7_CLK_ENABLE(); break; |
| case 8: __TIM8_CLK_ENABLE(); break; |
| case 9: __TIM9_CLK_ENABLE(); break; |
| case 10: __TIM10_CLK_ENABLE(); break; |
| case 11: __TIM11_CLK_ENABLE(); break; |
| case 12: __TIM12_CLK_ENABLE(); break; |
| case 13: __TIM13_CLK_ENABLE(); break; |
| case 14: __TIM14_CLK_ENABLE(); break; |
| } |
| HAL_TIM_Base_Init(&self->tim); |
| HAL_TIM_Base_Start(&self->tim); |
| |
| // set the priority (if not a special timer) |
| if (self->tim_id != 3 && self->tim_id != 5) { |
| HAL_NVIC_SetPriority(self->irqn, 0xe, 0xe); // next-to lowest priority |
| } |
| |
| return mp_const_none; |
| } |
| |
| /// \classmethod \constructor(id, ...) |
| /// Construct a new timer object of the given id. If additional |
| /// arguments are given, then the timer is initialised by `init(...)`. |
| /// `id` can be 1 to 14, excluding 3. |
| STATIC mp_obj_t pyb_timer_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) { |
| // check arguments |
| mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); |
| |
| // create new Timer object |
| pyb_timer_obj_t *tim = m_new_obj(pyb_timer_obj_t); |
| tim->base.type = &pyb_timer_type; |
| tim->callback = mp_const_none; |
| memset(&tim->tim, 0, sizeof(tim->tim)); |
| |
| // get TIM number |
| tim->tim_id = mp_obj_get_int(args[0]); |
| |
| switch (tim->tim_id) { |
| case 1: tim->tim.Instance = TIM1; tim->irqn = TIM1_UP_TIM10_IRQn; break; |
| case 2: tim->tim.Instance = TIM2; tim->irqn = TIM2_IRQn; break; |
| case 3: nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "Timer 3 is for internal use only")); // TIM3 used for low-level stuff; go via regs if necessary |
| case 4: tim->tim.Instance = TIM4; tim->irqn = TIM4_IRQn; break; |
| case 5: tim->tim.Instance = TIM5; tim->irqn = TIM5_IRQn; break; |
| case 6: tim->tim.Instance = TIM6; tim->irqn = TIM6_DAC_IRQn; break; |
| case 7: tim->tim.Instance = TIM7; tim->irqn = TIM7_IRQn; break; |
| case 8: tim->tim.Instance = TIM8; tim->irqn = TIM8_UP_TIM13_IRQn; break; |
| case 9: tim->tim.Instance = TIM9; tim->irqn = TIM1_BRK_TIM9_IRQn; break; |
| case 10: tim->tim.Instance = TIM10; tim->irqn = TIM1_UP_TIM10_IRQn; break; |
| case 11: tim->tim.Instance = TIM11; tim->irqn = TIM1_TRG_COM_TIM11_IRQn; break; |
| case 12: tim->tim.Instance = TIM12; tim->irqn = TIM8_BRK_TIM12_IRQn; break; |
| case 13: tim->tim.Instance = TIM13; tim->irqn = TIM8_UP_TIM13_IRQn; break; |
| case 14: tim->tim.Instance = TIM14; tim->irqn = TIM8_TRG_COM_TIM14_IRQn; break; |
| default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Timer %d does not exist", tim->tim_id)); |
| } |
| |
| if (n_args > 1 || n_kw > 0) { |
| // start the peripheral |
| mp_map_t kw_args; |
| mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); |
| pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args); |
| } |
| |
| // set the global variable for interrupt callbacks |
| if (tim->tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) { |
| pyb_timer_obj_all[tim->tim_id - 1] = tim; |
| } |
| |
| return (mp_obj_t)tim; |
| } |
| |
| STATIC mp_obj_t pyb_timer_init(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| return pyb_timer_init_helper(args[0], n_args - 1, args + 1, kw_args); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init); |
| |
| /// \method deinit() |
| /// Deinitialises the timer. |
| /// |
| /// *This function is not yet implemented.* |
| STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) { |
| //pyb_timer_obj_t *self = self_in; |
| // TODO implement me |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit); |
| |
| /// \method counter([value]) |
| /// Get or set the timer counter. |
| mp_obj_t pyb_timer_counter(uint n_args, const mp_obj_t *args) { |
| pyb_timer_obj_t *self = args[0]; |
| if (n_args == 1) { |
| // get |
| return mp_obj_new_int(self->tim.Instance->CNT); |
| } else { |
| // set |
| __HAL_TIM_SetCounter(&self->tim, mp_obj_get_int(args[1])); |
| return mp_const_none; |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_counter_obj, 1, 2, pyb_timer_counter); |
| |
| /// \method prescaler([value]) |
| /// Get or set the prescaler for the timer. |
| mp_obj_t pyb_timer_prescaler(uint n_args, const mp_obj_t *args) { |
| pyb_timer_obj_t *self = args[0]; |
| if (n_args == 1) { |
| // get |
| return mp_obj_new_int(self->tim.Instance->PSC & 0xffff); |
| } else { |
| // set |
| self->tim.Init.Prescaler = self->tim.Instance->PSC = mp_obj_get_int(args[1]) & 0xffff; |
| return mp_const_none; |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_prescaler_obj, 1, 2, pyb_timer_prescaler); |
| |
| /// \method period([value]) |
| /// Get or set the period of the timer. |
| mp_obj_t pyb_timer_period(uint n_args, const mp_obj_t *args) { |
| pyb_timer_obj_t *self = args[0]; |
| if (n_args == 1) { |
| // get |
| return mp_obj_new_int(self->tim.Instance->ARR & 0xffff); |
| } else { |
| // set |
| __HAL_TIM_SetAutoreload(&self->tim, mp_obj_get_int(args[1]) & 0xffff); |
| return mp_const_none; |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_period_obj, 1, 2, pyb_timer_period); |
| |
| /// \method callback(fun) |
| /// Set the function to be called when the timer triggers. |
| /// `fun` is passed 1 argument, the timer object. |
| /// If `fun` is `None` then the callback will be disabled. |
| STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback) { |
| pyb_timer_obj_t *self = self_in; |
| if (callback == mp_const_none) { |
| // stop interrupt (but not timer) |
| __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE); |
| self->callback = mp_const_none; |
| } else if (mp_obj_is_callable(callback)) { |
| self->callback = callback; |
| HAL_NVIC_EnableIRQ(self->irqn); |
| // start timer, so that it interrupts on overflow |
| HAL_TIM_Base_Start_IT(&self->tim); |
| } else { |
| nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "callback must be None or a callable object")); |
| } |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_callback_obj, pyb_timer_callback); |
| |
| STATIC const mp_map_elem_t pyb_timer_locals_dict_table[] = { |
| // instance methods |
| { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_timer_init_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_timer_deinit_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_counter), (mp_obj_t)&pyb_timer_counter_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_prescaler), (mp_obj_t)&pyb_timer_prescaler_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_period), (mp_obj_t)&pyb_timer_period_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_timer_callback_obj }, |
| }; |
| |
| STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table); |
| |
| const mp_obj_type_t pyb_timer_type = { |
| { &mp_type_type }, |
| .name = MP_QSTR_Timer, |
| .print = pyb_timer_print, |
| .make_new = pyb_timer_make_new, |
| .locals_dict = (mp_obj_t)&pyb_timer_locals_dict, |
| }; |
| |
| void timer_irq_handler(uint tim_id) { |
| if (tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) { |
| // get the timer object |
| pyb_timer_obj_t *tim = pyb_timer_obj_all[tim_id - 1]; |
| |
| if (tim == NULL) { |
| // timer object has not been set, so we can't do anything |
| return; |
| } |
| |
| // see if it was a TIM update event (the only event we currently interrupt on) |
| if (__HAL_TIM_GET_FLAG(&tim->tim, TIM_FLAG_UPDATE) != RESET) { |
| if (__HAL_TIM_GET_ITSTATUS(&tim->tim, TIM_IT_UPDATE) != RESET) { |
| // clear the interrupt |
| __HAL_TIM_CLEAR_IT(&tim->tim, TIM_IT_UPDATE); |
| |
| // execute callback if it's set |
| if (tim->callback != mp_const_none) { |
| // When executing code within a handler we must lock the GC to prevent |
| // any memory allocations. We must also catch any exceptions. |
| gc_lock(); |
| nlr_buf_t nlr; |
| if (nlr_push(&nlr) == 0) { |
| mp_call_function_1(tim->callback, tim); |
| nlr_pop(); |
| } else { |
| // Uncaught exception; disable the callback so it doesn't run again. |
| tim->callback = mp_const_none; |
| __HAL_TIM_DISABLE_IT(&tim->tim, TIM_IT_UPDATE); |
| printf("Uncaught exception in Timer(" UINT_FMT ") interrupt handler\n", tim->tim_id); |
| mp_obj_print_exception((mp_obj_t)nlr.ret_val); |
| } |
| gc_unlock(); |
| } |
| } |
| } |
| } |
| } |