| /* |
| * This file is part of the Micro Python project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include "stm32f4xx_hal.h" |
| |
| #include "mpconfig.h" |
| #include "nlr.h" |
| #include "misc.h" |
| #include "qstr.h" |
| #include "obj.h" |
| #include "runtime.h" |
| #include "pin.h" |
| #include "genhdr/pins.h" |
| #include "bufhelper.h" |
| #include "spi.h" |
| |
| /// \moduleref pyb |
| /// \class SPI - a master-driven serial protocol |
| /// |
| /// SPI is a serial protocol that is driven by a master. At the physical level |
| /// there are 3 lines: SCK, MOSI, MISO. |
| /// |
| /// See usage model of I2C; SPI is very similar. Main difference is |
| /// parameters to init the SPI bus: |
| /// |
| /// from pyb import SPI |
| /// spi = SPI(1, SPI.MASTER, baudrate=600000, polarity=1, phase=1, crc=0x7) |
| /// |
| /// Only required parameter is mode, SPI.MASTER or SPI.SLAVE. Polarity can be |
| /// 0 or 1, and is the level the idle clock line sits at. Phase can be 1 or 2 |
| /// for number of edges. Crc can be None for no CRC, or a polynomial specifier. |
| /// |
| /// Additional method for SPI: |
| /// |
| /// data = spi.send_recv(b'1234') # send 4 bytes and receive 4 bytes |
| /// buf = bytearray(4) |
| /// spi.send_recv(b'1234', buf) # send 4 bytes and receive 4 into buf |
| /// spi.send_recv(buf, buf) # send/recv 4 bytes from/to buf |
| |
| #if MICROPY_HW_ENABLE_SPI1 |
| SPI_HandleTypeDef SPIHandle1 = {.Instance = NULL}; |
| #endif |
| SPI_HandleTypeDef SPIHandle2 = {.Instance = NULL}; |
| #if MICROPY_HW_ENABLE_SPI3 |
| SPI_HandleTypeDef SPIHandle3 = {.Instance = NULL}; |
| #endif |
| |
| void spi_init0(void) { |
| // reset the SPI handles |
| #if MICROPY_HW_ENABLE_SPI1 |
| memset(&SPIHandle1, 0, sizeof(SPI_HandleTypeDef)); |
| SPIHandle1.Instance = SPI1; |
| #endif |
| memset(&SPIHandle2, 0, sizeof(SPI_HandleTypeDef)); |
| SPIHandle2.Instance = SPI2; |
| #if MICROPY_HW_ENABLE_SPI3 |
| memset(&SPIHandle3, 0, sizeof(SPI_HandleTypeDef)); |
| SPIHandle3.Instance = SPI3; |
| #endif |
| } |
| |
| // TODO allow to take a list of pins to use |
| void spi_init(SPI_HandleTypeDef *spi) { |
| // init the GPIO lines |
| GPIO_InitTypeDef GPIO_InitStructure; |
| GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; |
| GPIO_InitStructure.Speed = GPIO_SPEED_FAST; |
| GPIO_InitStructure.Pull = spi->Init.CLKPolarity == SPI_POLARITY_LOW ? GPIO_PULLDOWN : GPIO_PULLUP; |
| |
| const pin_obj_t *pins[4]; |
| if (0) { |
| #if MICROPY_HW_ENABLE_SPI1 |
| } else if (spi->Instance == SPI1) { |
| // X-skin: X5=PA4=SPI1_NSS, X6=PA5=SPI1_SCK, X7=PA6=SPI1_MISO, X8=PA7=SPI1_MOSI |
| pins[0] = &pin_A4; |
| pins[1] = &pin_A5; |
| pins[2] = &pin_A6; |
| pins[3] = &pin_A7; |
| GPIO_InitStructure.Alternate = GPIO_AF5_SPI1; |
| // enable the SPI clock |
| __SPI1_CLK_ENABLE(); |
| #endif |
| } else if (spi->Instance == SPI2) { |
| // Y-skin: Y5=PB12=SPI2_NSS, Y6=PB13=SPI2_SCK, Y7=PB14=SPI2_MISO, Y8=PB15=SPI2_MOSI |
| pins[0] = &pin_B12; |
| pins[1] = &pin_B13; |
| pins[2] = &pin_B14; |
| pins[3] = &pin_B15; |
| GPIO_InitStructure.Alternate = GPIO_AF5_SPI2; |
| // enable the SPI clock |
| __SPI2_CLK_ENABLE(); |
| #if MICROPY_HW_ENABLE_SPI3 |
| } else if (spi->Instance == SPI3) { |
| pins[0] = &pin_A4; |
| pins[1] = &pin_B3; |
| pins[2] = &pin_B4; |
| pins[3] = &pin_B5; |
| GPIO_InitStructure.Alternate = GPIO_AF6_SPI3; |
| // enable the SPI clock |
| __SPI3_CLK_ENABLE(); |
| #endif |
| } else { |
| // SPI does not exist for this board (shouldn't get here, should be checked by caller) |
| return; |
| } |
| |
| for (uint i = 0; i < 4; i++) { |
| GPIO_InitStructure.Pin = pins[i]->pin_mask; |
| HAL_GPIO_Init(pins[i]->gpio, &GPIO_InitStructure); |
| } |
| |
| // init the SPI device |
| if (HAL_SPI_Init(spi) != HAL_OK) { |
| // init error |
| // TODO should raise an exception, but this function is not necessarily going to be |
| // called via Python, so may not be properly wrapped in an NLR handler |
| printf("HardwareError: HAL_SPI_Init failed\n"); |
| return; |
| } |
| } |
| |
| void spi_deinit(SPI_HandleTypeDef *spi) { |
| HAL_SPI_DeInit(spi); |
| if (0) { |
| #if MICROPY_HW_ENABLE_SPI1 |
| } else if (spi->Instance == SPI1) { |
| __SPI1_FORCE_RESET(); |
| __SPI1_RELEASE_RESET(); |
| __SPI1_CLK_DISABLE(); |
| #endif |
| } else if (spi->Instance == SPI2) { |
| __SPI2_FORCE_RESET(); |
| __SPI2_RELEASE_RESET(); |
| __SPI2_CLK_DISABLE(); |
| #if MICROPY_HW_ENABLE_SPI3 |
| } else if (spi->Instance == SPI3) { |
| __SPI3_FORCE_RESET(); |
| __SPI3_RELEASE_RESET(); |
| __SPI3_CLK_DISABLE(); |
| #endif |
| } |
| } |
| |
| /******************************************************************************/ |
| /* Micro Python bindings */ |
| |
| typedef struct _pyb_spi_obj_t { |
| mp_obj_base_t base; |
| SPI_HandleTypeDef *spi; |
| } pyb_spi_obj_t; |
| |
| STATIC const pyb_spi_obj_t pyb_spi_obj[] = { |
| #if MICROPY_HW_ENABLE_SPI1 |
| {{&pyb_spi_type}, &SPIHandle1}, |
| #else |
| {{&pyb_spi_type}, NULL}, |
| #endif |
| {{&pyb_spi_type}, &SPIHandle2}, |
| #if MICROPY_HW_ENABLE_SPI3 |
| {{&pyb_spi_type}, &SPIHandle3}, |
| #else |
| {{&pyb_spi_type}, NULL}, |
| #endif |
| }; |
| #define PYB_NUM_SPI ARRAY_SIZE(pyb_spi_obj) |
| |
| STATIC void pyb_spi_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { |
| pyb_spi_obj_t *self = self_in; |
| |
| uint spi_num; |
| if (self->spi->Instance == SPI1) { spi_num = 1; } |
| else if (self->spi->Instance == SPI2) { spi_num = 2; } |
| else { spi_num = 3; } |
| |
| if (self->spi->State == HAL_SPI_STATE_RESET) { |
| print(env, "SPI(%u)", spi_num); |
| } else { |
| if (self->spi->Init.Mode == SPI_MODE_MASTER) { |
| // compute baudrate |
| uint spi_clock; |
| if (self->spi->Instance == SPI1) { |
| // SPI1 is on APB2 |
| spi_clock = HAL_RCC_GetPCLK2Freq(); |
| } else { |
| // SPI2 and SPI3 are on APB1 |
| spi_clock = HAL_RCC_GetPCLK1Freq(); |
| } |
| uint baudrate = spi_clock >> ((self->spi->Init.BaudRatePrescaler >> 3) + 1); |
| print(env, "SPI(%u, SPI.MASTER, baudrate=%u", spi_num, baudrate); |
| } else { |
| print(env, "SPI(%u, SPI.SLAVE", spi_num); |
| } |
| print(env, ", polarity=%u, phase=%u, bits=%u", self->spi->Init.CLKPolarity == SPI_POLARITY_LOW ? 0 : 1, self->spi->Init.CLKPhase == SPI_PHASE_1EDGE ? 1 : 2, self->spi->Init.DataSize == SPI_DATASIZE_8BIT ? 8 : 16); |
| if (self->spi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED) { |
| print(env, ", crc=0x%x", self->spi->Init.CRCPolynomial); |
| } |
| print(env, ")"); |
| } |
| } |
| |
| /// \method init(mode, baudrate=328125, *, polarity=1, phase=1, bits=8, firstbit=SPI.MSB, ti=False, crc=None) |
| /// |
| /// Initialise the SPI bus with the given parameters: |
| /// |
| /// - `mode` must be either `SPI.MASTER` or `SPI.SLAVE`. |
| /// - `baudrate` is the SCK clock rate (only sensible for a master). |
| STATIC const mp_arg_t pyb_spi_init_args[] = { |
| { MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, |
| { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 328125} }, |
| { MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, |
| { MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, |
| { MP_QSTR_dir, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_DIRECTION_2LINES} }, |
| { MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, |
| { MP_QSTR_nss, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_NSS_SOFT} }, |
| { MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_FIRSTBIT_MSB} }, |
| { MP_QSTR_ti, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, |
| { MP_QSTR_crc, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, |
| }; |
| #define PYB_SPI_INIT_NUM_ARGS ARRAY_SIZE(pyb_spi_init_args) |
| |
| STATIC mp_obj_t pyb_spi_init_helper(const pyb_spi_obj_t *self, uint n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| // parse args |
| mp_arg_val_t vals[PYB_SPI_INIT_NUM_ARGS]; |
| mp_arg_parse_all(n_args, args, kw_args, PYB_SPI_INIT_NUM_ARGS, pyb_spi_init_args, vals); |
| |
| // set the SPI configuration values |
| SPI_InitTypeDef *init = &self->spi->Init; |
| init->Mode = vals[0].u_int; |
| |
| // compute the baudrate prescaler from the requested baudrate |
| // select a prescaler that yields at most the requested baudrate |
| uint spi_clock; |
| if (self->spi->Instance == SPI1) { |
| // SPI1 is on APB2 |
| spi_clock = HAL_RCC_GetPCLK2Freq(); |
| } else { |
| // SPI2 and SPI3 are on APB1 |
| spi_clock = HAL_RCC_GetPCLK1Freq(); |
| } |
| uint br_prescale = spi_clock / vals[1].u_int; |
| if (br_prescale <= 2) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; } |
| else if (br_prescale <= 4) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4; } |
| else if (br_prescale <= 8) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8; } |
| else if (br_prescale <= 16) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16; } |
| else if (br_prescale <= 32) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32; } |
| else if (br_prescale <= 64) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64; } |
| else if (br_prescale <= 128) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128; } |
| else { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; } |
| |
| init->CLKPolarity = vals[2].u_int == 0 ? SPI_POLARITY_LOW : SPI_POLARITY_HIGH; |
| init->CLKPhase = vals[3].u_int == 1 ? SPI_PHASE_1EDGE : SPI_PHASE_2EDGE; |
| init->Direction = vals[4].u_int; |
| init->DataSize = (vals[5].u_int == 16) ? SPI_DATASIZE_16BIT : SPI_DATASIZE_8BIT; |
| init->NSS = vals[6].u_int; |
| init->FirstBit = vals[7].u_int; |
| init->TIMode = vals[8].u_bool ? SPI_TIMODE_ENABLED : SPI_TIMODE_DISABLED; |
| if (vals[9].u_obj == mp_const_none) { |
| init->CRCCalculation = SPI_CRCCALCULATION_DISABLED; |
| init->CRCPolynomial = 0; |
| } else { |
| init->CRCCalculation = SPI_CRCCALCULATION_ENABLED; |
| init->CRCPolynomial = mp_obj_get_int(vals[9].u_obj); |
| } |
| |
| // init the SPI bus |
| spi_init(self->spi); |
| |
| return mp_const_none; |
| } |
| |
| /// \classmethod \constructor(bus, ...) |
| /// |
| /// Construct an SPI object on the given bus. `bus` can be 1 or 2. |
| /// With no additional parameters, the SPI object is created but not |
| /// initialised (it has the settings from the last initialisation of |
| /// the bus, if any). If extra arguments are given, the bus is initialised. |
| /// See `init` for parameters of initialisation. |
| STATIC mp_obj_t pyb_spi_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) { |
| // check arguments |
| mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); |
| |
| // get SPI number |
| machine_int_t spi_id = mp_obj_get_int(args[0]) - 1; |
| |
| // check SPI number |
| if (!(0 <= spi_id && spi_id < PYB_NUM_SPI && pyb_spi_obj[spi_id].spi != NULL)) { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "SPI bus %d does not exist", spi_id + 1)); |
| } |
| |
| // get SPI object |
| const pyb_spi_obj_t *spi_obj = &pyb_spi_obj[spi_id]; |
| |
| if (n_args > 1 || n_kw > 0) { |
| // start the peripheral |
| mp_map_t kw_args; |
| mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); |
| pyb_spi_init_helper(spi_obj, n_args - 1, args + 1, &kw_args); |
| } |
| |
| return (mp_obj_t)spi_obj; |
| } |
| |
| STATIC mp_obj_t pyb_spi_init(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| return pyb_spi_init_helper(args[0], n_args - 1, args + 1, kw_args); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_init_obj, 1, pyb_spi_init); |
| |
| /// \method deinit() |
| /// Turn off the SPI bus. |
| STATIC mp_obj_t pyb_spi_deinit(mp_obj_t self_in) { |
| pyb_spi_obj_t *self = self_in; |
| spi_deinit(self->spi); |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_spi_deinit_obj, pyb_spi_deinit); |
| |
| /// \method send(send, *, timeout=5000) |
| /// Send data on the bus: |
| /// |
| /// - `send` is the data to send (an integer to send, or a buffer object). |
| /// - `timeout` is the timeout in milliseconds to wait for the send. |
| /// |
| /// Return value: `None`. |
| STATIC const mp_arg_t pyb_spi_send_args[] = { |
| { MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, |
| { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, |
| }; |
| #define PYB_SPI_SEND_NUM_ARGS ARRAY_SIZE(pyb_spi_send_args) |
| |
| STATIC mp_obj_t pyb_spi_send(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| // TODO assumes transmission size is 8-bits wide |
| |
| pyb_spi_obj_t *self = args[0]; |
| |
| // parse args |
| mp_arg_val_t vals[PYB_SPI_SEND_NUM_ARGS]; |
| mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_SPI_SEND_NUM_ARGS, pyb_spi_send_args, vals); |
| |
| // get the buffer to send from |
| mp_buffer_info_t bufinfo; |
| uint8_t data[1]; |
| pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data); |
| |
| // send the data |
| HAL_StatusTypeDef status = HAL_SPI_Transmit(self->spi, bufinfo.buf, bufinfo.len, vals[1].u_int); |
| |
| if (status != HAL_OK) { |
| // TODO really need a HardwareError object, or something |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_SPI_Transmit failed with code %d", status)); |
| } |
| |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_send_obj, 1, pyb_spi_send); |
| |
| /// \method recv(recv, *, timeout=5000) |
| /// |
| /// Receive data on the bus: |
| /// |
| /// - `recv` can be an integer, which is the number of bytes to receive, |
| /// or a mutable buffer, which will be filled with received bytes. |
| /// - `timeout` is the timeout in milliseconds to wait for the receive. |
| /// |
| /// Return value: if `recv` is an integer then a new buffer of the bytes received, |
| /// otherwise the same buffer that was passed in to `recv`. |
| STATIC const mp_arg_t pyb_spi_recv_args[] = { |
| { MP_QSTR_recv, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, |
| { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, |
| }; |
| #define PYB_SPI_RECV_NUM_ARGS ARRAY_SIZE(pyb_spi_recv_args) |
| |
| STATIC mp_obj_t pyb_spi_recv(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| // TODO assumes transmission size is 8-bits wide |
| |
| pyb_spi_obj_t *self = args[0]; |
| |
| // parse args |
| mp_arg_val_t vals[PYB_SPI_RECV_NUM_ARGS]; |
| mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_SPI_RECV_NUM_ARGS, pyb_spi_recv_args, vals); |
| |
| // get the buffer to receive into |
| mp_buffer_info_t bufinfo; |
| mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &bufinfo); |
| |
| // receive the data |
| HAL_StatusTypeDef status = HAL_SPI_Receive(self->spi, bufinfo.buf, bufinfo.len, vals[1].u_int); |
| |
| if (status != HAL_OK) { |
| // TODO really need a HardwareError object, or something |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_SPI_Receive failed with code %d", status)); |
| } |
| |
| // return the received data |
| if (o_ret == MP_OBJ_NULL) { |
| return vals[0].u_obj; |
| } else { |
| return mp_obj_str_builder_end(o_ret); |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_recv_obj, 1, pyb_spi_recv); |
| |
| /// \method send_recv(send, recv=None, *, timeout=5000) |
| /// |
| /// Send and receive data on the bus at the same time: |
| /// |
| /// - `send` is the data to send (an integer to send, or a buffer object). |
| /// - `recv` is a mutable buffer which will be filled with received bytes. |
| /// It can be the same as `send`, or omitted. If omitted, a new buffer will |
| /// be created. |
| /// - `timeout` is the timeout in milliseconds to wait for the receive. |
| /// |
| /// Return value: the buffer with the received bytes. |
| STATIC const mp_arg_t pyb_spi_send_recv_args[] = { |
| { MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, |
| { MP_QSTR_recv, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, |
| { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, |
| }; |
| #define PYB_SPI_SEND_RECV_NUM_ARGS ARRAY_SIZE(pyb_spi_send_recv_args) |
| |
| STATIC mp_obj_t pyb_spi_send_recv(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| // TODO assumes transmission size is 8-bits wide |
| |
| pyb_spi_obj_t *self = args[0]; |
| |
| // parse args |
| mp_arg_val_t vals[PYB_SPI_SEND_RECV_NUM_ARGS]; |
| mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_SPI_SEND_RECV_NUM_ARGS, pyb_spi_send_recv_args, vals); |
| |
| // get buffers to send from/receive to |
| mp_buffer_info_t bufinfo_send; |
| uint8_t data_send[1]; |
| mp_buffer_info_t bufinfo_recv; |
| mp_obj_t o_ret; |
| |
| if (vals[0].u_obj == vals[1].u_obj) { |
| // same object for send and receive, it must be a r/w buffer |
| mp_get_buffer_raise(vals[0].u_obj, &bufinfo_send, MP_BUFFER_RW); |
| bufinfo_recv = bufinfo_send; |
| o_ret = MP_OBJ_NULL; |
| } else { |
| // get the buffer to send from |
| pyb_buf_get_for_send(vals[0].u_obj, &bufinfo_send, data_send); |
| |
| // get the buffer to receive into |
| if (vals[1].u_obj == MP_OBJ_NULL) { |
| // only send argument given, so create a fresh buffer of the send length |
| bufinfo_recv.len = bufinfo_send.len; |
| bufinfo_recv.typecode = 'B'; |
| o_ret = mp_obj_str_builder_start(&mp_type_bytes, bufinfo_recv.len, (byte**)&bufinfo_recv.buf); |
| } else { |
| // recv argument given |
| mp_get_buffer_raise(vals[1].u_obj, &bufinfo_recv, MP_BUFFER_WRITE); |
| if (bufinfo_recv.len != bufinfo_send.len) { |
| nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "recv must be same length as send")); |
| } |
| o_ret = MP_OBJ_NULL; |
| } |
| } |
| |
| // send and receive the data |
| HAL_StatusTypeDef status = HAL_SPI_TransmitReceive(self->spi, bufinfo_send.buf, bufinfo_recv.buf, bufinfo_send.len, vals[2].u_int); |
| |
| if (status != HAL_OK) { |
| // TODO really need a HardwareError object, or something |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_SPI_TransmitReceive failed with code %d", status)); |
| } |
| |
| // return the received data |
| if (o_ret == MP_OBJ_NULL) { |
| return vals[1].u_obj; |
| } else { |
| return mp_obj_str_builder_end(o_ret); |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_send_recv_obj, 1, pyb_spi_send_recv); |
| |
| STATIC const mp_map_elem_t pyb_spi_locals_dict_table[] = { |
| // instance methods |
| { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_spi_init_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_spi_deinit_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_spi_send_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_spi_recv_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_send_recv), (mp_obj_t)&pyb_spi_send_recv_obj }, |
| |
| // class constants |
| /// \constant MASTER - for initialising the bus to master mode |
| /// \constant SLAVE - for initialising the bus to slave mode |
| /// \constant MSB - set the first bit to MSB |
| /// \constant LSB - set the first bit to LSB |
| { MP_OBJ_NEW_QSTR(MP_QSTR_MASTER), MP_OBJ_NEW_SMALL_INT(SPI_MODE_MASTER) }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_SLAVE), MP_OBJ_NEW_SMALL_INT(SPI_MODE_SLAVE) }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_MSB), MP_OBJ_NEW_SMALL_INT(SPI_FIRSTBIT_MSB) }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_LSB), MP_OBJ_NEW_SMALL_INT(SPI_FIRSTBIT_LSB) }, |
| /* TODO |
| { MP_OBJ_NEW_QSTR(MP_QSTR_DIRECTION_2LINES ((uint32_t)0x00000000) |
| { MP_OBJ_NEW_QSTR(MP_QSTR_DIRECTION_2LINES_RXONLY SPI_CR1_RXONLY |
| { MP_OBJ_NEW_QSTR(MP_QSTR_DIRECTION_1LINE SPI_CR1_BIDIMODE |
| { MP_OBJ_NEW_QSTR(MP_QSTR_NSS_SOFT SPI_CR1_SSM |
| { MP_OBJ_NEW_QSTR(MP_QSTR_NSS_HARD_INPUT ((uint32_t)0x00000000) |
| { MP_OBJ_NEW_QSTR(MP_QSTR_NSS_HARD_OUTPUT ((uint32_t)0x00040000) |
| */ |
| }; |
| |
| STATIC MP_DEFINE_CONST_DICT(pyb_spi_locals_dict, pyb_spi_locals_dict_table); |
| |
| const mp_obj_type_t pyb_spi_type = { |
| { &mp_type_type }, |
| .name = MP_QSTR_SPI, |
| .print = pyb_spi_print, |
| .make_new = pyb_spi_make_new, |
| .locals_dict = (mp_obj_t)&pyb_spi_locals_dict, |
| }; |