| #include <stdint.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <stdlib.h> |
| |
| #include "py/nlr.h" |
| #include "py/parse.h" |
| #include "py/lexer.h" |
| #include "py/runtime.h" |
| #include "py/stackctrl.h" |
| #include "py/gc.h" |
| #include "gccollect.h" |
| #include "pyexec.h" |
| #include "readline.h" |
| #include "lexermemzip.h" |
| |
| #include "Arduino.h" |
| #include MICROPY_HAL_H |
| |
| #include "servo.h" |
| #include "led.h" |
| #include "uart.h" |
| #include "pin.h" |
| |
| |
| extern uint32_t _heap_start; |
| |
| void flash_error(int n) { |
| for (int i = 0; i < n; i++) { |
| led_state(PYB_LED_BUILTIN, 1); |
| delay(250); |
| led_state(PYB_LED_BUILTIN, 0); |
| delay(250); |
| } |
| } |
| |
| void NORETURN __fatal_error(const char *msg) { |
| for (volatile uint delay = 0; delay < 10000000; delay++) { |
| } |
| led_state(1, 1); |
| led_state(2, 1); |
| led_state(3, 1); |
| led_state(4, 1); |
| mp_hal_stdout_tx_strn("\nFATAL ERROR:\n", 14); |
| mp_hal_stdout_tx_strn(msg, strlen(msg)); |
| for (uint i = 0;;) { |
| led_toggle(((i++) & 3) + 1); |
| for (volatile uint delay = 0; delay < 10000000; delay++) { |
| } |
| if (i >= 16) { |
| // to conserve power |
| __WFI(); |
| } |
| } |
| } |
| |
| void nlr_jump_fail(void *val) { |
| printf("FATAL: uncaught exception %p\n", val); |
| __fatal_error(""); |
| } |
| |
| void __assert_func(const char *file, int line, const char *func, const char *expr) { |
| |
| printf("Assertion failed: %s, file %s, line %d\n", expr, file, line); |
| __fatal_error(""); |
| } |
| |
| mp_obj_t pyb_analog_read(mp_obj_t pin_obj) { |
| uint pin = mp_obj_get_int(pin_obj); |
| int val = analogRead(pin); |
| return MP_OBJ_NEW_SMALL_INT(val); |
| } |
| |
| mp_obj_t pyb_analog_write(mp_obj_t pin_obj, mp_obj_t val_obj) { |
| uint pin = mp_obj_get_int(pin_obj); |
| int val = mp_obj_get_int(val_obj); |
| analogWrite(pin, val); |
| return mp_const_none; |
| } |
| |
| mp_obj_t pyb_analog_write_resolution(mp_obj_t res_obj) { |
| int res = mp_obj_get_int(res_obj); |
| analogWriteResolution(res); |
| return mp_const_none; |
| } |
| |
| mp_obj_t pyb_analog_write_frequency(mp_obj_t pin_obj, mp_obj_t freq_obj) { |
| uint pin = mp_obj_get_int(pin_obj); |
| int freq = mp_obj_get_int(freq_obj); |
| analogWriteFrequency(pin, freq); |
| return mp_const_none; |
| } |
| |
| #if 0 |
| // get lots of info about the board |
| static mp_obj_t pyb_info(void) { |
| // get and print unique id; 96 bits |
| { |
| byte *id = (byte*)0x40048058; |
| printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]); |
| } |
| |
| // get and print clock speeds |
| printf("CPU=%u\nBUS=%u\nMEM=%u\n", F_CPU, F_BUS, F_MEM); |
| |
| // to print info about memory |
| { |
| printf("_sdata=%p\n", &_sdata); |
| printf("_edata=%p\n", &_edata); |
| printf("_sbss=%p\n", &_sbss); |
| printf("_ebss=%p\n", &_ebss); |
| printf("_estack=%p\n", &_estack); |
| printf("_etext=%p\n", &_etext); |
| printf("_heap_start=%p\n", &_heap_start); |
| } |
| |
| // GC info |
| { |
| gc_info_t info; |
| gc_info(&info); |
| printf("GC:\n"); |
| printf(" %u total\n", info.total); |
| printf(" %u used %u free\n", info.used, info.free); |
| printf(" 1=%u 2=%u m=%u\n", info.num_1block, info.num_2block, info.max_block); |
| } |
| |
| #if 0 |
| // free space on flash |
| { |
| DWORD nclst; |
| FATFS *fatfs; |
| f_getfree("0:", &nclst, &fatfs); |
| printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512)); |
| } |
| #endif |
| |
| return mp_const_none; |
| } |
| |
| #endif |
| |
| #define RAM_START (0x1FFF8000) // fixed for chip |
| #define HEAP_END (0x20006000) // tunable |
| #define RAM_END (0x20008000) // fixed for chip |
| |
| #if 0 |
| |
| void gc_helper_get_regs_and_clean_stack(mp_uint_t *regs, mp_uint_t heap_end); |
| |
| mp_obj_t pyb_gc(void) { |
| gc_collect(); |
| return mp_const_none; |
| } |
| |
| mp_obj_t pyb_gpio(int n_args, mp_obj_t *args) { |
| //assert(1 <= n_args && n_args <= 2); |
| |
| uint pin = mp_obj_get_int(args[0]); |
| if (pin > CORE_NUM_DIGITAL) { |
| goto pin_error; |
| } |
| |
| if (n_args == 1) { |
| // get pin |
| pinMode(pin, INPUT); |
| return MP_OBJ_NEW_SMALL_INT(digitalRead(pin)); |
| } |
| |
| // set pin |
| pinMode(pin, OUTPUT); |
| digitalWrite(pin, mp_obj_is_true(args[1])); |
| return mp_const_none; |
| |
| pin_error: |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %d does not exist", pin)); |
| } |
| |
| MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_gpio_obj, 1, 2, pyb_gpio); |
| |
| #if 0 |
| mp_obj_t pyb_hid_send_report(mp_obj_t arg) { |
| mp_obj_t *items = mp_obj_get_array_fixed_n(arg, 4); |
| uint8_t data[4]; |
| data[0] = mp_obj_get_int(items[0]); |
| data[1] = mp_obj_get_int(items[1]); |
| data[2] = mp_obj_get_int(items[2]); |
| data[3] = mp_obj_get_int(items[3]); |
| usb_hid_send_report(data); |
| return mp_const_none; |
| } |
| #endif |
| |
| #endif // 0 |
| |
| STATIC mp_obj_t pyb_config_source_dir = MP_OBJ_NULL; |
| STATIC mp_obj_t pyb_config_main = MP_OBJ_NULL; |
| STATIC mp_obj_t pyb_config_usb_mode = MP_OBJ_NULL; |
| |
| mp_obj_t pyb_source_dir(mp_obj_t source_dir) { |
| if (MP_OBJ_IS_STR(source_dir)) { |
| pyb_config_source_dir = source_dir; |
| } |
| return mp_const_none; |
| } |
| |
| MP_DEFINE_CONST_FUN_OBJ_1(pyb_source_dir_obj, pyb_source_dir); |
| |
| mp_obj_t pyb_main(mp_obj_t main) { |
| if (MP_OBJ_IS_STR(main)) { |
| pyb_config_main = main; |
| } |
| return mp_const_none; |
| } |
| |
| MP_DEFINE_CONST_FUN_OBJ_1(pyb_main_obj, pyb_main); |
| |
| STATIC mp_obj_t pyb_usb_mode(mp_obj_t usb_mode) { |
| if (MP_OBJ_IS_STR(usb_mode)) { |
| pyb_config_usb_mode = usb_mode; |
| } |
| return mp_const_none; |
| } |
| |
| MP_DEFINE_CONST_FUN_OBJ_1(pyb_usb_mode_obj, pyb_usb_mode); |
| |
| #if 0 |
| |
| mp_obj_t pyb_delay(mp_obj_t count) { |
| delay(mp_obj_get_int(count)); |
| return mp_const_none; |
| } |
| |
| mp_obj_t pyb_led(mp_obj_t state) { |
| led_state(PYB_LED_BUILTIN, mp_obj_is_true(state)); |
| return state; |
| } |
| |
| #endif // 0 |
| |
| #if 0 |
| char *strdup(const char *str) { |
| uint32_t len = strlen(str); |
| char *s2 = m_new(char, len + 1); |
| memcpy(s2, str, len); |
| s2[len] = 0; |
| return s2; |
| } |
| #endif |
| |
| int main(void) { |
| // TODO: Put this in a more common initialization function. |
| // Turn on STKALIGN which keeps the stack 8-byte aligned for interrupts |
| // (per EABI) |
| #define SCB_CCR_STKALIGN (1 << 9) |
| SCB_CCR |= SCB_CCR_STKALIGN; |
| |
| mp_stack_set_limit(10240); |
| |
| pinMode(LED_BUILTIN, OUTPUT); |
| led_init(); |
| |
| // int first_soft_reset = true; |
| |
| soft_reset: |
| |
| led_state(PYB_LED_BUILTIN, 1); |
| |
| // GC init |
| gc_init(&_heap_start, (void*)HEAP_END); |
| |
| // Micro Python init |
| mp_init(); |
| mp_obj_list_init(mp_sys_path, 0); |
| mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script) |
| mp_obj_list_init(mp_sys_argv, 0); |
| |
| readline_init0(); |
| |
| pin_init0(); |
| |
| #if 0 |
| // add some functions to the python namespace |
| { |
| mp_store_name(MP_QSTR_help, mp_make_function_n(0, pyb_help)); |
| mp_obj_t m = mp_obj_new_module(MP_QSTR_pyb); |
| mp_store_attr(m, MP_QSTR_info, mp_make_function_n(0, pyb_info)); |
| mp_store_attr(m, MP_QSTR_source_dir, mp_make_function_n(1, pyb_source_dir)); |
| mp_store_attr(m, MP_QSTR_main, mp_make_function_n(1, pyb_main)); |
| mp_store_attr(m, MP_QSTR_gc, mp_make_function_n(0, pyb_gc)); |
| mp_store_attr(m, MP_QSTR_delay, mp_make_function_n(1, pyb_delay)); |
| mp_store_attr(m, MP_QSTR_led, mp_make_function_n(1, pyb_led)); |
| mp_store_attr(m, MP_QSTR_LED, (mp_obj_t)&pyb_led_type); |
| mp_store_attr(m, MP_QSTR_analogRead, mp_make_function_n(1, pyb_analog_read)); |
| mp_store_attr(m, MP_QSTR_analogWrite, mp_make_function_n(2, pyb_analog_write)); |
| mp_store_attr(m, MP_QSTR_analogWriteResolution, mp_make_function_n(1, pyb_analog_write_resolution)); |
| mp_store_attr(m, MP_QSTR_analogWriteFrequency, mp_make_function_n(2, pyb_analog_write_frequency)); |
| |
| mp_store_attr(m, MP_QSTR_gpio, (mp_obj_t)&pyb_gpio_obj); |
| mp_store_attr(m, MP_QSTR_Servo, mp_make_function_n(0, pyb_Servo)); |
| mp_store_name(MP_QSTR_pyb, m); |
| } |
| #endif |
| |
| if (!pyexec_file("/boot.py")) { |
| flash_error(4); |
| } |
| |
| // Turn bootup LED off |
| led_state(PYB_LED_BUILTIN, 0); |
| |
| // run main script |
| { |
| vstr_t *vstr = vstr_new(); |
| vstr_add_str(vstr, "/"); |
| if (pyb_config_main == MP_OBJ_NULL) { |
| vstr_add_str(vstr, "main.py"); |
| } else { |
| vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_main)); |
| } |
| if (!pyexec_file(vstr_null_terminated_str(vstr))) { |
| flash_error(3); |
| } |
| vstr_free(vstr); |
| } |
| |
| // enter REPL |
| // REPL mode can change, or it can request a soft reset |
| for (;;) { |
| if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) { |
| if (pyexec_raw_repl() != 0) { |
| break; |
| } |
| } else { |
| if (pyexec_friendly_repl() != 0) { |
| break; |
| } |
| } |
| } |
| |
| printf("PYB: soft reboot\n"); |
| |
| // first_soft_reset = false; |
| goto soft_reset; |
| } |
| |
| // stub out __libc_init_array. It's called by mk20dx128.c and is used to call |
| // global C++ constructors. Since this is a C-only projects, we don't need to |
| // call constructors. |
| void __libc_init_array(void) { |
| } |
| |
| // ultoa is used by usb_init_serialnumber. Normally ultoa would be provided |
| // by nonstd.c from the teensy core, but it conflicts with some of the |
| // MicroPython functions in string0.c, so we provide ultoa here. |
| char * ultoa(unsigned long val, char *buf, int radix) |
| { |
| unsigned digit; |
| int i=0, j; |
| char t; |
| |
| while (1) { |
| digit = val % radix; |
| buf[i] = ((digit < 10) ? '0' + digit : 'A' + digit - 10); |
| val /= radix; |
| if (val == 0) break; |
| i++; |
| } |
| buf[i + 1] = 0; |
| for (j=0; j < i; j++, i--) { |
| t = buf[j]; |
| buf[j] = buf[i]; |
| buf[i] = t; |
| } |
| return buf; |
| } |