| /* |
| * This file is part of the Micro Python project, http://micropython.org/ |
| * |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2013, 2014 Damien P. George |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| #include <stdarg.h> |
| #include <errno.h> |
| |
| #include "py/nlr.h" |
| #include "py/runtime.h" |
| #include "py/stream.h" |
| #include "uart.h" |
| #include "pybioctl.h" |
| #include MICROPY_HAL_H |
| |
| /// \moduleref pyb |
| /// \class UART - duplex serial communication bus |
| /// |
| /// UART implements the standard UART/USART duplex serial communications protocol. At |
| /// the physical level it consists of 2 lines: RX and TX. The unit of communication |
| /// is a character (not to be confused with a string character) which can be 8 or 9 |
| /// bits wide. |
| /// |
| /// UART objects can be created and initialised using: |
| /// |
| /// from pyb import UART |
| /// |
| /// uart = UART(1, 9600) # init with given baudrate |
| /// uart.init(9600, bits=8, parity=None, stop=1) # init with given parameters |
| /// |
| /// Bits can be 8 or 9. Parity can be None, 0 (even) or 1 (odd). Stop can be 1 or 2. |
| /// |
| /// A UART object acts like a stream object and reading and writing is done |
| /// using the standard stream methods: |
| /// |
| /// uart.read(10) # read 10 characters, returns a bytes object |
| /// uart.readall() # read all available characters |
| /// uart.readline() # read a line |
| /// uart.readinto(buf) # read and store into the given buffer |
| /// uart.write('abc') # write the 3 characters |
| /// |
| /// Individual characters can be read/written using: |
| /// |
| /// uart.readchar() # read 1 character and returns it as an integer |
| /// uart.writechar(42) # write 1 character |
| /// |
| /// To check if there is anything to be read, use: |
| /// |
| /// uart.any() # returns True if any characters waiting |
| |
| #define CHAR_WIDTH_8BIT (0) |
| #define CHAR_WIDTH_9BIT (1) |
| |
| struct _pyb_uart_obj_t { |
| mp_obj_base_t base; |
| UART_HandleTypeDef uart; // this is 17 words big |
| IRQn_Type irqn; |
| pyb_uart_t uart_id : 8; |
| bool is_enabled : 1; |
| byte char_width; // 0 for 7,8 bit chars, 1 for 9 bit chars |
| uint16_t char_mask; // 0x7f for 7 bit, 0xff for 8 bit, 0x1ff for 9 bit |
| uint16_t timeout; // timeout waiting for first char |
| uint16_t timeout_char; // timeout waiting between chars |
| uint16_t read_buf_len; // len in chars; buf can hold len-1 chars |
| volatile uint16_t read_buf_head; // indexes first empty slot |
| uint16_t read_buf_tail; // indexes first full slot (not full if equals head) |
| byte *read_buf; // byte or uint16_t, depending on char size |
| }; |
| |
| STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in); |
| |
| void uart_init0(void) { |
| for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) { |
| MP_STATE_PORT(pyb_uart_obj_all)[i] = NULL; |
| } |
| } |
| |
| // unregister all interrupt sources |
| void uart_deinit(void) { |
| for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) { |
| pyb_uart_obj_t *uart_obj = MP_STATE_PORT(pyb_uart_obj_all)[i]; |
| if (uart_obj != NULL) { |
| pyb_uart_deinit(uart_obj); |
| } |
| } |
| } |
| |
| // assumes Init parameters have been set up correctly |
| STATIC bool uart_init2(pyb_uart_obj_t *uart_obj) { |
| USART_TypeDef *UARTx; |
| IRQn_Type irqn; |
| uint32_t GPIO_Pin; |
| uint8_t GPIO_AF_UARTx = 0; |
| GPIO_TypeDef* GPIO_Port = NULL; |
| |
| switch (uart_obj->uart_id) { |
| // USART1 is on PA9/PA10 (CK on PA8), PB6/PB7 |
| case PYB_UART_1: |
| UARTx = USART1; |
| irqn = USART1_IRQn; |
| GPIO_AF_UARTx = GPIO_AF7_USART1; |
| |
| #if defined (PYBV4) || defined(PYBV10) |
| GPIO_Port = GPIOB; |
| GPIO_Pin = GPIO_PIN_6 | GPIO_PIN_7; |
| #else |
| GPIO_Port = GPIOA; |
| GPIO_Pin = GPIO_PIN_9 | GPIO_PIN_10; |
| #endif |
| |
| __USART1_CLK_ENABLE(); |
| break; |
| |
| // USART2 is on PA2/PA3 (CTS,RTS,CK on PA0,PA1,PA4), PD5/PD6 (CK on PD7) |
| case PYB_UART_2: |
| UARTx = USART2; |
| irqn = USART2_IRQn; |
| GPIO_AF_UARTx = GPIO_AF7_USART2; |
| |
| GPIO_Port = GPIOA; |
| GPIO_Pin = GPIO_PIN_2 | GPIO_PIN_3; |
| |
| if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_RTS) { |
| GPIO_Pin |= GPIO_PIN_1; |
| } |
| if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) { |
| GPIO_Pin |= GPIO_PIN_0; |
| } |
| |
| __USART2_CLK_ENABLE(); |
| break; |
| |
| // USART3 is on PB10/PB11 (CK,CTS,RTS on PB12,PB13,PB14), PC10/PC11 (CK on PC12), PD8/PD9 (CK on PD10) |
| case PYB_UART_3: |
| UARTx = USART3; |
| irqn = USART3_IRQn; |
| GPIO_AF_UARTx = GPIO_AF7_USART3; |
| |
| #if defined(PYBV3) || defined(PYBV4) | defined(PYBV10) |
| GPIO_Port = GPIOB; |
| GPIO_Pin = GPIO_PIN_10 | GPIO_PIN_11; |
| |
| if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_RTS) { |
| GPIO_Pin |= GPIO_PIN_14; |
| } |
| if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) { |
| GPIO_Pin |= GPIO_PIN_13; |
| } |
| #else |
| GPIO_Port = GPIOD; |
| GPIO_Pin = GPIO_PIN_8 | GPIO_PIN_9; |
| #endif |
| __USART3_CLK_ENABLE(); |
| break; |
| |
| // UART4 is on PA0/PA1, PC10/PC11 |
| case PYB_UART_4: |
| UARTx = UART4; |
| irqn = UART4_IRQn; |
| GPIO_AF_UARTx = GPIO_AF8_UART4; |
| |
| GPIO_Port = GPIOA; |
| GPIO_Pin = GPIO_PIN_0 | GPIO_PIN_1; |
| |
| __UART4_CLK_ENABLE(); |
| break; |
| |
| // USART6 is on PC6/PC7 (CK on PC8) |
| case PYB_UART_6: |
| UARTx = USART6; |
| irqn = USART6_IRQn; |
| GPIO_AF_UARTx = GPIO_AF8_USART6; |
| |
| GPIO_Port = GPIOC; |
| GPIO_Pin = GPIO_PIN_6 | GPIO_PIN_7; |
| |
| __USART6_CLK_ENABLE(); |
| break; |
| |
| default: |
| return false; |
| } |
| |
| uart_obj->irqn = irqn; |
| uart_obj->uart.Instance = UARTx; |
| |
| // init GPIO |
| GPIO_InitTypeDef GPIO_InitStructure; |
| GPIO_InitStructure.Pin = GPIO_Pin; |
| GPIO_InitStructure.Speed = GPIO_SPEED_HIGH; |
| GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; |
| GPIO_InitStructure.Pull = GPIO_PULLUP; |
| GPIO_InitStructure.Alternate = GPIO_AF_UARTx; |
| HAL_GPIO_Init(GPIO_Port, &GPIO_InitStructure); |
| |
| // init UARTx |
| HAL_UART_Init(&uart_obj->uart); |
| |
| uart_obj->is_enabled = true; |
| |
| return true; |
| } |
| |
| /* obsolete and unused |
| bool uart_init(pyb_uart_obj_t *uart_obj, uint32_t baudrate) { |
| UART_HandleTypeDef *uh = &uart_obj->uart; |
| memset(uh, 0, sizeof(*uh)); |
| uh->Init.BaudRate = baudrate; |
| uh->Init.WordLength = UART_WORDLENGTH_8B; |
| uh->Init.StopBits = UART_STOPBITS_1; |
| uh->Init.Parity = UART_PARITY_NONE; |
| uh->Init.Mode = UART_MODE_TX_RX; |
| uh->Init.HwFlowCtl = UART_HWCONTROL_NONE; |
| uh->Init.OverSampling = UART_OVERSAMPLING_16; |
| return uart_init2(uart_obj); |
| } |
| */ |
| |
| bool uart_rx_any(pyb_uart_obj_t *self) { |
| return self->read_buf_tail != self->read_buf_head |
| || __HAL_UART_GET_FLAG(&self->uart, UART_FLAG_RXNE) != RESET; |
| } |
| |
| // Waits at most timeout milliseconds for at least 1 char to become ready for |
| // reading (from buf or for direct reading). |
| // Returns true if something available, false if not. |
| STATIC bool uart_rx_wait(pyb_uart_obj_t *self, uint32_t timeout) { |
| uint32_t start = HAL_GetTick(); |
| for (;;) { |
| if (self->read_buf_tail != self->read_buf_head || __HAL_UART_GET_FLAG(&self->uart, UART_FLAG_RXNE) != RESET) { |
| return true; // have at least 1 char ready for reading |
| } |
| if (HAL_GetTick() - start >= timeout) { |
| return false; // timeout |
| } |
| __WFI(); |
| } |
| } |
| |
| // assumes there is a character available |
| int uart_rx_char(pyb_uart_obj_t *self) { |
| if (self->read_buf_tail != self->read_buf_head) { |
| // buffering via IRQ |
| int data; |
| if (self->char_width == CHAR_WIDTH_9BIT) { |
| data = ((uint16_t*)self->read_buf)[self->read_buf_tail]; |
| } else { |
| data = self->read_buf[self->read_buf_tail]; |
| } |
| self->read_buf_tail = (self->read_buf_tail + 1) % self->read_buf_len; |
| return data; |
| } else { |
| // no buffering |
| return self->uart.Instance->DR & self->char_mask; |
| } |
| } |
| |
| STATIC void uart_tx_char(pyb_uart_obj_t *uart_obj, int c) { |
| uint8_t ch = c; |
| HAL_UART_Transmit(&uart_obj->uart, &ch, 1, uart_obj->timeout); |
| } |
| |
| void uart_tx_strn(pyb_uart_obj_t *uart_obj, const char *str, uint len) { |
| HAL_UART_Transmit(&uart_obj->uart, (uint8_t*)str, len, uart_obj->timeout); |
| } |
| |
| void uart_tx_strn_cooked(pyb_uart_obj_t *uart_obj, const char *str, uint len) { |
| for (const char *top = str + len; str < top; str++) { |
| if (*str == '\n') { |
| uart_tx_char(uart_obj, '\r'); |
| } |
| uart_tx_char(uart_obj, *str); |
| } |
| } |
| |
| // this IRQ handler is set up to handle RXNE interrupts only |
| void uart_irq_handler(mp_uint_t uart_id) { |
| // get the uart object |
| pyb_uart_obj_t *self = MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1]; |
| |
| if (self == NULL) { |
| // UART object has not been set, so we can't do anything, not |
| // even disable the IRQ. This should never happen. |
| return; |
| } |
| |
| if (__HAL_UART_GET_FLAG(&self->uart, UART_FLAG_RXNE) != RESET) { |
| int data = self->uart.Instance->DR; // clears UART_FLAG_RXNE |
| data &= self->char_mask; |
| if (self->read_buf_len != 0) { |
| uint16_t next_head = (self->read_buf_head + 1) % self->read_buf_len; |
| if (next_head != self->read_buf_tail) { |
| // only store data if room in buf |
| if (self->char_width == CHAR_WIDTH_9BIT) { |
| ((uint16_t*)self->read_buf)[self->read_buf_head] = data; |
| } else { |
| self->read_buf[self->read_buf_head] = data; |
| } |
| self->read_buf_head = next_head; |
| } |
| } else { |
| // TODO set flag for buffer overflow |
| } |
| } |
| } |
| |
| /******************************************************************************/ |
| /* Micro Python bindings */ |
| |
| STATIC void pyb_uart_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { |
| pyb_uart_obj_t *self = self_in; |
| if (!self->is_enabled) { |
| print(env, "UART(%u)", self->uart_id); |
| } else { |
| mp_int_t bits = (self->uart.Init.WordLength == UART_WORDLENGTH_8B ? 8 : 9); |
| if (self->uart.Init.Parity != UART_PARITY_NONE) { |
| bits -= 1; |
| } |
| print(env, "UART(%u, baudrate=%u, bits=%u, parity=", |
| self->uart_id, self->uart.Init.BaudRate, bits); |
| if (self->uart.Init.Parity == UART_PARITY_NONE) { |
| print(env, "None"); |
| } else { |
| print(env, "%u", self->uart.Init.Parity == UART_PARITY_EVEN ? 0 : 1); |
| } |
| print(env, ", stop=%u, timeout=%u, timeout_char=%u, read_buf_len=%u)", |
| self->uart.Init.StopBits == UART_STOPBITS_1 ? 1 : 2, |
| self->timeout, self->timeout_char, self->read_buf_len); |
| } |
| } |
| |
| /// \method init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0, read_buf_len=64) |
| /// |
| /// Initialise the UART bus with the given parameters: |
| /// |
| /// - `baudrate` is the clock rate. |
| /// - `bits` is the number of bits per byte, 7, 8 or 9. |
| /// - `parity` is the parity, `None`, 0 (even) or 1 (odd). |
| /// - `stop` is the number of stop bits, 1 or 2. |
| /// - `timeout` is the timeout in milliseconds to wait for the first character. |
| /// - `timeout_char` is the timeout in milliseconds to wait between characters. |
| /// - `read_buf_len` is the character length of the read buffer (0 to disable). |
| STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { |
| static const mp_arg_t allowed_args[] = { |
| { MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} }, |
| { MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} }, |
| { MP_QSTR_parity, MP_ARG_OBJ, {.u_obj = mp_const_none} }, |
| { MP_QSTR_stop, MP_ARG_INT, {.u_int = 1} }, |
| { MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = UART_HWCONTROL_NONE} }, |
| { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} }, |
| { MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, |
| { MP_QSTR_read_buf_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 64} }, |
| }; |
| |
| // parse args |
| mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; |
| mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); |
| |
| // set the UART configuration values |
| memset(&self->uart, 0, sizeof(self->uart)); |
| UART_InitTypeDef *init = &self->uart.Init; |
| |
| // baudrate |
| init->BaudRate = args[0].u_int; |
| |
| // parity |
| mp_int_t bits = args[1].u_int; |
| if (args[2].u_obj == mp_const_none) { |
| init->Parity = UART_PARITY_NONE; |
| } else { |
| mp_int_t parity = mp_obj_get_int(args[2].u_obj); |
| init->Parity = (parity & 1) ? UART_PARITY_ODD : UART_PARITY_EVEN; |
| bits += 1; // STs convention has bits including parity |
| } |
| |
| // number of bits |
| if (bits == 8) { |
| init->WordLength = UART_WORDLENGTH_8B; |
| } else if (bits == 9) { |
| init->WordLength = UART_WORDLENGTH_9B; |
| } else { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "unsupported combination of bits and parity")); |
| } |
| |
| // stop bits |
| switch (args[3].u_int) { |
| case 1: init->StopBits = UART_STOPBITS_1; break; |
| default: init->StopBits = UART_STOPBITS_2; break; |
| } |
| |
| // flow control |
| init->HwFlowCtl = args[4].u_int; |
| |
| // extra config (not yet configurable) |
| init->Mode = UART_MODE_TX_RX; |
| init->OverSampling = UART_OVERSAMPLING_16; |
| |
| // init UART (if it fails, it's because the port doesn't exist) |
| if (!uart_init2(self)) { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) does not exist", self->uart_id)); |
| } |
| |
| // set timeouts |
| self->timeout = args[5].u_int; |
| self->timeout_char = args[6].u_int; |
| |
| // setup the read buffer |
| m_del(byte, self->read_buf, self->read_buf_len << self->char_width); |
| if (init->WordLength == UART_WORDLENGTH_9B && init->Parity == UART_PARITY_NONE) { |
| self->char_mask = 0x1ff; |
| self->char_width = CHAR_WIDTH_9BIT; |
| } else { |
| if (init->WordLength == UART_WORDLENGTH_9B || init->Parity == UART_PARITY_NONE) { |
| self->char_mask = 0xff; |
| } else { |
| self->char_mask = 0x7f; |
| } |
| self->char_width = CHAR_WIDTH_8BIT; |
| } |
| self->read_buf_head = 0; |
| self->read_buf_tail = 0; |
| if (args[7].u_int <= 0) { |
| // no read buffer |
| self->read_buf_len = 0; |
| self->read_buf = NULL; |
| HAL_NVIC_DisableIRQ(self->irqn); |
| __HAL_UART_DISABLE_IT(&self->uart, UART_IT_RXNE); |
| } else { |
| // read buffer using interrupts |
| self->read_buf_len = args[7].u_int; |
| self->read_buf = m_new(byte, args[7].u_int << self->char_width); |
| __HAL_UART_ENABLE_IT(&self->uart, UART_IT_RXNE); |
| HAL_NVIC_SetPriority(self->irqn, 0xd, 0xd); // next-to-next-to lowest priority |
| HAL_NVIC_EnableIRQ(self->irqn); |
| } |
| |
| // compute actual baudrate that was configured |
| // (this formula assumes UART_OVERSAMPLING_16) |
| uint32_t actual_baudrate; |
| if (self->uart.Instance == USART1 || self->uart.Instance == USART6) { |
| actual_baudrate = HAL_RCC_GetPCLK2Freq(); |
| } else { |
| actual_baudrate = HAL_RCC_GetPCLK1Freq(); |
| } |
| actual_baudrate /= self->uart.Instance->BRR; |
| |
| // check we could set the baudrate within 5% |
| uint32_t baudrate_diff; |
| if (actual_baudrate > init->BaudRate) { |
| baudrate_diff = actual_baudrate - init->BaudRate; |
| } else { |
| baudrate_diff = init->BaudRate - actual_baudrate; |
| } |
| init->BaudRate = actual_baudrate; // remember actual baudrate for printing |
| if (20 * baudrate_diff > init->BaudRate) { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "set baudrate %d is not within 5%% of desired value", actual_baudrate)); |
| } |
| |
| return mp_const_none; |
| } |
| |
| /// \classmethod \constructor(bus, ...) |
| /// |
| /// Construct a UART object on the given bus. `bus` can be 1-6, or 'XA', 'XB', 'YA', or 'YB'. |
| /// With no additional parameters, the UART object is created but not |
| /// initialised (it has the settings from the last initialisation of |
| /// the bus, if any). If extra arguments are given, the bus is initialised. |
| /// See `init` for parameters of initialisation. |
| /// |
| /// The physical pins of the UART busses are: |
| /// |
| /// - `UART(4)` is on `XA`: `(TX, RX) = (X1, X2) = (PA0, PA1)` |
| /// - `UART(1)` is on `XB`: `(TX, RX) = (X9, X10) = (PB6, PB7)` |
| /// - `UART(6)` is on `YA`: `(TX, RX) = (Y1, Y2) = (PC6, PC7)` |
| /// - `UART(3)` is on `YB`: `(TX, RX) = (Y9, Y10) = (PB10, PB11)` |
| /// - `UART(2)` is on: `(TX, RX) = (X3, X4) = (PA2, PA3)` |
| STATIC mp_obj_t pyb_uart_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { |
| // check arguments |
| mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); |
| |
| // work out port |
| int uart_id = 0; |
| if (MP_OBJ_IS_STR(args[0])) { |
| const char *port = mp_obj_str_get_str(args[0]); |
| if (0) { |
| #if defined(PYBV10) |
| } else if (strcmp(port, "XA") == 0) { |
| uart_id = PYB_UART_XA; |
| } else if (strcmp(port, "XB") == 0) { |
| uart_id = PYB_UART_XB; |
| } else if (strcmp(port, "YA") == 0) { |
| uart_id = PYB_UART_YA; |
| } else if (strcmp(port, "YB") == 0) { |
| uart_id = PYB_UART_YB; |
| #endif |
| } else { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%s) does not exist", port)); |
| } |
| } else { |
| uart_id = mp_obj_get_int(args[0]); |
| if (uart_id < 1 || uart_id > MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all))) { |
| nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) does not exist", uart_id)); |
| } |
| } |
| |
| pyb_uart_obj_t *self; |
| if (MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] == NULL) { |
| // create new UART object |
| self = m_new0(pyb_uart_obj_t, 1); |
| self->base.type = &pyb_uart_type; |
| self->uart_id = uart_id; |
| MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] = self; |
| } else { |
| // reference existing UART object |
| self = MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1]; |
| } |
| |
| if (n_args > 1 || n_kw > 0) { |
| // start the peripheral |
| mp_map_t kw_args; |
| mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); |
| pyb_uart_init_helper(self, n_args - 1, args + 1, &kw_args); |
| } |
| |
| return self; |
| } |
| |
| STATIC mp_obj_t pyb_uart_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { |
| return pyb_uart_init_helper(args[0], n_args - 1, args + 1, kw_args); |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_init_obj, 1, pyb_uart_init); |
| |
| /// \method deinit() |
| /// Turn off the UART bus. |
| STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in) { |
| pyb_uart_obj_t *self = self_in; |
| self->is_enabled = false; |
| UART_HandleTypeDef *uart = &self->uart; |
| HAL_UART_DeInit(uart); |
| if (uart->Instance == USART1) { |
| HAL_NVIC_DisableIRQ(USART1_IRQn); |
| __USART1_FORCE_RESET(); |
| __USART1_RELEASE_RESET(); |
| __USART1_CLK_DISABLE(); |
| } else if (uart->Instance == USART2) { |
| HAL_NVIC_DisableIRQ(USART2_IRQn); |
| __USART2_FORCE_RESET(); |
| __USART2_RELEASE_RESET(); |
| __USART2_CLK_DISABLE(); |
| } else if (uart->Instance == USART3) { |
| HAL_NVIC_DisableIRQ(USART3_IRQn); |
| __USART3_FORCE_RESET(); |
| __USART3_RELEASE_RESET(); |
| __USART3_CLK_DISABLE(); |
| } else if (uart->Instance == UART4) { |
| HAL_NVIC_DisableIRQ(UART4_IRQn); |
| __UART4_FORCE_RESET(); |
| __UART4_RELEASE_RESET(); |
| __UART4_CLK_DISABLE(); |
| } else if (uart->Instance == USART6) { |
| HAL_NVIC_DisableIRQ(USART6_IRQn); |
| __USART6_FORCE_RESET(); |
| __USART6_RELEASE_RESET(); |
| __USART6_CLK_DISABLE(); |
| } |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_deinit_obj, pyb_uart_deinit); |
| |
| /// \method any() |
| /// Return `True` if any characters waiting, else `False`. |
| STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) { |
| pyb_uart_obj_t *self = self_in; |
| if (uart_rx_any(self)) { |
| return mp_const_true; |
| } else { |
| return mp_const_false; |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any); |
| |
| /// \method writechar(char) |
| /// Write a single character on the bus. `char` is an integer to write. |
| /// Return value: `None`. |
| STATIC mp_obj_t pyb_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) { |
| pyb_uart_obj_t *self = self_in; |
| |
| // get the character to write (might be 9 bits) |
| uint16_t data = mp_obj_get_int(char_in); |
| |
| // write the data |
| HAL_StatusTypeDef status = HAL_UART_Transmit(&self->uart, (uint8_t*)&data, 1, self->timeout); |
| |
| if (status != HAL_OK) { |
| mp_hal_raise(status); |
| } |
| |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_uart_writechar_obj, pyb_uart_writechar); |
| |
| /// \method readchar() |
| /// Receive a single character on the bus. |
| /// Return value: The character read, as an integer. Returns -1 on timeout. |
| STATIC mp_obj_t pyb_uart_readchar(mp_obj_t self_in) { |
| pyb_uart_obj_t *self = self_in; |
| if (uart_rx_wait(self, self->timeout)) { |
| return MP_OBJ_NEW_SMALL_INT(uart_rx_char(self)); |
| } else { |
| // return -1 on timeout |
| return MP_OBJ_NEW_SMALL_INT(-1); |
| } |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_readchar_obj, pyb_uart_readchar); |
| |
| // uart.sendbreak() |
| STATIC mp_obj_t pyb_uart_sendbreak(mp_obj_t self_in) { |
| pyb_uart_obj_t *self = self_in; |
| self->uart.Instance->CR1 |= USART_CR1_SBK; |
| return mp_const_none; |
| } |
| STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_sendbreak_obj, pyb_uart_sendbreak); |
| |
| STATIC const mp_map_elem_t pyb_uart_locals_dict_table[] = { |
| // instance methods |
| |
| { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_uart_init_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_uart_deinit_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_any), (mp_obj_t)&pyb_uart_any_obj }, |
| |
| /// \method read([nbytes]) |
| { MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&mp_stream_read_obj }, |
| /// \method readall() |
| { MP_OBJ_NEW_QSTR(MP_QSTR_readall), (mp_obj_t)&mp_stream_readall_obj }, |
| /// \method readline() |
| { MP_OBJ_NEW_QSTR(MP_QSTR_readline), (mp_obj_t)&mp_stream_unbuffered_readline_obj}, |
| /// \method readinto(buf[, nbytes]) |
| { MP_OBJ_NEW_QSTR(MP_QSTR_readinto), (mp_obj_t)&mp_stream_readinto_obj }, |
| /// \method write(buf) |
| { MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&mp_stream_write_obj }, |
| |
| { MP_OBJ_NEW_QSTR(MP_QSTR_writechar), (mp_obj_t)&pyb_uart_writechar_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_readchar), (mp_obj_t)&pyb_uart_readchar_obj }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_sendbreak), (mp_obj_t)&pyb_uart_sendbreak_obj }, |
| |
| // class constants |
| { MP_OBJ_NEW_QSTR(MP_QSTR_RTS), MP_OBJ_NEW_SMALL_INT(UART_HWCONTROL_RTS) }, |
| { MP_OBJ_NEW_QSTR(MP_QSTR_CTS), MP_OBJ_NEW_SMALL_INT(UART_HWCONTROL_CTS) }, |
| }; |
| |
| STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table); |
| |
| STATIC mp_uint_t pyb_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) { |
| pyb_uart_obj_t *self = self_in; |
| byte *buf = buf_in; |
| |
| // check that size is a multiple of character width |
| if (size & self->char_width) { |
| *errcode = EIO; |
| return MP_STREAM_ERROR; |
| } |
| |
| // convert byte size to char size |
| size >>= self->char_width; |
| |
| // make sure we want at least 1 char |
| if (size == 0) { |
| return 0; |
| } |
| |
| // wait for first char to become available |
| if (!uart_rx_wait(self, self->timeout)) { |
| // we can either return 0 to indicate EOF (then read() method returns b'') |
| // or return EAGAIN error to indicate non-blocking (then read() method returns None) |
| return 0; |
| } |
| |
| // read the data |
| byte *orig_buf = buf; |
| for (;;) { |
| int data = uart_rx_char(self); |
| if (self->char_width == CHAR_WIDTH_9BIT) { |
| *(uint16_t*)buf = data; |
| buf += 2; |
| } else { |
| *buf++ = data; |
| } |
| if (--size == 0 || !uart_rx_wait(self, self->timeout_char)) { |
| // return number of bytes read |
| return buf - orig_buf; |
| } |
| } |
| } |
| |
| STATIC mp_uint_t pyb_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) { |
| pyb_uart_obj_t *self = self_in; |
| const byte *buf = buf_in; |
| |
| // check that size is a multiple of character width |
| if (size & self->char_width) { |
| *errcode = EIO; |
| return MP_STREAM_ERROR; |
| } |
| |
| // write the data |
| HAL_StatusTypeDef status = HAL_UART_Transmit(&self->uart, (uint8_t*)buf, size >> self->char_width, self->timeout); |
| |
| if (status == HAL_OK) { |
| // return number of bytes written |
| return size; |
| } else { |
| *errcode = mp_hal_status_to_errno_table[status]; |
| return MP_STREAM_ERROR; |
| } |
| } |
| |
| STATIC mp_uint_t pyb_uart_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) { |
| pyb_uart_obj_t *self = self_in; |
| mp_uint_t ret; |
| if (request == MP_IOCTL_POLL) { |
| mp_uint_t flags = arg; |
| ret = 0; |
| if ((flags & MP_IOCTL_POLL_RD) && uart_rx_any(self)) { |
| ret |= MP_IOCTL_POLL_RD; |
| } |
| if ((flags & MP_IOCTL_POLL_WR) && __HAL_UART_GET_FLAG(&self->uart, UART_FLAG_TXE)) { |
| ret |= MP_IOCTL_POLL_WR; |
| } |
| } else { |
| *errcode = EINVAL; |
| ret = MP_STREAM_ERROR; |
| } |
| return ret; |
| } |
| |
| STATIC const mp_stream_p_t uart_stream_p = { |
| .read = pyb_uart_read, |
| .write = pyb_uart_write, |
| .ioctl = pyb_uart_ioctl, |
| .is_text = false, |
| }; |
| |
| const mp_obj_type_t pyb_uart_type = { |
| { &mp_type_type }, |
| .name = MP_QSTR_UART, |
| .print = pyb_uart_print, |
| .make_new = pyb_uart_make_new, |
| .getiter = mp_identity, |
| .iternext = mp_stream_unbuffered_iter, |
| .stream_p = &uart_stream_p, |
| .locals_dict = (mp_obj_t)&pyb_uart_locals_dict, |
| }; |