blob: af2a2d9e616684f1790c294d04b31185ce3cd187 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Christoph Lameter2e892f42006-12-13 00:34:23 -08002 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
3 *
Christoph Lametercde53532008-07-04 09:59:22 -07004 * (C) SGI 2006, Christoph Lameter
Christoph Lameter2e892f42006-12-13 00:34:23 -08005 * Cleaned up and restructured to ease the addition of alternative
6 * implementations of SLAB allocators.
Christoph Lameterf1b6eb62013-09-04 16:35:34 +00007 * (C) Linux Foundation 2008-2013
8 * Unified interface for all slab allocators
Linus Torvalds1da177e2005-04-16 15:20:36 -07009 */
10
11#ifndef _LINUX_SLAB_H
12#define _LINUX_SLAB_H
13
Andrew Morton1b1cec42006-12-06 20:33:22 -080014#include <linux/gfp.h>
Andrew Morton1b1cec42006-12-06 20:33:22 -080015#include <linux/types.h>
Glauber Costa1f458cb2012-12-18 14:22:50 -080016#include <linux/workqueue.h>
17
Linus Torvalds1da177e2005-04-16 15:20:36 -070018
Christoph Lameter2e892f42006-12-13 00:34:23 -080019/*
20 * Flags to pass to kmem_cache_create().
David Rientjes124dee02015-04-14 15:44:28 -070021 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
Linus Torvalds1da177e2005-04-16 15:20:36 -070022 */
Christoph Lameter55935a32006-12-13 00:34:24 -080023#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
Christoph Lameter55935a32006-12-13 00:34:24 -080024#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
25#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
26#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
Christoph Lameter2e892f42006-12-13 00:34:23 -080027#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
Christoph Lameter2e892f42006-12-13 00:34:23 -080028#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
Christoph Lameter2e892f42006-12-13 00:34:23 -080029#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
Peter Zijlstrad7de4c12008-11-13 20:40:12 +020030/*
31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
32 *
33 * This delays freeing the SLAB page by a grace period, it does _NOT_
34 * delay object freeing. This means that if you do kmem_cache_free()
35 * that memory location is free to be reused at any time. Thus it may
36 * be possible to see another object there in the same RCU grace period.
37 *
38 * This feature only ensures the memory location backing the object
39 * stays valid, the trick to using this is relying on an independent
40 * object validation pass. Something like:
41 *
42 * rcu_read_lock()
43 * again:
44 * obj = lockless_lookup(key);
45 * if (obj) {
46 * if (!try_get_ref(obj)) // might fail for free objects
47 * goto again;
48 *
49 * if (obj->key != key) { // not the object we expected
50 * put_ref(obj);
51 * goto again;
52 * }
53 * }
54 * rcu_read_unlock();
55 *
Joonsoo Kim68126702013-10-24 10:07:42 +090056 * This is useful if we need to approach a kernel structure obliquely,
57 * from its address obtained without the usual locking. We can lock
58 * the structure to stabilize it and check it's still at the given address,
59 * only if we can be sure that the memory has not been meanwhile reused
60 * for some other kind of object (which our subsystem's lock might corrupt).
61 *
62 * rcu_read_lock before reading the address, then rcu_read_unlock after
63 * taking the spinlock within the structure expected at that address.
Peter Zijlstrad7de4c12008-11-13 20:40:12 +020064 */
Christoph Lameter2e892f42006-12-13 00:34:23 -080065#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
Paul Jackson101a5002006-03-24 03:16:07 -080066#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
Christoph Lameter81819f02007-05-06 14:49:36 -070067#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
Linus Torvalds1da177e2005-04-16 15:20:36 -070068
Thomas Gleixner30327ac2008-04-30 00:54:59 -070069/* Flag to prevent checks on free */
70#ifdef CONFIG_DEBUG_OBJECTS
71# define SLAB_DEBUG_OBJECTS 0x00400000UL
72#else
73# define SLAB_DEBUG_OBJECTS 0x00000000UL
74#endif
75
Catalin Marinasd5cff632009-06-11 13:22:40 +010076#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
77
Vegard Nossum2dff4402008-05-31 15:56:17 +020078/* Don't track use of uninitialized memory */
79#ifdef CONFIG_KMEMCHECK
80# define SLAB_NOTRACK 0x01000000UL
81#else
82# define SLAB_NOTRACK 0x00000000UL
83#endif
Dmitry Monakhov4c13dd32010-02-26 09:36:12 +030084#ifdef CONFIG_FAILSLAB
85# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
86#else
87# define SLAB_FAILSLAB 0x00000000UL
88#endif
Vegard Nossum2dff4402008-05-31 15:56:17 +020089
Mel Gormane12ba742007-10-16 01:25:52 -070090/* The following flags affect the page allocator grouping pages by mobility */
91#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
92#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
Christoph Lameter2e892f42006-12-13 00:34:23 -080093/*
Christoph Lameter6cb8f912007-07-17 04:03:22 -070094 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
95 *
96 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
97 *
98 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
99 * Both make kfree a no-op.
100 */
101#define ZERO_SIZE_PTR ((void *)16)
102
Roland Dreier1d4ec7b2007-07-20 12:13:20 -0700103#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
Christoph Lameter6cb8f912007-07-17 04:03:22 -0700104 (unsigned long)ZERO_SIZE_PTR)
105
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000106#include <linux/kmemleak.h>
Andrey Ryabinin0316bec2015-02-13 14:39:42 -0800107#include <linux/kasan.h>
Christoph Lameter3b0efdf2012-06-13 10:24:57 -0500108
Glauber Costa2633d7a2012-12-18 14:22:34 -0800109struct mem_cgroup;
Christoph Lameter3b0efdf2012-06-13 10:24:57 -0500110/*
Christoph Lameter2e892f42006-12-13 00:34:23 -0800111 * struct kmem_cache related prototypes
112 */
113void __init kmem_cache_init(void);
Christoph Lameter81819f02007-05-06 14:49:36 -0700114int slab_is_available(void);
Matt Mackall10cef602006-01-08 01:01:45 -0800115
Christoph Lameter2e892f42006-12-13 00:34:23 -0800116struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
Christoph Lameterebe29732006-12-06 20:32:59 -0800117 unsigned long,
Alexey Dobriyan51cc5062008-07-25 19:45:34 -0700118 void (*)(void *));
Christoph Lameter2e892f42006-12-13 00:34:23 -0800119void kmem_cache_destroy(struct kmem_cache *);
120int kmem_cache_shrink(struct kmem_cache *);
Vladimir Davydov2a4db7e2015-02-12 14:59:32 -0800121
122void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
123void memcg_deactivate_kmem_caches(struct mem_cgroup *);
124void memcg_destroy_kmem_caches(struct mem_cgroup *);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700125
Christoph Lameter0a31bd52007-05-06 14:49:57 -0700126/*
127 * Please use this macro to create slab caches. Simply specify the
128 * name of the structure and maybe some flags that are listed above.
129 *
130 * The alignment of the struct determines object alignment. If you
131 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
132 * then the objects will be properly aligned in SMP configurations.
133 */
134#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
135 sizeof(struct __struct), __alignof__(struct __struct),\
Paul Mundt20c2df82007-07-20 10:11:58 +0900136 (__flags), NULL)
Christoph Lameter0a31bd52007-05-06 14:49:57 -0700137
Christoph Lameter2e892f42006-12-13 00:34:23 -0800138/*
Christoph Lameter34504662013-01-10 19:00:53 +0000139 * Common kmalloc functions provided by all allocators
140 */
141void * __must_check __krealloc(const void *, size_t, gfp_t);
142void * __must_check krealloc(const void *, size_t, gfp_t);
143void kfree(const void *);
144void kzfree(const void *);
145size_t ksize(const void *);
146
Kees Cook8bc56ed2016-06-07 11:05:33 -0700147#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
148const char *__check_heap_object(const void *ptr, unsigned long n,
149 struct page *page);
150#else
151static inline const char *__check_heap_object(const void *ptr,
152 unsigned long n,
153 struct page *page)
154{
155 return NULL;
156}
157#endif
158
Christoph Lameterc601fd62013-02-05 16:36:47 +0000159/*
160 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
161 * alignment larger than the alignment of a 64-bit integer.
162 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
163 */
164#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
165#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
166#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
167#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
168#else
169#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
170#endif
171
Christoph Lameter34504662013-01-10 19:00:53 +0000172/*
Christoph Lameter95a05b42013-01-10 19:14:19 +0000173 * Kmalloc array related definitions
174 */
175
176#ifdef CONFIG_SLAB
177/*
178 * The largest kmalloc size supported by the SLAB allocators is
Christoph Lameter0aa817f2007-05-16 22:11:01 -0700179 * 32 megabyte (2^25) or the maximum allocatable page order if that is
180 * less than 32 MB.
181 *
182 * WARNING: Its not easy to increase this value since the allocators have
183 * to do various tricks to work around compiler limitations in order to
184 * ensure proper constant folding.
185 */
Christoph Lameterdebee072007-06-23 17:16:43 -0700186#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
187 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
Christoph Lameter95a05b42013-01-10 19:14:19 +0000188#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
Christoph Lameterc601fd62013-02-05 16:36:47 +0000189#ifndef KMALLOC_SHIFT_LOW
Christoph Lameter95a05b42013-01-10 19:14:19 +0000190#define KMALLOC_SHIFT_LOW 5
Christoph Lameterc601fd62013-02-05 16:36:47 +0000191#endif
Christoph Lameter069e2b352013-06-14 19:55:13 +0000192#endif
193
194#ifdef CONFIG_SLUB
Christoph Lameter95a05b42013-01-10 19:14:19 +0000195/*
Dave Hansen433a91f2014-01-28 14:24:50 -0800196 * SLUB directly allocates requests fitting in to an order-1 page
197 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
Christoph Lameter95a05b42013-01-10 19:14:19 +0000198 */
199#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
200#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT)
Christoph Lameterc601fd62013-02-05 16:36:47 +0000201#ifndef KMALLOC_SHIFT_LOW
Christoph Lameter95a05b42013-01-10 19:14:19 +0000202#define KMALLOC_SHIFT_LOW 3
203#endif
Christoph Lameterc601fd62013-02-05 16:36:47 +0000204#endif
Christoph Lameter0aa817f2007-05-16 22:11:01 -0700205
Christoph Lameter069e2b352013-06-14 19:55:13 +0000206#ifdef CONFIG_SLOB
207/*
Dave Hansen433a91f2014-01-28 14:24:50 -0800208 * SLOB passes all requests larger than one page to the page allocator.
Christoph Lameter069e2b352013-06-14 19:55:13 +0000209 * No kmalloc array is necessary since objects of different sizes can
210 * be allocated from the same page.
211 */
Christoph Lameter069e2b352013-06-14 19:55:13 +0000212#define KMALLOC_SHIFT_HIGH PAGE_SHIFT
Dave Hansen433a91f2014-01-28 14:24:50 -0800213#define KMALLOC_SHIFT_MAX 30
Christoph Lameter069e2b352013-06-14 19:55:13 +0000214#ifndef KMALLOC_SHIFT_LOW
215#define KMALLOC_SHIFT_LOW 3
216#endif
217#endif
218
Christoph Lameter95a05b42013-01-10 19:14:19 +0000219/* Maximum allocatable size */
220#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
221/* Maximum size for which we actually use a slab cache */
222#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
223/* Maximum order allocatable via the slab allocagtor */
224#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
Christoph Lameter0aa817f2007-05-16 22:11:01 -0700225
Christoph Lameter90810642011-06-23 09:36:12 -0500226/*
Christoph Lameterce6a5022013-01-10 19:14:19 +0000227 * Kmalloc subsystem.
228 */
Christoph Lameterc601fd62013-02-05 16:36:47 +0000229#ifndef KMALLOC_MIN_SIZE
Christoph Lameter95a05b42013-01-10 19:14:19 +0000230#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
Christoph Lameterce6a5022013-01-10 19:14:19 +0000231#endif
Christoph Lameterce6a5022013-01-10 19:14:19 +0000232
Joonsoo Kim24f870d2014-03-12 17:06:19 +0900233/*
234 * This restriction comes from byte sized index implementation.
235 * Page size is normally 2^12 bytes and, in this case, if we want to use
236 * byte sized index which can represent 2^8 entries, the size of the object
237 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
238 * If minimum size of kmalloc is less than 16, we use it as minimum object
239 * size and give up to use byte sized index.
240 */
241#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
242 (KMALLOC_MIN_SIZE) : 16)
243
Christoph Lameter069e2b352013-06-14 19:55:13 +0000244#ifndef CONFIG_SLOB
Christoph Lameter9425c582013-01-10 19:12:17 +0000245extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
246#ifdef CONFIG_ZONE_DMA
247extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
248#endif
249
Christoph Lameterce6a5022013-01-10 19:14:19 +0000250/*
251 * Figure out which kmalloc slab an allocation of a certain size
252 * belongs to.
253 * 0 = zero alloc
254 * 1 = 65 .. 96 bytes
255 * 2 = 120 .. 192 bytes
256 * n = 2^(n-1) .. 2^n -1
257 */
258static __always_inline int kmalloc_index(size_t size)
259{
260 if (!size)
261 return 0;
262
263 if (size <= KMALLOC_MIN_SIZE)
264 return KMALLOC_SHIFT_LOW;
265
266 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
267 return 1;
268 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
269 return 2;
270 if (size <= 8) return 3;
271 if (size <= 16) return 4;
272 if (size <= 32) return 5;
273 if (size <= 64) return 6;
274 if (size <= 128) return 7;
275 if (size <= 256) return 8;
276 if (size <= 512) return 9;
277 if (size <= 1024) return 10;
278 if (size <= 2 * 1024) return 11;
279 if (size <= 4 * 1024) return 12;
280 if (size <= 8 * 1024) return 13;
281 if (size <= 16 * 1024) return 14;
282 if (size <= 32 * 1024) return 15;
283 if (size <= 64 * 1024) return 16;
284 if (size <= 128 * 1024) return 17;
285 if (size <= 256 * 1024) return 18;
286 if (size <= 512 * 1024) return 19;
287 if (size <= 1024 * 1024) return 20;
288 if (size <= 2 * 1024 * 1024) return 21;
289 if (size <= 4 * 1024 * 1024) return 22;
290 if (size <= 8 * 1024 * 1024) return 23;
291 if (size <= 16 * 1024 * 1024) return 24;
292 if (size <= 32 * 1024 * 1024) return 25;
293 if (size <= 64 * 1024 * 1024) return 26;
294 BUG();
295
296 /* Will never be reached. Needed because the compiler may complain */
297 return -1;
298}
Christoph Lameter069e2b352013-06-14 19:55:13 +0000299#endif /* !CONFIG_SLOB */
Christoph Lameterce6a5022013-01-10 19:14:19 +0000300
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000301void *__kmalloc(size_t size, gfp_t flags);
302void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags);
Vladimir Davydov2a4db7e2015-02-12 14:59:32 -0800303void kmem_cache_free(struct kmem_cache *, void *);
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000304
305#ifdef CONFIG_NUMA
306void *__kmalloc_node(size_t size, gfp_t flags, int node);
307void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
308#else
309static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
310{
311 return __kmalloc(size, flags);
312}
313
314static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
315{
316 return kmem_cache_alloc(s, flags);
317}
318#endif
319
320#ifdef CONFIG_TRACING
321extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t);
322
323#ifdef CONFIG_NUMA
324extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
325 gfp_t gfpflags,
326 int node, size_t size);
327#else
328static __always_inline void *
329kmem_cache_alloc_node_trace(struct kmem_cache *s,
330 gfp_t gfpflags,
331 int node, size_t size)
332{
333 return kmem_cache_alloc_trace(s, gfpflags, size);
334}
335#endif /* CONFIG_NUMA */
336
337#else /* CONFIG_TRACING */
338static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
339 gfp_t flags, size_t size)
340{
Andrey Ryabinin0316bec2015-02-13 14:39:42 -0800341 void *ret = kmem_cache_alloc(s, flags);
342
343 kasan_kmalloc(s, ret, size);
344 return ret;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000345}
346
347static __always_inline void *
348kmem_cache_alloc_node_trace(struct kmem_cache *s,
349 gfp_t gfpflags,
350 int node, size_t size)
351{
Andrey Ryabinin0316bec2015-02-13 14:39:42 -0800352 void *ret = kmem_cache_alloc_node(s, gfpflags, node);
353
354 kasan_kmalloc(s, ret, size);
355 return ret;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000356}
357#endif /* CONFIG_TRACING */
358
Vladimir Davydov52383432014-06-04 16:06:39 -0700359extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order);
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000360
361#ifdef CONFIG_TRACING
362extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
363#else
364static __always_inline void *
365kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
366{
367 return kmalloc_order(size, flags, order);
368}
Christoph Lameterce6a5022013-01-10 19:14:19 +0000369#endif
370
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000371static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
372{
373 unsigned int order = get_order(size);
374 return kmalloc_order_trace(size, flags, order);
375}
376
377/**
378 * kmalloc - allocate memory
379 * @size: how many bytes of memory are required.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800380 * @flags: the type of memory to allocate.
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000381 *
382 * kmalloc is the normal method of allocating memory
383 * for objects smaller than page size in the kernel.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800384 *
385 * The @flags argument may be one of:
386 *
387 * %GFP_USER - Allocate memory on behalf of user. May sleep.
388 *
389 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
390 *
391 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
392 * For example, use this inside interrupt handlers.
393 *
394 * %GFP_HIGHUSER - Allocate pages from high memory.
395 *
396 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
397 *
398 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
399 *
400 * %GFP_NOWAIT - Allocation will not sleep.
401 *
Johannes Weinere97ca8e2014-03-10 15:49:43 -0700402 * %__GFP_THISNODE - Allocate node-local memory only.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800403 *
404 * %GFP_DMA - Allocation suitable for DMA.
405 * Should only be used for kmalloc() caches. Otherwise, use a
406 * slab created with SLAB_DMA.
407 *
408 * Also it is possible to set different flags by OR'ing
409 * in one or more of the following additional @flags:
410 *
411 * %__GFP_COLD - Request cache-cold pages instead of
412 * trying to return cache-warm pages.
413 *
414 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
415 *
416 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
417 * (think twice before using).
418 *
419 * %__GFP_NORETRY - If memory is not immediately available,
420 * then give up at once.
421 *
422 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
423 *
424 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
425 *
426 * There are other flags available as well, but these are not intended
427 * for general use, and so are not documented here. For a full list of
428 * potential flags, always refer to linux/gfp.h.
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000429 */
430static __always_inline void *kmalloc(size_t size, gfp_t flags)
431{
432 if (__builtin_constant_p(size)) {
433 if (size > KMALLOC_MAX_CACHE_SIZE)
434 return kmalloc_large(size, flags);
435#ifndef CONFIG_SLOB
436 if (!(flags & GFP_DMA)) {
437 int index = kmalloc_index(size);
438
439 if (!index)
440 return ZERO_SIZE_PTR;
441
442 return kmem_cache_alloc_trace(kmalloc_caches[index],
443 flags, size);
444 }
445#endif
446 }
447 return __kmalloc(size, flags);
448}
449
Christoph Lameterce6a5022013-01-10 19:14:19 +0000450/*
451 * Determine size used for the nth kmalloc cache.
452 * return size or 0 if a kmalloc cache for that
453 * size does not exist
454 */
455static __always_inline int kmalloc_size(int n)
456{
Christoph Lameter069e2b352013-06-14 19:55:13 +0000457#ifndef CONFIG_SLOB
Christoph Lameterce6a5022013-01-10 19:14:19 +0000458 if (n > 2)
459 return 1 << n;
460
461 if (n == 1 && KMALLOC_MIN_SIZE <= 32)
462 return 96;
463
464 if (n == 2 && KMALLOC_MIN_SIZE <= 64)
465 return 192;
Christoph Lameter069e2b352013-06-14 19:55:13 +0000466#endif
Christoph Lameterce6a5022013-01-10 19:14:19 +0000467 return 0;
468}
Christoph Lameterce6a5022013-01-10 19:14:19 +0000469
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000470static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
471{
472#ifndef CONFIG_SLOB
473 if (__builtin_constant_p(size) &&
Christoph Lameter23774a22013-09-04 19:58:08 +0000474 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000475 int i = kmalloc_index(size);
476
477 if (!i)
478 return ZERO_SIZE_PTR;
479
480 return kmem_cache_alloc_node_trace(kmalloc_caches[i],
481 flags, node, size);
482 }
483#endif
484 return __kmalloc_node(size, flags, node);
485}
486
Christoph Lameterce6a5022013-01-10 19:14:19 +0000487/*
Christoph Lameter90810642011-06-23 09:36:12 -0500488 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
489 * Intended for arches that get misalignment faults even for 64 bit integer
490 * aligned buffers.
491 */
Christoph Lameter3192b922011-06-14 16:16:36 -0500492#ifndef ARCH_SLAB_MINALIGN
493#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
494#endif
Vladimir Davydovf7ce3192015-02-12 14:59:20 -0800495
496struct memcg_cache_array {
497 struct rcu_head rcu;
498 struct kmem_cache *entries[0];
499};
500
Christoph Lameter0aa817f2007-05-16 22:11:01 -0700501/*
Glauber Costaba6c4962012-12-18 14:22:27 -0800502 * This is the main placeholder for memcg-related information in kmem caches.
Glauber Costaba6c4962012-12-18 14:22:27 -0800503 * Both the root cache and the child caches will have it. For the root cache,
504 * this will hold a dynamically allocated array large enough to hold
Vladimir Davydovf8570262014-01-23 15:53:06 -0800505 * information about the currently limited memcgs in the system. To allow the
506 * array to be accessed without taking any locks, on relocation we free the old
507 * version only after a grace period.
Glauber Costaba6c4962012-12-18 14:22:27 -0800508 *
509 * Child caches will hold extra metadata needed for its operation. Fields are:
510 *
511 * @memcg: pointer to the memcg this cache belongs to
Glauber Costa2633d7a2012-12-18 14:22:34 -0800512 * @root_cache: pointer to the global, root cache, this cache was derived from
Vladimir Davydov426589f2015-02-12 14:59:23 -0800513 *
514 * Both root and child caches of the same kind are linked into a list chained
515 * through @list.
Glauber Costaba6c4962012-12-18 14:22:27 -0800516 */
517struct memcg_cache_params {
518 bool is_root_cache;
Vladimir Davydov426589f2015-02-12 14:59:23 -0800519 struct list_head list;
Glauber Costaba6c4962012-12-18 14:22:27 -0800520 union {
Vladimir Davydovf7ce3192015-02-12 14:59:20 -0800521 struct memcg_cache_array __rcu *memcg_caches;
Glauber Costa2633d7a2012-12-18 14:22:34 -0800522 struct {
523 struct mem_cgroup *memcg;
Glauber Costa2633d7a2012-12-18 14:22:34 -0800524 struct kmem_cache *root_cache;
525 };
Glauber Costaba6c4962012-12-18 14:22:27 -0800526 };
527};
528
Glauber Costa2633d7a2012-12-18 14:22:34 -0800529int memcg_update_all_caches(int num_memcgs);
530
Christoph Lameter2e892f42006-12-13 00:34:23 -0800531/**
Michael Opdenackere7efa612013-06-25 18:16:55 +0200532 * kmalloc_array - allocate memory for an array.
533 * @n: number of elements.
534 * @size: element size.
535 * @flags: the type of memory to allocate (see kmalloc).
Paul Drynoff800590f2006-06-23 02:03:48 -0700536 */
Xi Wanga8203722012-03-05 15:14:41 -0800537static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700538{
Xi Wanga3860c12012-05-31 16:26:04 -0700539 if (size != 0 && n > SIZE_MAX / size)
Paul Mundt6193a2f2007-07-15 23:38:22 -0700540 return NULL;
Xi Wanga8203722012-03-05 15:14:41 -0800541 return __kmalloc(n * size, flags);
542}
543
544/**
545 * kcalloc - allocate memory for an array. The memory is set to zero.
546 * @n: number of elements.
547 * @size: element size.
548 * @flags: the type of memory to allocate (see kmalloc).
549 */
550static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
551{
552 return kmalloc_array(n, size, flags | __GFP_ZERO);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553}
554
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -0700555/*
556 * kmalloc_track_caller is a special version of kmalloc that records the
557 * calling function of the routine calling it for slab leak tracking instead
558 * of just the calling function (confusing, eh?).
559 * It's useful when the call to kmalloc comes from a widely-used standard
560 * allocator where we care about the real place the memory allocation
561 * request comes from.
562 */
Eduard - Gabriel Munteanuce71e272008-08-19 20:43:25 +0300563extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -0700564#define kmalloc_track_caller(size, flags) \
Eduard - Gabriel Munteanuce71e272008-08-19 20:43:25 +0300565 __kmalloc_track_caller(size, flags, _RET_IP_)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700566
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700567#ifdef CONFIG_NUMA
Eduard - Gabriel Munteanuce71e272008-08-19 20:43:25 +0300568extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
Christoph Hellwig8b98c162006-12-06 20:32:30 -0800569#define kmalloc_node_track_caller(size, flags, node) \
570 __kmalloc_node_track_caller(size, flags, node, \
Eduard - Gabriel Munteanuce71e272008-08-19 20:43:25 +0300571 _RET_IP_)
Christoph Lameter2e892f42006-12-13 00:34:23 -0800572
Christoph Hellwig8b98c162006-12-06 20:32:30 -0800573#else /* CONFIG_NUMA */
Christoph Lameter2e892f42006-12-13 00:34:23 -0800574
575#define kmalloc_node_track_caller(size, flags, node) \
576 kmalloc_track_caller(size, flags)
577
Pascal Terjandfcd3612008-11-25 15:08:19 +0100578#endif /* CONFIG_NUMA */
Christoph Hellwig8b98c162006-12-06 20:32:30 -0800579
Christoph Lameter81cda662007-07-17 04:03:29 -0700580/*
581 * Shortcuts
582 */
583static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
584{
585 return kmem_cache_alloc(k, flags | __GFP_ZERO);
586}
587
588/**
589 * kzalloc - allocate memory. The memory is set to zero.
590 * @size: how many bytes of memory are required.
591 * @flags: the type of memory to allocate (see kmalloc).
592 */
593static inline void *kzalloc(size_t size, gfp_t flags)
594{
595 return kmalloc(size, flags | __GFP_ZERO);
596}
597
Jeff Layton979b0fe2008-06-05 22:47:00 -0700598/**
599 * kzalloc_node - allocate zeroed memory from a particular memory node.
600 * @size: how many bytes of memory are required.
601 * @flags: the type of memory to allocate (see kmalloc).
602 * @node: memory node from which to allocate
603 */
604static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
605{
606 return kmalloc_node(size, flags | __GFP_ZERO, node);
607}
608
Joonsoo Kim07f361b2014-10-09 15:26:00 -0700609unsigned int kmem_cache_size(struct kmem_cache *s);
Pekka Enberg7e85ee02009-06-12 14:03:06 +0300610void __init kmem_cache_init_late(void);
611
Linus Torvalds1da177e2005-04-16 15:20:36 -0700612#endif /* _LINUX_SLAB_H */